Peculiar Velocity Dipoles of Field Galaxies Using the Tully-Fisher Relation

Shan Huang, Gregory Hallenbeck

10 February 2010
Method

- Tully-Fisher relation
 - $I = a \log w + b$
 - I – absolute magnitude \rightarrow stellar mass
 - w – line width of 21cm line or optical emission line
 \rightarrow total gravitational mass
- Secondary standard candle
- Direct vs. Inverse TF
 - Direct relation is obtained from a least-squared fit of $\log w$
 as a function of I
- Malmquist bias (cluster of galaxies)

Tully & Fisher 1977
CMB radiation dipole moment

- Observed CMB radiation dipole moment

- Interpretation

\[T' = T \frac{\sqrt{1-v^2/c^2}}{1-(v/c) \cos \theta'} \]

- \(V_{\text{CMB}} \) (LG wrt the CMB)
 - 611\pm22 \text{ km/s, } l=273^\circ\pm3^\circ, b=27^\circ\pm3^\circ

- Uncertainty: \(V_{\text{sun wrt LG}} \): 300 \text{ km/s, } l=90^\circ, b=0^\circ
Motivation

- Peculiar velocity induced on the LG by the inhomogeneities present within a sphere of radius R
 \[
 V_{\text{pec, LG}}(R) = \frac{H_0 \Omega_0^{0.6}}{4\pi} \int \delta_{\text{mass}}(r) \frac{r}{r^3} W(r, R) d^3r,
 \]

- δ_{mass} – mass overdensity
- W – window function of width R
- average value of δ_{mass} within a shell of radius $R \rightarrow 0$
 \[
 V_{\text{pec, LG}} \rightarrow V_{\text{CMB}} \quad \text{when} \quad R \rightarrow \infty
 \]

In a universe homogeneous on large scales, the reflex motion of LG, wrt the contents of a shell of large enough radius R will exhibit a dipole that closely matches that of the CMB radiation field.

- How large is large
 - within 5000-10,000 km/s vs. outside 10,000 km/s

(from Dale 1998)
SFI samples and peculiar velocity calculations

- **SFI** – a homogeneous all-sky sample of 1289 field objects extending to $cz \approx 6500$ km/s, bias minimized
- **SFI+** – SFI complemented by several hundred additional objects to $cz \approx 9500$ km/s

- **SCI** – sample of cluster galaxies

- **I band**: CTIO 0.9-m, Blanco, and KPNO 0.9-m
- **21cm line**: Arecibo, etc.

Obtain dipoles of peculiar velocity field

- Inverse TF used to estimate peculiar velocities
 - Select galaxies by observed redshift cz
- Direct TF with velocities corrected for the IMB
 - Window galaxies by TF distance ($cz_{TF} = cz - V_{pec}$)
Dipole moment calculations

Merit function

\[\chi^2 = \sum_i w_i \left(\frac{V_i - V_d \cdot \hat{r}_i}{\epsilon_i} \right)^2 \]

\(V_d \) – vector of the dipole moment
\(r_i \) – unit vector in the direction of the \(i^{th} \) galaxy
\(w_i \) – weight (1 or \(r_n^3 \) for the fading selection function)
\(V_i \) – peculiar velocity of the \(i^{th} \) galaxy in the sample
\(\epsilon_i \) – uncertainty on \(V_i \) \((-0.325(\log W -2.5)+32)\)
Data Fitting

Chi-Squared Fit:

\[\chi^2 = \sum \limits_i w_i \left(\frac{V_i - V_d \cdot \hat{r}_i}{\epsilon_i} \right)^2 \]

Weights:

- Equal: \(w = 1 \)
- Fading Selection: \(w = r_n^3 \)

Bootstrap Error Analysis:

- Data
- Many Data Subsamples
- Distribution of Statistics

\(x \)
Results - Numbers

- Velocity Groupings
 - Global Groups (b)
 - All $V \sim 400$ km/s
 - Shells (everything else)

- TF Groups
 - Inverse (1-13)
 - Direct (14-19)

- SFI and SFI+ Groups
 - SFI+ groups have +

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFI Dipole Solutions</td>
</tr>
<tr>
<td>Set</td>
</tr>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Inverse Tully-Fisher</td>
</tr>
<tr>
<td>1a. 0–6500</td>
</tr>
<tr>
<td>1b.</td>
</tr>
<tr>
<td>2a. 0–6500 +</td>
</tr>
<tr>
<td>2b.</td>
</tr>
<tr>
<td>3. 0–2000</td>
</tr>
<tr>
<td>4. 0–2000 +</td>
</tr>
<tr>
<td>5. 1500–3500</td>
</tr>
<tr>
<td>6. 1500–3500 +</td>
</tr>
<tr>
<td>7. 2500–4500</td>
</tr>
<tr>
<td>8. 2500–4500 +</td>
</tr>
<tr>
<td>9. 3500–5500</td>
</tr>
<tr>
<td>10. 3500–5500 +</td>
</tr>
<tr>
<td>11. 4500–6500</td>
</tr>
<tr>
<td>12. 4500–6500 +</td>
</tr>
<tr>
<td>13b. 5500–9500 +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Direct Tully-Fisher, IMB Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>14a. 0–6500</td>
</tr>
<tr>
<td>14b.</td>
</tr>
<tr>
<td>15. 0–2000</td>
</tr>
<tr>
<td>16. 1500–3500</td>
</tr>
<tr>
<td>17. 2500–4500</td>
</tr>
<tr>
<td>18. 3500–5500</td>
</tr>
<tr>
<td>19. 4500–6500</td>
</tr>
</tbody>
</table>

(From Giovanelli et. al. 1998)
Results – Velocity Magnitudes

- Convergence as maximum cz used increases
- Similarities among groups

(From Giovanelli et. al. 1998)

Dashed Line: CMB dipole
Open Points: SFI Sample
Closed Points: SFI+ Sample
Starred Points: Direct TF
Results – Velocity Directions

- 2000 km/s groups:
 - Local Supercluster?
 - M87 ($l = 284^\circ$, $b = +74^\circ$)

- The others:
 - Well centered wrt CMB
 - Convergence

(From Giovanelli et. al. 1998)

Crossed Circle: CMB dipole
(Crossed Box: Lauer & Postman 1994)

Open Points: SFI Sample
Closed Points: SFI+ Sample
Starred Points: Direct TF
Conclusions

- Tully-Fisher Relation can find Distances and Peculiar Velocities of Spiral Galaxies

- Local Supercluster likely candidate for cause of dipole within 2000 km/s

- Convergence depth is near about \(cz = 4000 \text{ km/s} \)
 - Low end (or below) the low camp

- Bulk flow wrt CMB of 6500 km/s sphere:
 - \(200 \pm 65 \text{ km/s} \)
 - \((l = 295^\circ, b = +25^\circ) \pm 20^\circ\)
References