Quantifying the Bimodal Color-Magnitude Distribution of Galaxies

Presented by Drew Brisbin
February 24, 2010
Background

• Wanted to characterize color and magnitude of nearby extragalactic neighborhood
 • u-r color (355 – 616 nm)
 • M_r (Petrosian)

• Sloan Digital Sky Survey

• Low redshift galaxy sample (with reliable z_{spec})
 • $0.004 < z < 0.08$
 • $-23.5 < M_r < -15.5$

• Acquired sample of 66,846 galaxies
Motivation

- Useful photometric distance indicator
- Two generally recognized populations of galaxies
 - Early types: E+So, redder
 - Late types: Sa-Sd, spirals and irregulars, bluer
- Apparently fundamentally distinct populations (IE not continuous in properties such as color)
 - Suggests physical differences
 - Formation differences
Observations
Incompleteness Correction

- Dimmer sources can’t be observed out to $z \sim 0.08$
- Some galaxies not observed due to fiber collisions
Aims

- “To quantitatively determine the variation in the mean and dispersion of the spectral colors of [the blue and red] distribution, as a function of luminosity
- To determine separate luminosity functions
- To relate the above to physical explanations
- To determine a best-fit cut in color versus absolute magnitude space to divide galaxies by type”
Parameterization

\[\Phi = \Phi_r + \Phi_b \]

\[\Phi(M_r, C_{ur}) = \phi(M_r)G \]

\[G(C_{ur}, \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp \left[-\frac{(C_{ur} - \mu)^2}{2\sigma^2} \right] \]

- Fit Gaussians in 0.5 magnitude bins
Fitting

- Mean and standard deviation constrained to be continuous
- Fitted with a straight line and tanh function:
 \[T(M_r) = p_0 + p_1 (M_r + 20) + q_0 \tanh \left(\frac{M_r - q_1}{q_2} \right) \]
- Crosses ~ red population
- Squares ~ blue population
- Iterated procedure
Red Pop (crosses)

- σ shares transition magnitudes w/ μ
- As magnitudes increase (dim), μ shifts blueward and σ increases
- Consistent with increasing fraction of luminosity due to new star formation (colors of young stars more dependent on ages than old stars)
Blue Pop (Squares)

- At increasing (dimming) mags we see a gentle slope blueward.
 - Explained by metallicity-luminosity correlation
- Transition region too steep to be explained by metallicity
 - Increased dust
 - Decreased recent star formation
Parameterization

\[
\Phi = \Phi_r + \Phi_b
\]

\[
\Phi(M_r,C_{ur}) = \phi(M_r)G
\]

\[
G(C_{ur},\mu,\sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{(C_{ur} - \mu)^2}{2\sigma^2} \right]
\]

- Fit Gaussians in 0.5 magnitude bins
Luminosity Function

$$\Phi(M_r, C_{ur}) = \phi(M_r)G$$

- Amplitudes fit with Schechter functions

$$\phi(M_r) = c\phi^* e^{-c(\alpha+1)(M_r-M^*)} e^{-c(M_r-M^*)}$$

- Blue distribution fit with double Schechter function

- 42% of r band lum. is in red distribution

A single Schechter function was found to give a good fit to the red distribution (ϕ_r) but not to the blue distribution (ϕ_b). In the latter case, a significantly better fit was obtained by summing two Schechter functions (with a single value for M^*). Both the double- and single-Schechter function parameters are shown for ϕ_b

The luminosity density in absolute magnitudes per Mpc3. The percentage in brackets is the fraction relative to the total r-band luminosity density.
Galaxy Stellar Mass Function

\[\log(Mass / L_r) = a + bC_{ur} \]

- 54-60% of stellar mass density is in red distribution
Dividing the Sample

- Often useful to study population of one type or another
- Need a good indicator to split population

Blue and Red population distribution model with optimal indicator shown as grey dash dotted line
A word on completeness and reliability

- Completeness: fraction of population selected in sample
- Reliability: fraction of sample correctly selected

Optimal indicator: maximize $C_r R_r C_b R_b$

$$C'_{wr}(M_r) = 2.06 - 0.244 \tanh \left(\frac{M_r + 20.07}{1.09} \right)$$

- Not perfect (esp. at bright magnitudes)
 - Suggest using color magnitude information in concert with morphology and spectroscopy when available
Conclusions

- Quantitatively determined the variation in the mean and dispersion of the spectral colors of each distribution, as a function of luminosity
- Determined separate luminosity functions
- Related the above to physical explanations
- Determined a best-fit cut in color versus absolute magnitude space to divide galaxies by type
Appendix

Parameterization
\[\Phi = \Phi_r + \Phi_b \]
\[\Phi(M_r, C_{ur}) = \phi(M_r)G \]
\[G(C_{ur}, \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{(C_{ur} - \mu)^2}{2\sigma^2} \right] \]

Parameterization
\[\phi(M_r) = c \phi^* e^{-c(\alpha + 1)(M_r - M^*)} e^{-e^{-c(M_r - M^*)}} \]

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(M^* - 5 \log h_0)</th>
<th>(\phi^* h_0^{-2})</th>
<th>(\alpha)</th>
<th>(\phi^* h_0^{-2})</th>
<th>(\alpha')</th>
<th>(j + 2.5 \log h_0^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_r)</td>
<td>-21.49 ± 0.03</td>
<td>2.25 ± 0.08</td>
<td>-0.83 ± 0.02</td>
<td>...</td>
<td>...</td>
<td>-14.79 (42%)</td>
</tr>
<tr>
<td>(\phi_b)</td>
<td>-20.60 ± 0.08</td>
<td>2.02 ± 0.21</td>
<td>2.35 ± 0.37</td>
<td>-1.35 ± 0.05</td>
<td>-15.13 (58%)</td>
<td></td>
</tr>
<tr>
<td>(\phi_c)</td>
<td>-21.29 ± 0.03</td>
<td>2.89 ± 0.13</td>
<td>-1.18 ± 0.02</td>
<td>...</td>
<td>...</td>
<td>-15.08</td>
</tr>
</tbody>
</table>

- A single Schechter function was found to give a good fit to the red distribution (\(\phi_r \)) but not to the blue distribution (\(\phi_b \)). In the latter case, a significantly better fit was obtained by summing two Schechter functions (with a single value for \(M^* \)). Both the double- and single-Schechter function parameters are shown for \(\phi_b \).
- The luminosity density in absolute magnitudes per Mpc\(^3\). The percentage in brackets is the fraction relative to the total r-band luminosity density.

Gaussian \(\mu \) and \(\sigma \) Tanh fits and optimal color cut
\[T(M_r) = p_0 + p_1(M_r + 20) + q_0 \tanh \left(\frac{M_r - q_1}{q_2} \right) \]

Parameterization
\[T(M_r) = p_0 + p_1(M_r + 20) + q_0 \tanh \left(\frac{M_r - q_1}{q_2} \right) \]

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(p_0)</th>
<th>(p_1)</th>
<th>(q_0)</th>
<th>(q_1)</th>
<th>(q_2)</th>
<th>((q_1/M_r)^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_r)</td>
<td>2.279 ± 0.006</td>
<td>-0.037 ± 0.006</td>
<td>-0.108 ± 0.017</td>
<td>-19.81 ± 0.07</td>
<td>0.96 ± 0.16</td>
<td>1.8 \times 10^{10}</td>
</tr>
<tr>
<td>(\sigma_r)</td>
<td>0.152 ± 0.006</td>
<td>0.008 ± 0.006</td>
<td>0.044 ± 0.018</td>
<td>-19.91 ± 0.18</td>
<td>0.94 ± 0.40</td>
<td>2.0 \times 10^{10}</td>
</tr>
<tr>
<td>(p_b)</td>
<td>1.790 ± 0.014</td>
<td>-0.053 ± 0.008</td>
<td>-0.363 ± 0.029</td>
<td>-20.75 ± 0.05</td>
<td>1.12 ± 0.10</td>
<td>2.6 \times 10^{10}</td>
</tr>
<tr>
<td>(\sigma_b)</td>
<td>0.298 ± 0.004</td>
<td>0.014 ± 0.007</td>
<td>-0.067 ± 0.014</td>
<td>-19.90 ± 0.07</td>
<td>0.58 ± 0.19</td>
<td>0.9 \times 10^{10}</td>
</tr>
</tbody>
</table>

- The results of fitting a straight line plus a tanh function (eq. [9]) to the variations, in the means (\(\mu \)) and dispersions (\(\sigma \)), of the red and blue distributions as a function of \(M_r \) (eqs. [7] and [8]). The \(p \) parameters represent the straight line, while the \(q \) parameters represent the tanh function. The fitted lines are shown in Figs. 5 and 6. Note that the errors quoted do not include systematic uncertainties due to photometric calibration or \(k \)-corrections.
- The transition midpoint approximately converted to stellar mass (see § 5.4).

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(C'_{ur} (M_r) = 2.06 - 0.244 \tanh \left(\frac{M_r + 20.07}{1.09} \right))</th>
</tr>
</thead>
</table>