ASTRONOMY 6570 — PHYSICS OF THE PLANETS

Tues & Thurs, 11:40 - 12:55 pm, SSB 301
Instructor: P. Nicholson, room 418
(nicholso@astro.cornell.edu)

Course Outline: Spring 2020
(last revised 8 Jan 2020)

0. INTRODUCTION (2 lectures)............................ Jan 21 - 23
 1. Historical review
 2. Coordinate systems & time scales

I. ORBITAL MECHANICS (4 lectures).................... Jan 28 - Feb 6
 1. Kepler's laws & planetary orbits
 2. Perturbation theory & orbital precession
 3. Secular perturbations & resonances

II. ROTATION, FIGURES & GRAVITY FIELDS (4) Feb 11 - 20
 1. Rotation & oblateness
 2. Gravity fields & figures of equilibrium
 3. Free & forced pole precession

III. TIDES & ORBITAL EVOLUTION (3) Feb 27 - Mar 5
 1. Tidal torques & evolutionary timescales
 2. Evolution of the Earth-Moon system

IV. PLANETARY RINGS (2) Mar 10 - 12

V. REFLECTED & THERMAL RADIATION (4)Mar 17 - 26
 1. Photometric measurements; light scattering
 2. Thermal emission & thermal equilibrium
 3. Sub-surface temperature profiles

<<< SPRING BREAK: Mar 30 - Apr 3 >>>

VI. PLANETARY ATMOSPHERES (4) Apr 7 - 16
 1. Vertical structure; rad. time constants
 2. Radiative equilibrium profiles; 2-stream approx.
 3. Buffered atmospheres; condensation
VII. PLANETARY INTERIORS (4) ... Apr 21 - 30
 1. Seismology & the Earth's interior
 2. Terrestrial planets & icy satellites
 3. Jovian planets: observational constraints
 4. Jovian planet models; polytropes & "real" planets

VIII. SPARE LECTURE (1) .. May 5

Guest lectures: April 16

Grading:
7 bi-weekly problem sets will account for 75% of the course grade; a term paper with accompanying in-class presentation (to be scheduled during the Final exam week) will cover 25%. There will be no mid-term or final exam.

Nominal homework due dates:
 1. SS models & Coordinate systems ... Feb 4
 2. Orbital mechanics Feb 18
 3. Planetary figures Mar 3
 4. Tides & Rings Mar 17
 5. Radiation Apr 7
 6. Atmospheres Apr 21
 7. Planetary interiors May 5

Reference books:
A good general text at the level of this course is:

Much of the material we will cover can also be found in one or more of the following more specialized texts:
 Murray & Dermott "Solar System Dynamics" (1999)
 Hubbard "Planetary Interiors" (1984)
 Andrews "Intro. to Atmospheric Physics" (2000)

Lecture Notes:
The lecture notes from last time are posted on the Course website, at
These are arranged by subject, rather than by individual lecture.