Astro 233: Coming Attractions

• Keep an eye on our website for updates to links and references

• The lecture slides are linked there also!

• The first paper will be due on Thursday Sep 14th.
 • The version posted on the web site will contain some useful links.
 • It will be graded as a draft.
 • See Melissa for help! Send her email if you need to meet with her at another time.
What is the purpose of a telescope?

1. A telescope acts like a light bucket, to gather photons.
 - The bigger a telescope is, the more photons it can catch.
What is the purpose of a telescope?

2. In addition to gathering light, a telescope allows a more detailed view of the structure of a celestial object and/or to discern the presence of multiple objects. This is called the telescope’s **angular resolution**.
What is the purpose of a telescope?

2. In addition to gathering light, a telescope allows a more detailed view of the structure of a celestial object and/or discern the presence of multiple objects. This is called the **ANGULAR RESOLUTION**.

Minimum angular separation of two objects that can be seen as separate

Remember there are 206,265 seconds of arc in one radian (a useful number to remember).
5.1 Telescope Design

Modern optical telescopes are all reflectors:

• Light traveling through lens is refracted differently depending on wavelength
• Some light traveling through lens is absorbed
• Large lenses can be very heavy, and can be supported only at edge
• Lens needs two optically acceptable surfaces, mirror needs only one
Diffraction Limit

\[
\theta = \frac{1.22 \times \text{wavelength (cm)}}{\text{diameter of telescope (cm)}}
\]

Example: Hubble Space Telescope HST
The diameter of the telescope is 2.4 m = 240 cm
Let's find the diffraction limit at 5000 Angstroms.

\[
\theta = \frac{1.22 \times 5000 \, \text{Å} \times 10^{-8} \, \text{cm/Å}}{240 \, \text{cm}} = 2.54 \times 10^{-7} \, \text{radians}
\]

= 2.54 x 10^{-7} radians X 206,265 arcsec/radian

= 0.05 arc seconds

Remember there are 206,265 seconds of arc in one radian (a useful number to remember).
Diffraction Limit

Example: Arecibo 305 meter telescope
The diameter of the telescope is 305 m = 30500 cm
Let's find the diffraction limit at 21 cm.

\[\Theta = \frac{1.22 \times 21 \text{ cm}}{30500 \text{ cm}} = 8.4 \times 10^{-4} \text{ radians} \]

\[= 8.4 \times 10^{-4} \text{ radians} \times 206,265 \text{ arcsec/radian} \]

\[= 173 \text{ arc seconds} = 2.88 \text{ arc minutes} \]
The “seeing” of an image is a measure of its quality or sharpness. This is often quantified as the “point spread function” (PSF): the angle subtended by an unresolved (point-like) object in the image.
Atmospheric Seeing

- An image obtained with a telescope on the ground is also affected by **ATMOSPHERIC SEEING**, that is, blurring of the image by turbulence in the Earth’s atmosphere.

- Space-based telescopes are not affected by atmospheric seeing.

Stars “twinkle” because of atmospheric turbulence. Planets are (not quite) point sources and do not twinkle.

- The **seeing** of an image is a measure of its quality or sharpness.
- Because stars are so far away, they appear as points of light in our images.
- The seeing then is the angular extent of a star in an image.
- The seeing is always bigger than either (1) the diffraction limit or (2) the atmospheric seeing, whichever is greater.
The “seeing” of an image

- The seeing of an image is a measure of its quality or sharpness.
- Because stars are so far away, they appear as points of light in our images.
- The seeing then is the angular extent of a star in an image.
- The seeing is always bigger than either (1) the diffraction limit or (2) the atmospheric seeing, whichever is greater.
Diffraction Limit

Example: Palomar 5 meter telescope
The diameter of the telescope is 5 m = 500 cm
Let's find the diffraction limit at 5000 Angstroms.

\[\Theta = \frac{1.22 \times 5000 \, \text{Å} \times 10^{-8} \, \text{cm}/\text{Å}}{500 \, \text{cm}} = 1.22 \times 10^{-7} \, \text{radians} \]
\[= 1.22 \times 10^{-7} \, \text{radians} \times 206,265 \, \text{arcsec}/\text{radian} \]
\[= 0.025 \, \text{arc seconds} \]

But, since Palomar is only at 6000 feet elevation, its resolution is ATMOSPHERIC SEEING limited, typically not better than 1 arcsecond.
The Palomar 5-meter Hale Telescope

- Located in northern San Diego County, California
- Owned and operated by Caltech
- Cornell is 1/8th partner (gets 1/8th of the nights for observing)
- Useful especially for spectroscopy, infrared imaging and adaptive optics/high resolution studies.
The Palomar 5-meter Hale Telescope
The Palomar 5-meter Hale Telescope
The PHARO Adaptive Optics System
5.4 High-Resolution Astronomy

Solutions:

• Put telescopes on mountaintops, especially in deserts
• Put telescopes in space
• Active optics – control mirrors based on temperature and orientation
Large optical telescopes

<table>
<thead>
<tr>
<th>Telescope</th>
<th>Location</th>
<th>Best seeing</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hubble</td>
<td>space</td>
<td>~0.1"</td>
<td>Near diffraction limit</td>
</tr>
<tr>
<td>Typical ground based optical</td>
<td>Palomar or Arizona</td>
<td>~1"</td>
<td>Atmospheric seeing</td>
</tr>
<tr>
<td>Best ground based optical</td>
<td>Mauna Kea or Chile</td>
<td>~0.7"</td>
<td>Atmospheric seeing</td>
</tr>
<tr>
<td>+ adaptive optics</td>
<td>Mauna Kea or Chile</td>
<td>~0.4"</td>
<td>Some correction for atmospheric seeing</td>
</tr>
<tr>
<td>Future adaptive optics</td>
<td>Mauna Kea or Chile</td>
<td>~0.1"</td>
<td>Maximum correction for atmospheric seeing</td>
</tr>
</tbody>
</table>
Different telescopes provide different clues

Images

Wide field | High resolution

Morphology: appearance, structural details
Astrometry: position, relative to other objects
Photometry: apparent brightness
What are the major advances that Hubble predicts the 200-inch telescope will offer to astronomers?
Was he correct?