Helioseismology
Earth's Winds

- From Meteorology for Mariners

Historically important for ocean navigation.

Still relevant for ocean racing, shipping.

Strongest winds in S'th's "Reaping Forties".
Uninterrupted ocean...
Dangerous Cape Horn.
1. Warm core \rightarrow low density \rightarrow low surface pressure \rightarrow inward boundary layer flow.

2. Inward flow \rightarrow swirl.

3. Rising motion in core \rightarrow rain \rightarrow latent heat release \rightarrow further warming.

4. Swirl balances pressure gradient. Core temperature determines pressure drop. $\Rightarrow V$
 Swirl velocity determines core radius.
 \[V^2 \sim 2gD\frac{dT}{T} \]

5. Swirl $\rightarrow 0$ at top; friction slows b.l. gas.
Fig. 1. Visible optical depths derived from the Sun-diode measurements made at the two Viking Landers (Colburn et al. 1989). Line indicates the opacity of a global haze inferred from Viking Lander 1 surface-pressure data (Zurek 1981). Initial appearance or detection of all observed regional dust clouds, hazes or obscurations (vertical lines) and of planet-encircling dust storms (arrows) are indicated at the top of the upper panel. Dust events are listed in Table III (figure adapted from Zurek and L. Martin 1992).