Astronomy 6570

Physics of the Planets

Secular Perturbations and Orbital Resonances
Secular Perturbations Between Satellites

Make approximations:
- \(m_{\text{sat}} \ll M_p \)
- \(e \ll 1, \sin I \ll 1 \)
- Neglect short-period perturbations (i.e., average over mean anomalies)

The disturbing function (potential of interaction) is given by, to \(0(e^2) \) and \(0(\sin^2 I) \):

\[
\mathbb{R}_i = n_i a_i^2 \left\{ \frac{1}{2} A_{ii} e_i^2 + \sum_{j \neq i} A_{ij} e_i e_j \cos(\tilde{\omega}_i - \tilde{\omega}_j) + \frac{1}{2} B_{ii} I_i^2 + \sum_{j \neq i} I_i I_j \cos(\Omega_i - \Omega_j) \right\}
\]

\[
A_{ii} \simeq -B_{ii} = n_i \left\{ \frac{3}{2} J_2 \left(\frac{R}{a_i} \right)^2 + \frac{1}{4} \sum_{j \neq i} m_j F_1 \left(\frac{a_i}{a_j} \right) \right\}
\]

\[
A_{ij} = \frac{1}{4} n_i m_j F_2 \left(\frac{a_i}{a_j} \right)
\]

\[
B_{ij} = \frac{1}{4} n_i m_j F_1 \left(\frac{a_i}{a_j} \right)
\]

Note: \(A_{ii} = \) apsidal precession rate, neglecting variations in \(e_i \), and \(B_{ii} = \) nodal regressio rate,

since \(\dot{\tilde{\omega}} \simeq \left(\frac{1}{na^2e} \right) \frac{\delta R}{\delta \omega} \) and \(\dot{\Omega} \simeq \left(\frac{1}{na^2 I} \right) \frac{\delta R}{\delta I} \)
Introduce new variables:

\[h_i = e_i \sin \tilde{\omega}_i \quad p_i = \sin I_i \sin \Omega_i \]

\[k_i = e_i \cos \tilde{\omega} \quad q_i = \sin I_i \cos \Omega_i \]
⇒ Differential equations:

\[
\begin{align*}
\frac{dh}{dt} &= \frac{1}{na^2} \frac{\delta R}{\delta k} \\
\frac{dk}{dt} &= -\frac{1}{na^2} \frac{\delta R}{\delta h}
\end{align*}
\]

\[
\begin{align*}
\frac{dp}{dt} &= \frac{1}{na^2} \frac{\delta R}{\delta q} \\
\frac{dq}{dt} &= -\frac{1}{na^2} \frac{\delta R}{\delta p}
\end{align*}
\]

Substitute into R, differentiate, and …

\[
\begin{align*}
\hat{h}_i &= \sum_{j=i}^n A_{ij} k_j \quad \text{(1)} \\
\hat{k}_i &= -\sum A_{ij} h_j \\
\hat{p}_i &= \sum B_{ij} q_j \quad \text{(2)} \\
\hat{q}_i &= -\sum B_{ij} p_j
\end{align*}
\]
The solutions are of the form:

\[h_i = e_{im} \sin(g_m t + \beta_m) \]
\[k_i = e_{im} \cos(g_m t + \beta_m) \]

where \(g_m \) and \(\{e_{im}; i = 1, 2, \ldots, n\} \) are the eigenvalues and eigenvectors of the matrix \(A_{ij} \):

\[\sum_{j=1}^{n} A_{ij} e_{jm} = g_m e_{im} \]

i.e., \(\tilde{A} \cdot \tilde{e}_m = g_m \tilde{e}_m \)

Similarly for \((p_i, q_i) \) and the matrix \(B_{ij} \):

\[\tilde{B} \cdot \tilde{l}_m = g'_m \tilde{l}_m \]

The index "m" refers to the particular eigenmode \((1 \leq m \leq n)\).

Fit general solution to initial conditions \((e_i, \bar{\omega}_i, \sin I_i, \Omega_i)\) at some time by adjusting amplitudes, \(E_m \), and phases, \(\beta_m \), of the 2n eigenmodes.

\[E_m^2 = \sum_{i=1}^{n} e_{im}^2 \]
\[R_j = n_j a_j^2 \left[\frac{1}{2} A_{jj} e_j^2 + \sum_{k=1 \atop k \neq j}^n A_{jk} e_j e_k \cos(\bar{\omega}_j - \bar{\omega}_k) \right. \]
\[+ \frac{1}{2} B_{jj} I_j^2 + \sum_{k=1 \atop k \neq j}^n B_{jk} I_j I_k \cos(\bar{\Omega}_j - \bar{\Omega}_k) \right] \quad (1) \]

where

\[A_{jj} = n_j \left[\frac{3}{2} J_2 \left(\frac{R_p}{a_j} \right)^4 - \frac{9}{8} J_2^2 \left(\frac{R_p}{a_j} \right)^4 - \frac{15}{4} J_4 \left(\frac{R_p}{a_j} \right)^4 \right. \]
\[+ \frac{1}{4} \sum_{k=1 \atop k \neq j}^n \frac{m_k}{M} \alpha_{jk} \tilde{a}_{jk} b_{3/2}^{(1)}(\alpha_{jk}) \right] \quad (2) \]

\[B_{ij} = -n_j \left[\frac{3}{2} J_2 \left(\frac{R_p}{a_j} \right)^4 - \frac{27}{8} J_2^2 \left(\frac{R_p}{a_j} \right)^4 - \frac{15}{4} J_4 \left(\frac{R_p}{a_j} \right)^4 \right. \]
\[+ \frac{1}{4} \sum_{k=1 \atop k \neq j}^n \frac{m_k}{M} \alpha_{jk} \tilde{a}_{jk} b_{3/2}^{(1)}(\alpha_{jk}) \right] \quad (3) \]

\[A_{jk} = -\frac{1}{4} \frac{m_k}{M} n_j \alpha_{jk} \tilde{a}_{jk} b_{3/2}^{(2)}(\alpha_{jk}) \quad (4) \]

and

\[B_{jk} = \frac{1}{4} \frac{m_k}{M} n_j \alpha_{jk} \tilde{a}_{jk} b_{3/2}^{(1)}(\alpha_{jk}) \quad (5) \]
In these expressions

\[
\alpha_{jk} = \begin{cases}
 a_k / a_j & \text{if } k < j \\
 a_j / a_k & \text{if } k > j
\end{cases} \quad (6)
\]

\[
\bar{\alpha}_{jk} = \begin{cases}
 1 & \text{if } k < j \\
 \alpha_{jk} & \text{if } k > j
\end{cases} \quad (7)
\]

\(n_j\) is the mean motion, \(\bar{\omega}_j\) is the longitude of pericentre, \(\Omega_j\) is the longitude of the ascending node, and \(m_j\) is the mass, all for the \(j\)th satellite. \(M, R, J_2\) and \(J_4\), are, respectively, the mass, the radius and the first two zonal gravity coefficients of the planet, and the \(b_s^{(k)}\) are Laplace coefficients\(^{16}\).
The solution of Lagrange's equations for the orbital element variations produced by this disturbing function follows the method described by Brouwer and Clemence\(^{16}\). It is convenient to transform the conventional orbital elements into the symmetrical forms

\[
\begin{align*}
 h &= e \sin \dot{\omega} \\
 k &= e \cos \dot{\omega}
\end{align*}
\]

(8)

and

\[
\begin{align*}
 p &= \sin I \sin \Omega \\
 q &= \sin I \cos \Omega
\end{align*}
\]

(9)

in terms of which the solutions take the simple harmonic form:

\[
\begin{align*}
 h_j &= \sum_{i=1}^{n} e_{ji} \sin \left(g_i t + \beta_i \right) \\
 k_j &= \sum_{i=1}^{n} e_{ji} \cos \left(g_i t + \beta_i \right)
\end{align*}
\]

(10)

and

\[
\begin{align*}
 p_j &= \sum_{i=1}^{n} I_{ji} \sin \left(f_i t + \gamma_i \right) \\
 q_j &= \sum_{i=1}^{n} I_{ji} \cos \left(f_i t + \gamma_i \right)
\end{align*}
\]

(11)
The eccentricity eigenfrequencies, \(g_i \), are the roots of the determinant

\[
| A_{11} - g & A_{12} & \cdots & A_{1n} \\
A_{21} & A_{22} - g & \cdots & A_{2n} \\
A_{n1} & \cdots & \cdots & A_{nn} - g |
\]

\(= 0 \) \hspace{1cm} (12)

while the inclination eigenfrequencies, \(f_i \), are the roots of a similar determinant involving the elements \(B_{jk} \). The coefficients \(e_{ji} \) are components of the \(i \)th eigenvector of the matrix \(A \), with corresponding eigenvalue \(g_i \):

\[
\sum_{k=1}^{n} A_{jk} e_{ki} = g_i e_{ji}, \quad (j = 1, 2, \ldots, n) \]

(13)

Similarly, the coefficients \(I_{ji} \) \((j = 1, 2, \ldots, n)\) are components of the \(i \)th eigenvector of the matrix \(B \), corresponding to the eigenvalue \(f_i \). A complete solution of this form involves a total of \(4n \) arbitrary constants—the magnitudes of the \(2n \) eigenvectors, and the corresponding phases, \(\beta \), or \(\gamma \), which, in turn, are determined by a complete set of \(4n \) initial conditions \((e_r, \omega_r, I_r, \Omega_r; j = 1, 2, \ldots, n)\) at some epoch. Note that the solutions for the eccentricity/pericentre variations are completely decoupled from the inclination/node solutions, thus considerably simplifying the analysis.
Geometric interpretations:

The secular solution for 2 planets has a very simple geometric interpretation in terms of \((h, k)\) coords: for planet \(i\),

\[
h_i = e_i^+ \sin(g_* t + \beta_*) + e_i^- \sin(g_* t + \beta_-)
\]

\[
k_i = \cos(g_* t) + \cos(g_* t)
\]

(circle, radius \(e_i^*\) \(\text{freq } g_* \) (fast) \(\text{circle, radius } e_i^-\) \(\text{freq } g_- \) (slow))

It can be shown that \(\frac{e_2^+}{e_1^+} < 0 \) and \(\frac{e_2^-}{e_1^-} > 0\) but the amplitudes \(\beta_\pm\) and phases are arbitrary:

* The overall value of \(e_i\) and \(\sigma_i\) are given by the vector sum of the two circulating components, rotating at angular frequencies \(g_*\) and \(g_\).
* for \(n\) planets, the solution is similar, but with \(n\) circulating components rotating at \(g_1, g_2, \cdots, g_n\).
Planetary Eigenfrequencies

<table>
<thead>
<tr>
<th>Mode</th>
<th>Eccentricities</th>
<th>Period (kyr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>176</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>All exc.</td>
<td>302</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>477</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2,047</td>
</tr>
<tr>
<td>9</td>
<td>All exc.</td>
<td>68</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>Inclinations</th>
<th>Period (kyr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>249</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>197</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>All</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>446</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1,913</td>
</tr>
</tbody>
</table>

Mode 5 determines SS invariable plane

Brouwer & van Woerkom (1951)
<table>
<thead>
<tr>
<th>Mode comb.</th>
<th>P (kyr)</th>
<th>Planets affected strongly</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_2 - g_3$</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>$g_2 - g_4$</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>$g_2 - g_5$</td>
<td>425</td>
<td>V, E</td>
</tr>
<tr>
<td>$g_3 - g_4$</td>
<td>1923</td>
<td>M, M_e</td>
</tr>
<tr>
<td>$g_3 - g_5$</td>
<td>99</td>
<td>M</td>
</tr>
<tr>
<td>$g_4 - g_5$</td>
<td>95</td>
<td>V, E</td>
</tr>
<tr>
<td>$g_3 - g_6$</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>$g_4 - g_6$</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>$g_5 - g_6$</td>
<td>55</td>
<td>J, S</td>
</tr>
<tr>
<td>$g_5 - g_7$</td>
<td>822</td>
<td>U</td>
</tr>
<tr>
<td>$g_7 - g_8$</td>
<td>621</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode comb.</th>
<th>P (kyr)</th>
<th>Planets affected strongly</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_2</td>
<td>197</td>
<td>V(?), E(?)</td>
</tr>
<tr>
<td>s_3</td>
<td>69</td>
<td>V, E</td>
</tr>
<tr>
<td>s_4</td>
<td>73</td>
<td>M</td>
</tr>
<tr>
<td>$s_2 - s_3$</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>$s_3 - s_4$</td>
<td>1167</td>
<td>M, M_e</td>
</tr>
<tr>
<td>s_6</td>
<td>50</td>
<td>J, S</td>
</tr>
<tr>
<td>s_7</td>
<td>446</td>
<td>U, N (?)</td>
</tr>
<tr>
<td>s_8</td>
<td>1913</td>
<td>U, N</td>
</tr>
</tbody>
</table>
Data from a 1 Myr numerical integration of the Solar System (B. Gladman)
$P = 54\text{ kyr}$

$P = 50\text{ kyr}$
Data from a 10 Myr numerical integration of the outer Solar System (B. Gladman)