Description of radiation field

Qualitatively, we know that characterization should involve
energy/time
frequency
direction
\{ all functions of x, t. \}

We also know that radiation is not altered by passing through empty space.

Flux of energy varies in empty space and therefore cannot be the fundamental quantity.

Ex.:

$F_s = \frac{L}{4\pi r^2} \hat{r}$

Energy per solid angle works.

Assume solar surface emits uniformly

Each unit of area on Sun emits

Fixed solid angle receives emission from area of r^2.

\[\Rightarrow \frac{\text{energy flux}}{\text{solid angle, time}} \text{ independent of } r \]

For reference:

\[\nabla \cdot A = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \cos \theta} (A_\phi \cos \theta) + \frac{1}{r \cos \theta} \frac{\partial A_\lambda}{\partial \lambda} \]
Intensity or radiance

\[I_\lambda(x,t,\hat{n}) = \lim_{\Delta's \to 0} \frac{\Delta E}{\Delta t \Delta \lambda \Delta A \Delta \Omega} \]

where
- \(t = \) time
- \(\lambda = \) wavelength
- \(A = \) area \(\perp \hat{n} \)
- \(\Omega = \) solid angle

With \(I \) defined this way, radiative transfer in empty space reduces to
\[\frac{dI_\lambda}{ds} = 0, \quad s = \text{distance in} \ \hat{n} \ \text{direction (along beam)} \]

Energy flux In direction \(\hat{n} \), monochromatic flux is
\[F_{\lambda,\hat{n}} = \int I_{\lambda}(\hat{n}')\hat{n}' \cdot \hat{n} \ d\Omega' \]

Total flux
\[F_{\hat{n}} = \int_{0}^{\infty} F_{\lambda,\hat{n}} \ d\lambda \]

Comments:
* Notice that if \(I(\hat{n}') = I(-\hat{n}') \) then \(F_{\hat{n}} = 0 \)
* \(I(\hat{n}')\hat{n}' \) is a vector and \(F_{\hat{n}} \) is a sum of vector components

\[\vec{F} = F_{\hat{e}_1}\hat{e}_1 + F_{\hat{e}_2}\hat{e}_2 + F_{\hat{e}_3}\hat{e}_3 \] is vector energy flux.
*Isotropic radiation

\[I(x,t,\hat{n}) \rightarrow I(x,t) \]

No net flux by symmetry.

Flux in one direction across surface is of interest.

\[F^+ = \int I(\hat{n}) \hat{n}^+ \cdot \hat{n} \ d\Omega(\hat{n}) \]

\[= I \int \int_{0}^{\frac{1}{2\pi}} \cos\theta \ d(\cos\theta) d\phi = \pi I \]

Notice \(\pi I < 2\pi I \) (whole hemisphere).

This result is of special interest because thermal emission from a surface or isotropic scattering from a surface give this geometry.

Interaction with matter - Absorption

A medium can absorb, emit or scatter radiation.

Under absorption alone one expects

Energy loss along beam = Beam *absorption strength *n *Δs

beam distance Δs intensity per particle # particles

\[\Delta I_\lambda = -I_\lambda \hat{\sigma}_{a\lambda} n \Delta s \]

Salby notation

\[n \Delta s = \frac{particles}{area}, \text{ need absorption strength in} \]

\[\Delta I_\lambda = -I_\lambda \hat{\sigma}_{a\lambda} n \Delta s \]

Salby notation
Thus
\[
\frac{dI_\lambda}{I} = -\hat{\sigma}_{a\lambda} n I_\lambda \\
\equiv -\beta_{a\lambda} I_\lambda
\]
Units \(\beta = \text{length}^{-1} \)

The factor \(\beta \) is the absorption coefficient. This attenuation equation is called Lambert's Law. Its integral is
\[
\frac{dI}{I} = -\beta \, ds
\]

\[
\ln I = -\int_0^s \beta \, ds' + \text{const.}
\]

\[
I_\lambda(s) = I_\lambda(s - 0) e^{-\int_0^s \beta_{a\lambda} \, ds'}
\]

The "optical path" or "optical depth"

\[
u_{\lambda}(s) = \int_0^s \beta_{a\lambda} \, ds'
\]

has no units.

\[
\frac{I_\lambda(s)}{I_\lambda(0)} = e^{-\nu_{\lambda}} \equiv \tau_v(s) \quad \text{Transmissivity}
\]

Comment: Absorption strength is expressed in a variety of units. Fundamental combination is \(u \).

\[
\frac{dI}{I} = -\beta \, ds = -du = -\hat{\sigma}_{a\lambda} n \, ds
\]

\(u \) is always (strength measure) \(\neq \) (gas amount along path)

Strength might be \(\frac{\text{area}}{\text{particle}} ', \frac{\text{area}}{\text{mass}} ', \frac{\text{optical path}}{\text{km.amagats}} \). Be careful
Planck intensity spectrum

A radiation field inside a container with walls at uniform temperature comes into thermodynamic equilibrium.

(It is assumed that the walls have a continuous spectrum of energy transitions that can happen.)

This spectrum is the Planck Function.

\[
\beta_\lambda = \frac{2h c^2}{\lambda^5 \left(\exp \left(\frac{hc}{k_B \lambda T} \right) - 1 \right)}
\]

This is energy per unit wavelength. To evaluate \(\beta_\nu \), energy per unit frequency use

\[
\Delta E = \beta_\lambda \Delta \lambda = \Delta \nu
\]

\[
\therefore \beta_\nu = \beta_\lambda \left| \frac{d\lambda}{d\nu} \right|, \lambda \nu = c
\]

\[
\rightarrow \beta_\nu = \frac{2h \nu^3}{c^2 \left(\exp \left(\frac{h \nu}{k_B T} \right) - 1 \right)}
\]

In practice the first and second radiation constants are used to numerically evaluate \(\beta \). For example:

\[
\beta_\lambda = \frac{c_1 \lambda^{-5}}{\pi \left(\exp \left(\frac{c_2}{\lambda T} \right) - 1 \right)}
\]

\[
c_1 = 3.7419 \times 10^{-16} W m^2
\]

\[
c_2 = 1.4388 \times 10^{-2} m K
\]

Max of \(\beta_\lambda \) is at \(\lambda T = 0.29 \) cm K.

Max of \(\beta_\nu \) is at \(\lambda T = 0.51 \) cm K.
Fig. 6.2.5 Emission spectrum from a cloudy area (Hanel et al., 1972c).

Fig. 6.2.6 Emission spectra from a desert area showing the effect of low emissivity between 1100 and 1250 cm\(^{-1}\) caused by residual rays in quartz sand. The comparison spectrum from an area covered by vegetation shows nearly the same brightness temperature on both sides of the ozone band at 1042 cm\(^{-1}\) (Hanel et al., 1972c).
Figure 1. Planetary emission spectra. The uppermost spectrum was recorded by Nimbus 4 in 1970 over the mid-Atlantic Ocean. The second spectrum is of mid-latitudes of Mars recorded in 1972 by Mariner 9. The spectra of Jupiter, Saturn and Titan have been taken by Voyager 1 in 1979 and 1980 respectively.

IRIS THERMAL EMISSION SPECTRA
SUMMER POLE, MARS AND EARTH
Brightness temperature

Thermal emission spectra are often resented in units of brightness temperature.

Observe $I_{\lambda}(\lambda)$ radiance units

Set I_{λ} equal to the Planck Function at unknown $T_b(\lambda)$

$\beta_{\lambda}(T_b,\lambda) = I_{\lambda}$

Invert, solve for $T_b(\lambda)$.

$T_b(\lambda)$ gives the temperature, at each wavelength, that a black surface would need to have in order to emit the observed intensity.
Stefan-Boltzmann Law

Many surfaces emit approximately the same way that a port in a black cavity would emit.

\[I_\lambda = \beta_\lambda (T, \lambda) \text{ independent of direction} \]
\[\therefore F_\lambda = \pi \beta_\lambda \]
\[F = \int_0^\infty \pi \beta_\lambda d\lambda = \sigma T^4 \]
\[\sigma = 5.67 \times 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4} \]

Example: Estimate the temperature of a planet.

Power received from \(\odot = \pi a^2 \cdot \frac{L_\odot}{4\pi r^2 \cdot (1 - A)} \)
\[= \pi a^2 \cdot F_s \cdot (rA), \quad F_s \approx 1368 \text{ W m}^{-2} \]
\[A \approx 0.31 \]

Power emitted by planet \(= 4\pi a^2 \cdot \sigma T^4 \)
\[\therefore \sigma T^4 = \frac{1 - A}{4} F_s = 236 \text{ W m}^{-2} \]
\[T = 254 \text{ K} \]
Equation of transfer

Thermal emission

In the presence of absorption and emission,

\[\frac{dI_v}{ds} = -\beta_v I_v + S_v \]

Where \(S_v \) is a source term due to emission by the medium.

In a region many optical depths across, the exterior boundaries will become unimportant. Then if the region is isothermal, the radiation field will be in thermodynamic equilibrium, with \(I_v = B_v \).

Then \(\frac{dI_v}{ds} = 0 \), and \(-\beta_v I_v + S_v = 0 \)

\[\therefore S_v = \beta_v B_v \]

\[\frac{dI_v}{ds} = -\beta_v (I_v - B_v) \]

Emission coefficient = absorption coefficient is Kirchoff’s Law.
Emission and scattering

Denote $\beta_{ev} \equiv$ exxtinction coefficient. In general
\[
\beta_{ev} \equiv \sum \sigma_{vi} n_i
\]
$\sigma_{vi} =$ monochromatic cross section (lenght)2

$n_i =$ number density of constituent i.

Let $\sigma_{ov} \equiv$ single scattering albedo. Governing equation
\[
\frac{dI_v}{ds} = \beta_{ev} \left(-I_v + J_v\right),
\]
\[
J_v^{(scat)}(\hat{n}) = \sigma_o \int P(\hat{n},\hat{n}') I_v(\hat{n}') \frac{d\Omega'}{4\pi}.
\]

By σ_o definition,
\[
\int_{4\pi} P(\hat{n},\hat{n}') \frac{d\Omega'}{4\pi} = 1
\]

What is $J_v^{(emission)}$? Expect $C B_v$, if LTE.
\[
\frac{dI_v}{ds} = \beta_{ev} \left[-I_v + \sigma_{0v} \int P(\hat{n},\hat{n}') I_v(\hat{n}') \frac{d\Omega'}{4\pi} + C B_v \right]
\]

Deep inside homogeneous region $I_v \to B_v$ (isotropic)

and $\frac{dI_v}{ds} = 0$. Thus
\[
-B_v + \sigma_{0v} B_v \int P(\hat{n},\hat{n}') I_v(\hat{n}') \frac{d\Omega'}{4\pi} + C B_v = 0
\]
\[
\frac{1}{\beta_{ev}} \frac{dI_v}{ds} = -I_v + \left(1 - \sigma_{0v}\right) B_v + \sigma_{0v} \int P(\hat{n}, \hat{n}') I_v(\hat{n}') \frac{d\Omega'}{4\pi}
\]

Summary:

\[
\int dI_v = -I_v + \left(1 - \sigma_{0v}\right) B_v + \sigma_{0v} \int P(\hat{n}, \hat{n}') I_v(\hat{n}') \frac{d\Omega'}{4\pi}
\]

Intensity change Extinction Emission Scattering

Formal integral in absence of scattering

Let \(\beta_{ev} ds = -dX_v \) optical thickness

\[
s = 0 \quad s \rightarrow \quad \leftarrow x_v \quad x_v = 0
\]

\[
I_v \rightarrow
\]

\[
\therefore \frac{dI_v}{dX_v} = I_v - B_v(T) \quad \text{(no scattering)}
\]

\[
e^{x_v} \frac{d}{dX_v} \left(e^{-x_v} I_v\right) = -B_v
\]

\[
e^{-x_v} I_v \bigg|_{x_v=0}^{x_v} = -\int_0^{x_v} e^{-x_v} B_v(X_v') dX_v'
\]

\[
e^{-x_v} I_v - I_v(X_v = 0) = -\int_0^{x_v} e^{-x_v} B_v(X_v') dX_v'
\]

\[
\therefore I_v(X_v = 0) = I_v(X_v) e^{-x_v} + \int_0^{x_v} e^{-x_v} B_v(X_v') dX_v'
\]

Intensity emerging Attenuated incident intensity Accumulated emission along path
Absorption spectrum

Transitions

In planetary atmospheres transitions between discrete energy levels are of most importance. In stars free-free or bound-free transitions give continuum absorption.

\[\Delta E = n \hbar \nu \]

\[\therefore \text{ absorption lines dominate. } \quad \nu = \Delta E \]

Exception: UV and EUV absorption in upper atmosphere.

Transitions are

- Electronic visible
- Vibrational IR & combinations
- Rotational far IR

Examples of spectra are shown in Salby and in viewgraphs.

Units

Spectroscopists usually work in frequency units expressed in wave numbers

\[\lambda \nu = c \]

\[\nu = \frac{c}{\lambda} \text{ (s}^{-1}) \]

\[\bar{\nu} = \frac{\nu}{c} = \frac{1}{\lambda} \quad (\text{length}^{-1}, \text{usually cm}^{-1}) \]

\[\equiv \text{ wave number} \]

Handy identity: \(\lambda (\text{microns}) = \frac{10,000}{\nu (\text{cm}^{-1})} \)
Lorentz line profile

In the lower atmosphere, collisional broadening is the most important factor producing frequent dispersion of absorption.

Phase coherence of emitted photon is destroyed by collisions.

\[t = \text{time between collisions} \]

Spectrum is broadened by \(\alpha \approx \frac{1}{t} \cdot \left(\frac{1}{c} \frac{1}{t} \right) \) wave number units

To estimate \(\alpha \),

\[l_{mfp} \cdot A \cdot n = 1 \]

\[\frac{1}{t} = \frac{v}{l_{mfp}} = \nu An \]

\[A \sim \pi\left(4a_0\right)^2, \quad a_0 = \text{Bohr radius} \sim 0.5 \, \text{Å} \]

\[\rightarrow 10^{-19} \, \text{m}^2 \]

\[n \sim 2.69 \times 10^{25} \, \text{m}^{-3} \quad \text{Loschmidt's #} \]

\[\nu \sim 300 \, \text{m s}^{-1} \quad \text{(sound speed)} \]

\[\alpha \approx \frac{1}{t} \frac{1}{c} \sim \frac{\nu An}{c} \sim \frac{3 \times 10^2 \times 10^{-19} \times 2.7 \times 10^{25}}{3 \times 10^8} \sim 3 \, \text{m}^{-1} \]

\[= 0.03 \, \text{cm}^{-1} \]

Typical IR frequency \(\lambda = 10 \, \text{microns} \Rightarrow \nu = 1000 \, \text{in}^{-1} \)

Narrow. Since \(\alpha \zeta n \), Width \(\zeta \) pressure.
The shape is the Lorentz profile

\[f_L = \frac{\alpha_L}{\pi \left(\tilde{\nu} - \nu_0 \right)^2 + \alpha_L^2}, \quad \int_{\nu < \nu_0} f_L \, d\tilde{\nu} = 1 \]

The cross section is

\[\sigma = S \, f_L \left(\tilde{\nu} \right), \quad S \equiv \text{line strength}. \]

The strength is a function of temperature \(S(T) \), and \(\alpha_L \) is usually taken to be

\[\alpha_L = \alpha_{L0} \frac{p}{p_0} \left(\frac{T_0}{T} \right)^n, \]

where \(p_0, T_0 \) are STP, and \(n = \frac{1}{2} \) and \(\alpha_{L0} \) are tabulated in line atlases.

Doppler line broadening

\[\Delta \tilde{\nu} \sim \frac{\nu}{c} \sim \frac{350 \, \text{m s}^{-1}}{3 \times 10^8 \, \text{m s}^{-1}} \sim 10^{-6} \]

\[\Delta \tilde{\nu} \sim 10^{-6} \tilde{\nu} \sim 10^{-6} \times 10^3 \sim .001 \text{ cm}^{-1} \]

Important in upper atmosphere where \(p \) small and Lorentz width is small.

Doppler shape:

\[\alpha_D = \frac{\nu_0}{c} \sqrt{\frac{2K_3 T}{m}} \]

\[f_D = \frac{1}{\alpha_D \sqrt{\pi}} \exp \left[- \left(\frac{\nu - \nu_0}{\alpha_0} \right)^2 \right] \]
Voigt line profile

Convolve Doppler & Lorentz broadening

\[f_v(v - v_0) = \int_{-\infty}^{\infty} f_L(v' - v_0) f_D(v - v') dv' \]

There are efficient algorithms to evaluate it. See Grody and Yung.

Line atlases

See the description of the HITRAN, GEISA atlases.

Line strength \(S(T) \) involves lower state energy. This is because of state population dependence on \(T \).

From \(L_{TOU} \),

\[S_i(T) = S_i(T_r) \left(\frac{T}{T_r} \right)^n \exp \left[- \frac{hcE_i}{K_B} \left(\frac{1}{T} - \frac{1}{T_r} \right) \right] \]

\(n = 2 \) linear molecule

\(n = \frac{5}{2} \) nonlinear molecule

\(E_i \) = lower state energy for line \(i \)

\(T_r = 296 \text{ K} = \text{reference T.} \)
FIG. 2.3 Lorentz, Doppler, and Voigt profiles corresponding to a pressure and temperature at 30 km for infrared lines centered at 1587 cm$^{-1}$ (H$_2$O), 1043 cm$^{-1}$ (O$_3$), and 667 cm$^{-1}$ (CO$_2$) (after Kuhn and London, 1969).
The 1997 spectroscopic GEISA databank

*Laboratoire de Météorologie Dynamique du CNRS, Ecole Polytechnique, 91128 Palaiseau, France
aLaboratoire de Physique Moléculaire et Applications, CNRS, Bât. 335, Université Paris-Sud, Campus d'Orsay, France
bRutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK
cGroupe de Spectrométrie Moléculaire et Atmosphérique, Associé au CNRS, Faculté des Sciences, Reims, France
dLaboratory for Extermineral Physics, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
eJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
fLaboratoire de Physique Moléculaire et Applications, CNRS, Université Pierre et Marie Curie, Paris, France
gLaboratoire de Physique de l'Université de Bourgogne, Associé au CNRS, Dijon, France
hInstitute of Atmospheric Optics, Tomsk, Russia
iLaboratoire de Chimie Moléculaire, Université Libre de Bruxelles, Bruxelles, Belgium
jDepartment of Physics and Applied Physics, University of Strathclyde, Glasgow, G2 1XH, UK
kLaboratoire de Photophysique Moléculaire, CNRS, Bât. 210, Université Paris Sud, Campus d'Orsay, France
lLaboratoire de Spectroscopie Moléculaire, Université catholique de Louvain, Louvain-la-Neuve, Belgium
mDepartment of Environmental, Earth and Atmospheric Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
nDepartment of Physics, University of Denver, Denver, CO 80208, USA
oDESPA, Observatoire de Paris (Section de Meudon), Meudon, France
pInstitute for Terrestrial and Planetary Atmospheres, Marine Sciences Research Center, State University of New York at Stony Brook, Stony Brook, NY 11794-5000, USA
qInstitute of Environmental Physics-Institute of Remote Sensing, University of Bremen, D-28334 Bremen, Germany
rNASA Langley Research Center, Atmospheric Sciences Division, Hampton, VA 23665, USA

*Corresponding author. Tel.: 00 33 1 69 33 48 02; Fax: 00 33 1 69 33 30 05; E-mail: husson@ara01.polytechnique.fr
1Now at Service d'Aéronomie du CNRS, Université Pierre et Marie Curie, Paris, France.

0022-4073/99/$ - see front matter © 1999 Elsevier Science Ltd. All rights reserved.
PII: S0022-4073(98)00111-3
THE HITRAN MOLECULAR SPECTROSCOPIC DATABASE AND HAWKS (HITRAN ATMOSPHERIC WORKSTATION): 1996 EDITION

† AF Research Laboratory, WSBM, 29 Randolph Rd, Hanscom AFB MA 01731-3010, U.S.A.; † Harvard-Smithsonian Center for Astrophysics, Cambridge MA 02138, U.S.A.; †† Atmospheric Sciences Division, NASA Langley Research Center, Hampton, VA 23681, U.S.A.; †‡ Department of Physics, University of Denver, Denver, CO 80208, U.S.A.; †§ National Center for Atmospheric Research, Boulder, CO 80307, U.S.A.‡‡ Laboratoire de Photophysique Moleculaire, CNRS, Bld. 210, Université Paris-Sud, 91405 Orsay, France; †† LPMA, Université Pierre et Marie Curie, Case 76, 4 Place Jussieu, 75252 Paris 05, France; †¶ Ontario Research Institute, 9 Village Way, North Andover MA 01845-2000, U.S.A.; †‖† †§ Department of Environmental Earth and Atmospheric Sciences, Univ. of Mass Lowell, Lowell, MA 01854, U.S.A.; †§ Stewart Radiance Laboratory, Utah State University, Bedford, MA 01730, U.S.A.; †¶ Jet Propulsion Laboratory, Pasadena, CA 91109, U.S.A. and †‖ State University of New York at Stony Brook, Stony Brook, NY 11794, U.S.A.

(Received 13 March 1998)

Abstract—Since its first publication in 1973, the HITRAN molecular spectroscopic database has been recognized as the international standard for providing the necessary fundamental spectroscopic parameters for diverse atmospheric and laboratory transmission and radiance calculations. There have been periodic editions of HITRAN over the past decades as the database has been expanded and improved with respect to the molecular species and spectral range covered, the number of parameters included, and the accuracy of this information. The 1996 edition not only includes the customary line-by-line transition parameters familiar to HITRAN users, but also cross-section data, aerosol indices of refraction, software to filter and manipulate the data, and documentation. This paper describes the data and features that have been added or replaced since the previous edition of HITRAN. We also cite instances of critical data that are forthcoming. Published by Elsevier Science Ltd.

1. INTRODUCTION

A new edition of the HITRAN (HHigh-resolution TRANsmission) database was released on CD-ROM in 1996. This line-by-line compilation of spectroscopic parameters is a widely recognized international standard. It is used for a vast array of applications such as terrestrial atmospheric remote sensing, transmission simulations, fundamental laboratory spectroscopy studies, industrial process monitoring, pollution regulatory studies, etc. HITRAN is now a component of a larger set of spectroscopic data and software called HAWKS (HITRAN Atmospheric Workstation). The goal of HITRAN and HAWKS is to provide a functional and flexible set of software and data in order to accurately model the simulation of transmission and radiance from the microwave through ultraviolet spectral regions. Besides an updated HITRAN high-resolution molecular database of about one million transitions, there are files of aerosol indices of refraction, UV line-by-line and cross-section parameters, supplemental files of gases that have undergone less validation or whose parameters require new definitions, such as ionic species, and extensive IR cross-sections now at different pressures and temperatures. In addition, the compilation contains a moderate-resolution band-model code, MODTRAN3. There is also vastly improved software handling of the data in

*To whom all correspondence should be addressed.
Dear colleagues,

This message gives you the instructions for accessing the HITRAN database compilation. The current edition is HITRAN2004, and it is available on an anonymous ftp-site. It can also be accessed via the web.

Use of the HITRAN database is free. We ask users to please cite the article describing the database when publishing or presenting results based on HITRAN. It is also a good idea in order to indicate to your readers which database, that is which edition, you have employed. The article on the 2004 edition of HITRAN will appear in a Special Issue of the Journal of Quantitative Spectroscopy and Radiative Transfer. A preprint is available in the HITRAN web-site (http://cfa-www.harvard.edu/HITRAN/docs.html).

You have 3 different choices for accessing the HITRAN ftp-site:

1.
 FTP --> cfa-ftp.harvard.edu
 User --> anonymous
 Password --> your e-mail address
 Then change directories --> cd pub/hitran04

2.
 One can also access the data using a web browser. Just type
 (You may have to configure your browser to send your e-mail
 address as anonymous ftp password.)

 Alternatively, if you have difficulty using ftp, you can access the
 site via http by going to the url:
 http://cfa-www.harvard.edu/HITRAN/hitranda04/
 You will then be prompted for:
 username --> HITRAN
 password --> getdata
 (note that some items are case sensitive, such as "hitranda04" and
 "getdata")

Many of the HITRAN data files are given both in their full ASCII and
also compressed in zip format. Some files that have not changed from
the previous edition have been compressed using gzip. If you do not
presently have this compression program in your system, you can go to
the web-site: http://www.gnu.org/software/gzip/gzip.html
where information is available concerning this popular data
compression program and how to download the software. It works on
Microsoft Windows, UNIX, and MAC operating systems. The popular
program, WinZip, also decompresses these files; this program can be
downloaded at the site: http://www.winzip.com

Note that we are still making ongoing improvements to many molecular bands.
For example, we are expecting very soon to provide an update for water-vapor
parameters in the visible region. There are also some minor problems with
the JavaHAWKS software that we are in the process of correcting or improving.

Sincerely,

Lawrence Rothman

Harvard-Smithsonian Center for Astrophysics
Atomic and Molecular Physics Division, MS50
60 Garden Street
Cambridge MA 02138-1516
e-mail: L_Rothman@cfa.harvard.edu
phone: +1 617.495.7474
FAX: +1 617.496.7519
There has been some misunderstanding prevalent in the community concerning the units and definitions employed in the HITRAN database. We include in this paper an appendix that summarizes the definitions and usage associated with the compilation.

2. DISCRETE MOLECULAR TRANSITIONS: THE HITRAN DATABASE

The line-by-line portion of the compilation, HITRAN, now contains transitions for 37 molecular species. Table 2 presents a summary of the species that are contained on the compilation. The numbering of the species is simply by chronological entry into the HITRAN database, the last six entries being new species added since the last edition. Furthermore, the final two species, NO+ and HOBr, reside in the supplemental directory, not in the main HITRAN database. It should also be noted that one of the new species is in fact an atom (oxygen). The table lists the number of isotopic variants (isotopomers) per molecule represented in HITRAN, as well as the number of vibration–rotation or ro-vibronic bands. One also notices that certain “heavy” molecules, such as ozone and nitric acid, have a very large number of transitions; this occurs as new bands or more extensive coverage of bands are achieved on new editions. On the other hand, species like water vapor and carbon dioxide remain rather constant in terms of the number of transitions, even though there may be considerable improvement in the quality of the individual parameters.

<table>
<thead>
<tr>
<th>Mol. no.</th>
<th>Molecule</th>
<th>Number of isotopomers</th>
<th>Number of bands</th>
<th>Number of lines</th>
<th>Spectral coverage (cm-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H\textsubscript{2}O</td>
<td>4</td>
<td>137</td>
<td>49,444</td>
<td>0-22,657</td>
</tr>
<tr>
<td>2</td>
<td>CO\textsubscript{2}</td>
<td>8</td>
<td>589</td>
<td>60,802</td>
<td>442-9649</td>
</tr>
<tr>
<td>3</td>
<td>O\textsubscript{2}</td>
<td>5</td>
<td>106</td>
<td>275,133</td>
<td>0-4033</td>
</tr>
<tr>
<td>4</td>
<td>N\textsubscript{2}O</td>
<td>5</td>
<td>164</td>
<td>26,174</td>
<td>0-5132</td>
</tr>
<tr>
<td>5</td>
<td>CO</td>
<td>6</td>
<td>47</td>
<td>4,477</td>
<td>0-6318</td>
</tr>
<tr>
<td>6</td>
<td>CH\textsubscript{4}</td>
<td>3</td>
<td>51</td>
<td>48,032</td>
<td>0-6185</td>
</tr>
<tr>
<td>7</td>
<td>O\textsubscript{3}</td>
<td>3</td>
<td>19</td>
<td>8,292</td>
<td>0-15,924</td>
</tr>
<tr>
<td>8</td>
<td>NO</td>
<td>3</td>
<td>50</td>
<td>15,331</td>
<td>0-3967</td>
</tr>
<tr>
<td>9</td>
<td>SO\textsubscript{2}</td>
<td>2</td>
<td>9</td>
<td>38,853</td>
<td>0-4093</td>
</tr>
<tr>
<td>10</td>
<td>NO\textsubscript{3}</td>
<td>1</td>
<td>12</td>
<td>100,680</td>
<td>0-2399</td>
</tr>
<tr>
<td>11</td>
<td>NH\textsubscript{2}</td>
<td>2</td>
<td>40</td>
<td>11,152</td>
<td>0-5295</td>
</tr>
<tr>
<td>12</td>
<td>HNO\textsubscript{3}</td>
<td>1</td>
<td>13</td>
<td>165,426</td>
<td>0-1770</td>
</tr>
<tr>
<td>13</td>
<td>OH\textsubscript{2}</td>
<td>3</td>
<td>103</td>
<td>8,676</td>
<td>0-9997</td>
</tr>
<tr>
<td>14</td>
<td>HF</td>
<td>1</td>
<td>8</td>
<td>107</td>
<td>11-41,536</td>
</tr>
<tr>
<td>15</td>
<td>HCl</td>
<td>2</td>
<td>17</td>
<td>533</td>
<td>20-13,458</td>
</tr>
<tr>
<td>16</td>
<td>HBr</td>
<td>2</td>
<td>16</td>
<td>576</td>
<td>16-9759</td>
</tr>
<tr>
<td>17</td>
<td>HI</td>
<td>1</td>
<td>9</td>
<td>237</td>
<td>12-8488</td>
</tr>
<tr>
<td>18</td>
<td>ClO</td>
<td>2</td>
<td>12</td>
<td>7,230</td>
<td>0-1,208</td>
</tr>
<tr>
<td>19</td>
<td>CCl\textsubscript{3}</td>
<td>4</td>
<td>7</td>
<td>858</td>
<td>0-2,089</td>
</tr>
<tr>
<td>20</td>
<td>H\textsubscript{2}CO</td>
<td>3</td>
<td>10</td>
<td>2,702</td>
<td>0-2,999</td>
</tr>
<tr>
<td>21</td>
<td>HOCl</td>
<td>2</td>
<td>6</td>
<td>15,565</td>
<td>0-3,800</td>
</tr>
<tr>
<td>22</td>
<td>N\textsubscript{2}</td>
<td>1</td>
<td>1</td>
<td>120</td>
<td>1922-2,526</td>
</tr>
<tr>
<td>23</td>
<td>HCN</td>
<td>3</td>
<td>8</td>
<td>772</td>
<td>2-3,422</td>
</tr>
<tr>
<td>24</td>
<td>CH\textsubscript{2}Cl</td>
<td>2</td>
<td>8</td>
<td>9,355</td>
<td>679-3,173</td>
</tr>
<tr>
<td>25</td>
<td>H\textsubscript{2}O\textsubscript{3}</td>
<td>2</td>
<td>2</td>
<td>5,444</td>
<td>0-1,500</td>
</tr>
<tr>
<td>26</td>
<td>C\textsubscript{2}H\textsubscript{2}</td>
<td>2</td>
<td>11</td>
<td>1,668</td>
<td>604-3,775</td>
</tr>
<tr>
<td>27</td>
<td>C\textsubscript{2}H\textsubscript{4}</td>
<td>1</td>
<td>2</td>
<td>4,749</td>
<td>720-3,001</td>
</tr>
<tr>
<td>28</td>
<td>PH\textsubscript{3}</td>
<td>1</td>
<td>1</td>
<td>2,886</td>
<td>708-1,411</td>
</tr>
<tr>
<td>29</td>
<td>COF\textsubscript{2}</td>
<td>1</td>
<td>7</td>
<td>54,866</td>
<td>725-1,982</td>
</tr>
<tr>
<td>30</td>
<td>SF\textsubscript{6}</td>
<td>1</td>
<td>1</td>
<td>11,520</td>
<td>940-9,53</td>
</tr>
<tr>
<td>31</td>
<td>H\textsubscript{2}S</td>
<td>3</td>
<td>15</td>
<td>7,151</td>
<td>2-2,892</td>
</tr>
<tr>
<td>32</td>
<td>HCOOH</td>
<td>1</td>
<td>1</td>
<td>3,388</td>
<td>1060-1,162</td>
</tr>
<tr>
<td>33</td>
<td>HO\textsubscript{2}</td>
<td>1</td>
<td>4</td>
<td>26,963</td>
<td>0-3,676</td>
</tr>
<tr>
<td>34</td>
<td>O</td>
<td>1</td>
<td>1</td>
<td></td>
<td>68-1,59</td>
</tr>
<tr>
<td>35</td>
<td>ClONO\textsubscript{2}</td>
<td>2</td>
<td>3</td>
<td>12,199</td>
<td>763-798</td>
</tr>
<tr>
<td>36</td>
<td>NO+</td>
<td>1</td>
<td>6</td>
<td>1,206</td>
<td>1,534-2,531</td>
</tr>
<tr>
<td>37</td>
<td>HOBr</td>
<td>2</td>
<td>2</td>
<td>4,358</td>
<td>0-316</td>
</tr>
<tr>
<td>Mol/iso</td>
<td>ν_v</td>
<td>S_v</td>
<td>R_v</td>
<td>i_v</td>
<td>j_v</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>21</td>
<td>000 451076</td>
<td>3.197E-25</td>
<td>6.579E-05</td>
<td>0.0676</td>
<td>0.0818</td>
</tr>
<tr>
<td>291</td>
<td>000 454659</td>
<td>9.724E-22</td>
<td>1.896E-02</td>
<td>0.0845</td>
<td>0.1750</td>
</tr>
<tr>
<td>291</td>
<td>000 454689</td>
<td>3.247E-22</td>
<td>2.107E-03</td>
<td>0.0845</td>
<td>0.1750</td>
</tr>
<tr>
<td>121</td>
<td>000 455380</td>
<td>1.697E-22</td>
<td>1.655E-03</td>
<td>0.1100</td>
<td>0.0000</td>
</tr>
<tr>
<td>121</td>
<td>000 455380</td>
<td>1.697E-22</td>
<td>1.655E-03</td>
<td>0.1100</td>
<td>0.0000</td>
</tr>
<tr>
<td>101</td>
<td>000 456743</td>
<td>1.605E-23</td>
<td>1.655E-04</td>
<td>0.0670</td>
<td>0.0000</td>
</tr>
<tr>
<td>101</td>
<td>000 457048</td>
<td>1.710E-23</td>
<td>1.689E-04</td>
<td>0.0670</td>
<td>0.0000</td>
</tr>
<tr>
<td>101</td>
<td>000 457129</td>
<td>1.710E-23</td>
<td>1.689E-04</td>
<td>0.0670</td>
<td>0.0000</td>
</tr>
<tr>
<td>121</td>
<td>000 457580</td>
<td>4.726E-23</td>
<td>4.614E-03</td>
<td>0.1100</td>
<td>0.0000</td>
</tr>
<tr>
<td>121</td>
<td>000 457750</td>
<td>4.726E-23</td>
<td>4.614E-03</td>
<td>0.1100</td>
<td>0.0000</td>
</tr>
<tr>
<td>24</td>
<td>000 458542</td>
<td>9.97E-27</td>
<td>6.03E-04</td>
<td>0.0754</td>
<td>0.1043</td>
</tr>
<tr>
<td>121</td>
<td>000 466410</td>
<td>1.041E-22</td>
<td>2.720E-03</td>
<td>0.1100</td>
<td>0.0000</td>
</tr>
<tr>
<td>121</td>
<td>000 466660</td>
<td>1.041E-22</td>
<td>2.720E-03</td>
<td>0.1100</td>
<td>0.0000</td>
</tr>
<tr>
<td>35</td>
<td>000 472990</td>
<td>3.878E-26</td>
<td>6.93E-04</td>
<td>0.0686</td>
<td>0.0871</td>
</tr>
<tr>
<td>101</td>
<td>000 473083</td>
<td>1.270E-23</td>
<td>1.254E-04</td>
<td>0.0670</td>
<td>0.0000</td>
</tr>
<tr>
<td>101</td>
<td>000 474850</td>
<td>1.210E-23</td>
<td>1.195E-04</td>
<td>0.0670</td>
<td>0.0000</td>
</tr>
<tr>
<td>31</td>
<td>000 475750</td>
<td>3.048E-24</td>
<td>3.317E-05</td>
<td>0.0553</td>
<td>0.0895</td>
</tr>
<tr>
<td>291</td>
<td>000 476228</td>
<td>9.579E-22</td>
<td>6.008E-03</td>
<td>0.0345</td>
<td>0.1750</td>
</tr>
<tr>
<td>291</td>
<td>000 476228</td>
<td>9.579E-22</td>
<td>6.008E-03</td>
<td>0.0345</td>
<td>0.1750</td>
</tr>
<tr>
<td>101</td>
<td>000 476931</td>
<td>1.160E-23</td>
<td>1.145E-04</td>
<td>0.0570</td>
<td>0.0000</td>
</tr>
<tr>
<td>101</td>
<td>000 484334</td>
<td>1.740E-23</td>
<td>2.135E-05</td>
<td>0.0670</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Notes: FORTRAN Format (G22.1,F12.6,I1,P10.3,F21.5,F10.6,F21.5,F21.5,F31.1) corresponding to the following:

<table>
<thead>
<tr>
<th>Mol</th>
<th>iso</th>
<th>i_v</th>
<th>j_v</th>
<th>h_v</th>
<th>E_v</th>
<th>n</th>
<th>j'</th>
<th>j''</th>
<th>q_v</th>
<th>q_v'</th>
<th>ierr</th>
<th>irrf</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The HITRAN molecular spectroscopic database and HAWKS
Water vapor opacity
David DeBoer – July 27, 2004

The expression for water vapor opacity in DeBoer (1995) is based on Goodman (1969), Waters (1976) (principally using Ulaby et al 1981) and Dutta et al (1993). The expression as shown in the text is incorrect. The intended expression is given below. Frequencies are in GHz, pressures in bars and temperatures in Kelvin.

\[
\alpha_{H_2O} = 1134.5 P_{H_2O} \left(\frac{300}{T} \right)^{7/2} \sum_{i=1}^{10} A_i e^{-E_i/T} \frac{4 f_i^2 \gamma_i / \pi}{(f_{o,i} - f_i^2)^2 + 4 f_i^2 \gamma_i^2} + 3.39 \times 10^{-3} P_{H_2O} \left(\frac{300}{T} \right)^{3/1} (0.81 P_{H_2} + 0.35 P_{He}) f^2 \text{ dB/km}
\]

where

\[
\gamma_i = \gamma_{H_2,i} P_{H_2} \left(\frac{300}{T} \right)^{6_{H_2,i}} + \gamma_{He,i} P_{He} \left(\frac{300}{T} \right)^{6_{He,i}} + \gamma_{H_2O,i} P_{H_2O} \left(\frac{300}{T} \right)^{6_{H_2O,i}}
\]

and

<table>
<thead>
<tr>
<th>(i)</th>
<th>(f_o)</th>
<th>(E)</th>
<th>(A)</th>
<th>(\gamma_{H_2})</th>
<th>(\gamma_{He})</th>
<th>(\gamma_{H_2O})</th>
<th>(\xi_{H_2})</th>
<th>(\xi_{He})</th>
<th>(\xi_{H_2O})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.23515</td>
<td>644</td>
<td>1.0</td>
<td>2.395</td>
<td>0.67</td>
<td>10.67</td>
<td>0.9</td>
<td>0.515</td>
<td>0.626</td>
</tr>
<tr>
<td>2</td>
<td>183.31012</td>
<td>196</td>
<td>41.9</td>
<td>2.40</td>
<td>0.71</td>
<td>11.64</td>
<td>0.95</td>
<td>0.49</td>
<td>0.649</td>
</tr>
<tr>
<td>3</td>
<td>323</td>
<td>1850</td>
<td>334.4</td>
<td>2.395</td>
<td>0.67</td>
<td>9.59</td>
<td>0.9</td>
<td>0.515</td>
<td>0.420</td>
</tr>
<tr>
<td>4</td>
<td>325.538</td>
<td>454</td>
<td>115.7</td>
<td>2.395</td>
<td>0.67</td>
<td>11.99</td>
<td>0.9</td>
<td>0.49</td>
<td>0.619</td>
</tr>
<tr>
<td>5</td>
<td>380.1968</td>
<td>306</td>
<td>651.8</td>
<td>2.39</td>
<td>0.63</td>
<td>12.42</td>
<td>0.85</td>
<td>0.54</td>
<td>0.630</td>
</tr>
<tr>
<td>6</td>
<td>390</td>
<td>2199</td>
<td>127.0</td>
<td>2.395</td>
<td>0.67</td>
<td>9.16</td>
<td>0.9</td>
<td>0.515</td>
<td>0.330</td>
</tr>
<tr>
<td>7</td>
<td>436</td>
<td>1507</td>
<td>191.4</td>
<td>2.395</td>
<td>0.67</td>
<td>6.32</td>
<td>0.9</td>
<td>0.515</td>
<td>0.290</td>
</tr>
<tr>
<td>8</td>
<td>438</td>
<td>1070</td>
<td>697.6</td>
<td>2.395</td>
<td>0.67</td>
<td>8.34</td>
<td>0.9</td>
<td>0.515</td>
<td>0.360</td>
</tr>
<tr>
<td>9</td>
<td>442</td>
<td>1507</td>
<td>590.2</td>
<td>2.395</td>
<td>0.67</td>
<td>6.52</td>
<td>0.9</td>
<td>0.515</td>
<td>0.332</td>
</tr>
<tr>
<td>10</td>
<td>448</td>
<td>412</td>
<td>973.1</td>
<td>2.395</td>
<td>0.67</td>
<td>11.57</td>
<td>0.9</td>
<td>0.515</td>
<td>0.510</td>
</tr>
</tbody>
</table>

References:

Plane parallel atmosphere, emission and absorption

Transfer eq. in terms of optical depth.
\[d\tau_v = -\beta_v dz \]

No scattering.
\[\frac{dI_v}{ds} = -\beta_v \left(I_v - B_v \right) \]

Geometry of ray
\[ds = \frac{dz}{\cos \theta} = \frac{dz}{\mu} \]

Plane parallel is idealized case
\[\tau_v = \tau_v(z), \quad B_v = B_v(z) \]
Then \(I_v = I_v(z) \),
\[\frac{1}{\beta_v} \frac{dI_v}{ds} = \frac{\mu}{\beta_v} \frac{dI_v}{dz} = -\mu \frac{dI_v}{d\tau_v} \]

\[\therefore \frac{\mu}{d\tau_v} = I_v - B_v \]

Solution for upward intensity
\[I_v(z, \mu) = I_v(\tau_v, \mu) e^{-\tau_v - \tau_v'(z)} \]
\[+ \int_{\tau_v(z)}^{\tau_v(\tau_v'(z))} B_v(\tau') e^{-\tau_v'(z)} \mu \frac{d\tau'}{\mu} \]
Usually $I_v(\tau_{sv}, \mu) = B_v(T_s)$. In some cases,

$$I_v(\tau_{sv}, \mu) \simeq \varepsilon_v B_v(T_s).$$

Where the emissivity ε_v varies spectrally but with wide bands rather than narrow lines. Mars surface mineralogy is an example.

For now, assume $B_v(T_s)$.

Average over a band $\Delta \nu$

In practice a finite $\Delta \nu$ is of interest.

- For heating rates can average over spectrum.
- For remote sensing the instrument has spectral resolution limitations.

Average over $\Delta \nu$ small enough so that the Plank function \sim constant.

$$I_v(z, \mu) = \frac{1}{\Delta \nu} \int B_v(T_s) e^{-\frac{\tau_v - \tau}{\mu}} d\nu + \frac{1}{\Delta \nu} \int B_v(\tau'_v) e^{-\frac{\tau'_v - \tau}{\mu}} d\tau_v$$

$$= B_v \text{ smooth } B_v(T_s) \frac{1}{\Delta \nu} \int e^{-\frac{\tau_v - \tau}{\mu}} d\nu \int B_v(\tau'_v) \frac{1}{\Delta \nu} \int e^{-\frac{\tau'_v - \tau}{\mu}} d\tau'_v$$

$$= B_v \tau_v(z, 0, \mu) + \int B_v(z') \frac{d\tau_v(z, z', \mu)}{dz'} dz'$$

where

$$\tau_v(z, z', \mu) = \frac{1}{\Delta \nu} \int e^{-\frac{\tau'_v - \tau_v}{\mu}} d\nu$$

N.B. Sign changes from $\frac{d\tau}{dz}$ and from reversal of integration range.