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CALCULATING TOTAL POWER FROM VLBI DATA

Lindy Blackburn1, Michael D. Johnson1, Andre Young1

1. TOTAL POWER FROM 2-BIT DATA

Power received by the antenna is proportional to σ2
V = 〈V (t)2〉. We record 2-bit quantized data y[n] where,

y[n] =


1 −∞ < V (t) < −V0
2 −V0 < V (t) < 0
3 0 < V (t) < +V0
4 +V0 < V (t) < +∞

at t = n/fs (1)

Here V0 is a quantization threshold, and for VLBI correlation is often tuned to the rms standard deviation of the
signal σV . fs is the Nyquist sampling rate of the band limited signal. We want to estimate changing signal power that
leads to small variations in σV (t) = σ0 + δσ(t) by using ensemble statistics of the quantized data y[n] at a fixed 2-bit
threshold.

For simplicity, let x(t) measure voltage relative to that measured for the average SEFD of the antenna, with
σx(t) = 1 + ε(t). The total power in the signal relative to baseline is σ2

x = 1 + 2ε+O(ε2) for small changes about the
SEFD. The expected fraction of total values that fall within quantization levels 2 and 3 are,

p =

∫ x0

−x0

G(x, σ = 1 + ε) dx =

∫ x0/(1+ε)

−x0/(1+ε)

G(x′, σ = 1) dx′ (2)

with x0 corresponding to the quantization threshold and G(x, σ) representing a zero-mean Gaussian distribution.
Expanding p about ε = 0 gives,

p(ε) = p0 + ε
dp

dε
= p0 − 2εx0G(x0, 1) +O(ε2) (3)

and total power as a function of expected fractional state counts p,

σ2
x = 1 + 2ε = 1 +

p0 − p
x0G0

(4)

where G0 = G(x0, 1). Given sufficient data, we assume that p0 can be measured accurately and solve for x0,

x0 =
√

2 erf−1(p0) (5)

with erf−1 representing the inverse error function.
For a series of N independent discrete observations x[n] each with probability p of being counted, the probability of

observing a given number of counts k follows a binomial distribution,

P (k) =

(
N

k

)
pk(1− p)N−k (6)

The binomial distribution has mean 〈k〉 = Np and variance σ2
k = Np(1− p). For a small expected deviation around a

large expected k0 = Np0, we can assume the inferred variance on estimated fraction p̂ is constant,

p̂ =
k

N
σ2
p̂ =

p0(1− p0)

N
+O

( ε
N

)
(7)

This translates into an error on estimated power,

σ̂2
x = 1 +

p0 − p̂
x0G0

var(σ̂2
x) =

p0(1− p0)

N (x0G0)2
(8)

The minimum var(σ̂2
x) = 3.07/N occurs at x0 = 1.42. At x0 = 1 typical for VLBI, the variance is 3.70/N .

Equation 8 for total power can be written in terms of constant factors applied to the counts in the inner p and outer
1− p bins,

σ̂2
x =

[
1− 1− p0

x0G0

]
p̂+

[
1 +

p0
x0G0

]
(1− p̂) (9)
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Figure 1. Accuracy of estimated power as input power is varied. The estimated power is a linear function of the 2-bit state counts,
with coefficients derived by either linearizing the error function about the threshold value, or by using mean squared values within each
quantization level. The use of mean squared values returns the correct baseline power, but underestimates the relative ampltiude of
fluctuations, shown by the reduced slope of the green line in the left plot. The choice of quantization threshold affects behavior of the
systematic error in the linear approximation. The higher-order terms are minimized at a threshold around 1.7σ. Statistical errors are not
shown in these plots. For 32768 samples (8µs at 4.096 GHz), equation 8 gives about 1% statistical error at 1σ quantization threshold.

For a quantization threshold of x0 = 1 relative to average baseline power, the expected fractional inner counts is
p0 = 0.68, and value of the Gaussian distribution G0 = 0.24. The two factors become −0.31 and 3.82 which are
different than the mean squared values of all the samples within each quantization level. They are also different from
the square of the mean values,

〈x2〉 =

{
0.29 |x| < 1

2.53 |x| > 1
〈|x|〉2 =

{
0.462 = 0.21 |x| < 1

1.532 = 2.32 |x| > 1
(10)

At baseline power where p = 0.68, the mean squared weights give the correct estimate of σ2
x = 1 but understimate the

power in small fluctuations about baseline. This is because small fluctuations in power also affect the mean squared
values by changing the shape of the distribution, but this is not tracked by the constant factors. The effect is difficult
to track because it depends on the very signal energy that is being estimated. Coefficients derived from mean values
rather than mean squared values result in a biased estimate of baseline total power. The systematics affecting both
direct energy calcualtions get smaller for high-bit data with many narrow bins.

2. TOTAL POWER IN THE CONTINUOUS LIMIT

Consider a random continuous signal with finite bandwidth ∆ν that has not been quantized. A signal of duration T
is represented by N/2 = T∆ν independent complex Fourier coefficients x̃[k] or equivalently N real time samples x[n].
The total measured signal power E =

∑
x2[n] follows a χ2 distribution with N degrees of freedom,

〈E〉 = Nσ2
x var(E) = 2Nσ2

x (11)

As in the quantized case, we assume the baseline noise power is well measured and corresponds to σ2
x = 1. The

estimator for total power is,

σ̂2
x =

E

N
(12)

For small deviations from baseline with σ2
x = 1 + 2ε, measurement noise is,

var(σ̂2
x) =

2

N
+O

( ε
N

)
(13)

The loss in S/N going form the continuous case to the 2-bit quantized case is
√

2/3.07 = 19.3% for the ideal case, and
26.5% for the typical VLBI 1σ quantization threshold case. The continuous limit can be acheived for high-bit data.


