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Falling into a Black Hole
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Outline

 Principle of Extremal Aging
 Conservation of Energy

 Energy in Curved Schwarzschild Geometry
 Formulation
 Measurement of Total Energy
 Clock on a Shell

 Free-falling object
 Shell view – velocity and energy
 Crunch time

 Over the edge
 Timescales
 Worldline view

 Homework:  Due Friday, Dec. 4th
 Problems 2-5 and 3-7 in Exploring Black Holes
 You might want to look at problem 2-6 (but not required)
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Principle of Extremal Aging & Energy

 Principle of Extremal Aging
 The path a free object takes between two events 

in spacetime is the path for which the time lapse 
between these events, recorded on the object’s 
wristwatch, is an extremum.

 Energy
 The principle of Extremal Aging and the metric 

(spacetime interval) leads to the relativistic 
expression for energy
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A moving particle

 Consider a free particle traveling in a straight line in 
space observed in an inertial frame

 The particle emits three flashes (#1, #2, and #3) – as 
shown above
 The segments A and B need not be the same length.
 Given fixed spatial positions for the events and fixed times 

for #1 and #3, when will flash #2 occur?

 Find intermediate time by demanding that the 
wristwatch (proper time) from #1 to #3 be an 
extremum (Principle of Extremal Aging)
 This result leads to a conserved quantity, the energy of the 

particle 

#1 #2 #3
A B

T0 Flashes occur at three fixed locations 
and times of flashes #1 and #3 are fixed.  
At what time does the particle pass 
location 2 and emit the second flash?
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Event timing

 Let t be the frame time between #1 and #2 and let s be the frame 
distances between the two flashes,  The proper time is

 Let T be the (fixed) frame time between flashes #1 and #3 and let S be 
the distance between them, so that the proper time in going from event 
#2 to #3 is

 The total proper (wristwatch) time from event #1 to #3 is the sum of 
these two times

#1 #2 #3
A B

T0 Flashes occur at three fixed locations 
and times of flashes #1 and #3 are fixed.  
At what time does the particle pass 
location 2 and emit the second flash?

  2/122 stA 

     2/122 sStTB 

       2/1222/122 sStTstBA  

t
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Applying Principle of Extremal Aging

 When – at what frame time t – will the stone, following its natural 
path, pass the intermediate point #2.  We have so far

 The Principle of Extremal Aging can be used: the time t will 
make t an extremum.
 To find the extremum we differentiate the above expression and set 

it to zero

 Which tells us that

 Defining tA and tB to be the times to travel the segments, we have

       2/1222/122 sStTstBA  
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
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Constant of motion: Energy

 Now this holds for segments A and B but we didn’t specify 
where these begin and end, thus these could be any 
consecutive segments, labeled A, B, C, D, … So that

 Thus we have for a free particle the ratio t is a constant of the 
motion

 What is this quantity?

 Which just the energy per unit mass of a particle.  It makes 
sense to use the instantaneous speed in case the particle 
changes speed, so  

...
D

D

C

C

B

B

A

A tttt




  2/122 st

tt




    2/12/1 tst

t


   2/121

1

v


m

E


d

dt

m

E


or in 
conventional units d

dt

cm

E

kg

joules 
2
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Energy in Curved Schwarzschild Geometry

 In the curved spacetime of Schwarzschild geometry 
the energy is given by

 This can be derived in a manner similar to that for flat space 
(see pages 3-6 to 3-9 of textbook)

 Notes: 
 Particle of different mass follow the same worldlines (motion 

governed by energy per unit mass)
 Using the Energy per unit mass has the advantage that it is 

“unitless”

 At large distances:

 The energy for flat space, and E  m for an object at rest

d

dt

r

M

m

E






 

2
1

d

dt

m

E

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Total Energy

 Unified energy
 No separation between “kinetic” (speed) and “potential”

(location) energy that appears in Newtonian mechanics.

 Can measure total energy of system (star plus 
satellite) via remote (Newtonian!) diagnostic probe

 v2/r is the acceleration of a circular orbit

 We then can get the energy of a satellite measured 
by a distant observer as

 The value of the energy, E, associated with the satellite will 
be a constant of the motion (during free flight) 

probe
probeprobe r

v
mamF

2


G

rv
M probe

total

2



startotal MME 

2
probe

probetotal

r

mGM

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Clock on a Shell

 Consider a clock of mass, m, bolted to a spherical shell at r-
coordinate, ro.  What is the energy (with the remote probe)?

 Ticks on the shell clock are the proper time (time read on the 
clock), so d = dtshell.  From the Schwarzschild metric (previously)

 So that

 Thus the energy is less than the mass of the clock
 This is the negative energy of gravitational binding
 Note as ro  2M, E/m  0 but a remote probe detects no change 

in the mass of the system

d

dt

r

M

m

E






 

2
1

shelldt
r

M
dt

2/1
2

1








 

2/1
2

1 





 

r

M

m

E At rest at ro1
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Falling from Rest at Infinity
 Consider drop a object from a very large distance onto the black hole
 Energy is conserved

 At a large distance for an object at rest, E = m so that

 Will be a constant of the motion
 Squaring and using the Schwarzschild metric (for radial infall d = 0) to 

substitute for d 2 gives

 Solving for dr/dt

 The minus square root is used because radius decreases as an object falls

1
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
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

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











 

r

M

r

M

dt

dr Rate of change of r as 
measured on far-away 
clocks (bookkeeper)

If the object were moving 
at large r,   2/1211 farvmE 

A2290-36 Free Falling 12

Schwarzschild Bookkeeper view

 The bookkeeper derived velocity, dr/dt is 

 Note the “strange” (surprising) behavior of the particle
 As it approaches the horizon (r  2M), dr/dt  0
 The Schwarzschild bookkeeper which keeps track of the 

reduced circumference and far-away time reckons that the 
particle slows down as it approaches the horizon

 The particle reaches the horizon only after infinite time

 Note 
 No one directly measures this speed
 The remote observer can’t “see” the particle because of the 

“infinite” gravitational redshift at the horizon

 Let’s look at what a shell observer finds
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