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S1 Materials and Methods

For the “pure” Kozai problem discussed in the earlier part of the main text, we integrate the

standard quadrupole Kozai-Lidov equations for the planet’s orbital elements (assuming Mp �

M?,Mb). These are given by
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where e is the planet’s orbital eccentricity, θlb is the angle between the planet orbital angular

momentum axis and the binary axis L̂b, Ω is the longitude of the ascending node, ω is the argument

of periastron, and t−1
k is the characteristic Kozai rate, given by Eq. (1) of the main text. We choose

the binary orbital plane to be the invariant plane. In all the cases we consider, we take as our

initial condition Ω0 = 0 and ω0 = 0 (thus, ω always circulates rather than librates; see Fig. S2).

Note, however, that this is not a particularly special choice, since for the initial inclinations θlb we

consider (85◦ − 89◦) the maximum eccentricity is the same for the circulating and librating cases,

and the rates of precession of the node (Ωpl, Eq. 2) are only slightly different.

We evolve the precession of the stellar spin according to the equation

dŜ

dt
= ΩpsL̂× Ŝ, (S2)

where Ωps is given by Eq. (4), and L̂ = (sin θlb sin Ω,− sin θlb cos Ω, cos θlb) in the inertial frame

where the z-axis is parallel to the binary axis L̂b.

In the latter part of the main text, we add short-range forces to our system. We use the ex-

pressions given in (19) for periastron advances due to General Relativity, planet spin-induced

quadrupole, and static tide in the planet. We also add nodal and apsidal precession of the plan-
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etary orbit due to the spin-induced stellar quadrupole. This introduces the following terms to the

orbital evolution equations:
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where

cos θsl = L̂ · Ŝ = Sx sin θlb sin Ω− Sy sin θlb cos Ω + Sz cos θlb,

∂ cos θsl
∂θlb

= Sx cos θlb sin Ω− Sy cos θlb cos Ω− Sz sin θlb, (S4)

∂ cos θsl
∂Ω

= Sx sin θlb cos Ω + Sy sin θlb sin Ω,

and ω? = −ΩpsS/(L cos θsl).

Finally, we add tidal dissipation in the planet to our equations. We use the standard weak

friction tidal dissipation model (41,42):
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where a is the semi-major axis, Ωs,p is the spin rate of the planet, the functions f1 − f4 are defined

as
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and ta is a characteristic timescale, given by

1
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)(
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)5

n2, (S9)

where n is the mean motion of the planet, k2 is the tidal Love number and ∆tL is the tidal lag

time. For Jupiter, k2 = 0.37 and we take ∆tL = 0.1 s (corresponding to k2/Q ≈ 10−5 at a tidal

forcing period of 6.5 hours). We therefore use ∆tL = 0.1χ s, where χ is a tidal enhancement

factor, which we take to be 14 for Fig. 5 (left) and 1400 for Fig. 5 (right), in order to ensure that

the planets in our test cases circularize within the lifetime of their host stars. For all the sample

cases considered in this work, we assume the planet spin to be pseudosynchronous with the orbit,

i.e. Ωs,p/n = f2(e)/[(1− e2)3/2f5(e)], with f5(e) = 1 + 3e2 + (3/8)e4. Relaxing this assumption

does not qualitatively change our results. (For pseudosynchronous spin, the periastron advance

due to planet’s rotation bulge is always smaller than that due to tidal distortion.)

Equivalent evolution equations for the spin-triple system can be found in (21,26).

S2 Supplementary Text

S2.1 Figures

In this section we provide several supplementary figures that facilitate deeper understanding of the

rich dynamics exhibited by the stellar spin during Kozai cycles and migration.

As stated in the main text, the division between different regimes of stellar spin behavior de-

pends on the planet semi-major axis, binary semi-major axis, and the product of planet mass and

stellar spin frequency. In Fig. S1, we illustrate these divisions in the ab − a space for several dif-

ferent values of M̂p ≡ (Ω̂?/0.05)(Mp/MJ). We note that for real systems, short-range effects due

to General Relativity (GR) and tidal/rotation distortion of the planet may affect the Kozai cycles.

For the parameter space explored in this paper, the GR effect dominates. When the Kozai preces-

sion frequency ω̇k ∼ t−1
k (1− e2)3/2 becomes comparable to the GR-induced precession frequency

ω̇GR, the Kozai cycle is arrested. In this case, the maximum eccentricity achieved during a Kozai
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cycle is reduced, and any planet undergoing Kozai cycles in will fail to become a hot Jupiter if

rp = a(1− emax) is larger than ∼ 0.1 AU. Thus, the effect of GR can restrict the available param-

eter space in which adiabatic evolution (regime III) happens and a hot Jupiter is created. However,

the presence of short-range forces and tidal dissipation also alters the topology of the chaos in the

parameter space, making it difficult to draw a direct connection between the regime divisions in

the “pure” Kozai system and the results of our dissipative simulations. In fact, the results of Fig. 5

(left) demonstrate that, indeed, it is possible for hot Jupiters to experience adiabatic evolution.

In order to explore the three regimes of stellar spin evolution, we create surfaces of section

(Fig. 2) by sampling the spin trajectory every time the orbital trajectory comes back to the same

region of phase space. In Fig. S2 we show the orbital trajectory in phase space, with and without

short-range forces, and mark the point at which we choose to sample the spin evolution.

In the main text, we demonstrate that in the “transadiabatic” regime (regime II), stellar spin has

the potential to undergo both chaotic motion and regular quasiperiodic motion, depending on the

parameters of the system. In Fig. 1 we present an example of a chaotic trajectory. Here, in Fig. S3

we present an example of a periodic transadiabatic trajectory: even at late times, the “real” and

“shadow” trajectories match perfectly.

Finally, in Fig. S4 we present a sample time evolution for the Kozai problem with added short-

range forces, tidal dissipation and stellar spindown, showing how the final semi-major axis af and

spin-orbit misalignment angle θfsl are attained. Each point in Fig. 5 represents the result of such

evolution.
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Figure S1: Breakdown of parameter space into the three regimes of spin evolution, as discussed in
the text. Black: for a periastron distance of rp = a(1− emax) = 0.03 AU; gray: for rp = 0.05 AU.
Here M̂p = (Ω̂?/0.05)(Mp/MJ). The regimes are determined by the relative values of the stellar
spin precession frequency Ωps and the nodal precession frequency Ωpl of the planet’s orbit. Note
that Ωps depends on cos θsl, and for concreteness we use cos θsl = 1. Ωpl is a complicated function
of eccentricity and θlb (Eq. 2), which we approximate as Ωpl ≈ −t−1

k /(1 − e2) in making this
figure. The lines separating Regimes I and II are given by |Ωps,max| ≈ 0.5|Ωpl,max|, where Ωps,max

and Ωpl,max are equal to Ωps and Ωpl evaluated at (1−emax) = rp/a. The line separating Regimes II
and III is given by |Ωps,0| ≈ 2|Ωpl,0|, where Ωps,0, Ωpl,0 are equal to Ωps and Ωpl evaluated at e = 0.
The dotted lines mark the boundary at which the effect of GR becomes significant, approximated
by ω̇GR ≈ t−1

k (1 − e2max)
−1/2. Above the dotted lines, GR will suppress the Kozai cycles, so that

the system cannot reach the specified rp. In Regimes I and III the spin precession frequency never
overlaps with the nodal precession frequency, and the spin evolution is expected to be regular and
periodic. In Regime II, the two frequencies are equal for some value of e during the Kozai cycle,
and therefore secular spin-orbit resonance develops, potentially leading to chaos. Note that the
parameters shown in the lowest panel ( M̂p = 300) correspond to a low-mass star rather than a
planet.
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Figure S2: Orbital trajectory in e − ω phase space, for the “pure” Kozai problem (left), and with
the addition of short-range forces (right). ω circulates with a period that is twice the period of the
eccentricity oscillations. In red, we mark the point in the trajectory where we choose to sample
the spin evolution in generating Figs. 2 and 4: i.e., every time the trajectory passes that point, we
record the stellar spin orientation.
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Figure S3: Sample evolution curves for a trajectory in a periodic island of regime II, demonstrating
how the stellar spin evolves through many Kozai cycles. We plot a “real” trajectory (red solid lines)
and a “shadow” trajectory (orange dashed lines), used to evaluate the degree of chaotic behavior.
The trajectories are initialized such that the “real” starts with Ŝ parallel to L̂, and the “shadow”
with Ŝ misaligned by 10−6deg with respect to L̂. The parameters are a = 1AU, ab = 200AU,
e0 = 0.01, θ0lb = 85◦, Ω̂? = 0.03, Mp = 1.025MJ . This figure corresponds to the red points of
Fig. 2 (bottom left) and the red curve of Fig. 3 (left). It is perfectly periodic: even at late times, the
“real” and “shadow” trajectories match perfectly.
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Figure S4: Sample orbital and spin evolution, including tidal dissipation and stellar spindown.
The parameters for this run are a0 = 1AU, ab = 200AU, e0 = 0.01, θ0lb = 85◦, Ω̂?,0 = 0.05,
Mp = 5MJ , χ = 700.
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S2.2 Toy Model

We consider a toy model in order to gain a better understanding of the dynamical behavior of

the “real” Kozai system with stellar spin evolution (i.e. the system on which we focused in the

main text). In this model, the stellar spin axis Ŝ satisfies Eq. (S2), and the orbital axis L̂ evolves

according to
dL̂

dt
= ΩplL̂b × L̂, (S10)

where we have neglected the back-reaction torque of the stellar spin on the planetary orbit (this

back-reaction can be included but it does not introduce qualitatively new features when L � S),

and the nutation of the orbital angular momentum vector L̂. The external binary axis L̂b is fixed

in time, and the angle between L̂ and L̂b is constant. The spin precession rate Ωps is a function

of eccentricity (and time) [see Eq. (4)]. In the case of pure Kozai oscillations (i.e. without extra

precession effects), the eccentricity is a periodic function of time, varying between 0 and emax. We

imitate this oscillatory behavior by adopting the following explicit form for Ωps:

Ωps(t) = Ωps,0f(t) cos θsl, with f(t) ≡ 1 + ε

1 + ε cos Ω0t
, (S11)

where Ω0 represents the Kozai oscillation frequency. The precession frequency of L̂ around L̂b has

the approximate eccentricity dependence Ωpl ∝ [2(1− e2)−1 − 1] in the real system, and therefore

in our toy model takes the form

Ωpl = Ωpl,0(2f
2/3 − 1), where Ωpl,0 =

3

4
Ω0 cos θlb. (S12)

During a Kozai cycle, Ωps varies from Ωps,0 cos θsl to Ωps,max = Ωps,0(1 + ε) cos θsl/(1 − ε). We

adopt ε = 0.99 in our examples below. Thus, the parameter ωps,0 ≡ Ωps,0/Ωpl,0 determines whether

the system is nonadiabatic (ωps,0 . 0.1), transadiabatic (0.1 . ωps,0 . 1), or fully adiabatic

(ωps,0 & 1).

For a given Ωps,0, we numerically integrate Eqs. (S2) and (S10) for 1000 “Kozai cycles,” record

the values of θsl and θsb at eccentricity maxima (i.e., Ω0t = π, 3π, 5π, · · · ), and then plot these
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values in the θsl − ωps,0 and θsb − ωps,0 planes. We repeat the process for different values of ωps,0.

The results are shown in Fig. S5 for initial θlb = 60◦ (and initial θsl = 0◦). The range of ωps,0 has

been chosen to illustrate the nonadiabatic, transadiabatic and fully adiabatic regimes.

As in the real system, our toy model exhibits periodic/quasiperiodic solutions and chaotic

zones, and the level of chaos is determined by the parameter ωps,0. If we use the spreads of θsl

and θsb as a measure of chaos, we see that the system generally becomes more chaotic with in-

creasing ωps,0, until ωps,0 reaches ∼ 5, beyond which the system becomes fully-adiabatic (θsl → 0

and θsb approaches a constant). However, multiple periodic islands exist in the ocean of chaos.

Figure S6 illustrates the time evolution of θsl and θsb in several of these periodic islands, along

with an example of chaotic evolution. Figure S7 compares δ(t) = |Ŝreal(t)− Ŝshadow(t)| (where

the shadow trajectory has an initial condition nearly identical to the real one) for the different cases,

clearly showing the difference between the periodic islands and chaotic evolution.
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Figure S5: Angles θsl and θsb evaluated at maximum eccentricity (where Ω0t = π, 3π, 5π... for
1000 cycles) as functions of ωps,0 ≡ Ωps,0/Ωpl,0. The initial angle between L̂ and L̂b is θ0lb = 60◦,
and Ŝ and L̂ are initially aligned. The range of ωps,0 (on the logarithmic scale) in the right panels
is chosen to illustrate the behavior of the three regimes (nonadiabatic, transadiabatic, and fully
adiabatic). The narrow range of ωps,0 (on the linear scale) in the left panels exhibits the existence
of periodic and quasiperiodic islands within the (chaotic) transadiabatic zones.
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Figure S6: Angles θsl and θsb as functions of time, demonstrating the various behaviors of different
orbits shown in Figure S5, including the three distinct regimes, and the difference between periodic
and chaotic evolution in the transadiabatic regime. Time is in units of Ω0 = 1 (Eq. S11), and has
been scaled by π. The dashed lines, included for reference, are located at odd-integers (when the
system is at maximum eccentricity). Upper left panel: ωps,0 ≡ Ωps,0/Ωpl,0 = 0.023, nonadiabatic,
so that θsb ≈ constant. Upper right panel: ωps,0 = 13.3, fully adiabatic, so that θsl ≈ θ0sl ≈ 0.
Middle left panel: ωps,0 = 0.89, transadiabatic but periodic, with period= 12π. Middle right panel:
ωps,0 = 1.25, transadiabatic but periodic, with period= 16π. Bottom left panel: ωps,0 = 2.13,
transadiabatic but periodic, with period= 2π. Bottom right panel: ωps,0 = 2.35, transadiabatic,
with no discernible periodic behavior, chosen to illustrate chaotic evolution. See also Fig. S7 for
further comparison between periodic and chaotic evolution.
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Figure S7: Difference (δ) in the spin vector Ŝ between “real” and “shadow” trajectories for the
four transadiabatic systems shown in Fig. S6 (bottom 4 panels), starting with an initial δ0 = 10−8.
Time is in units of Ω0 = 1. Three examples of periodic evolution are shown, where ωps,0 ≡
Ωps,0/Ωpl,0 = 0.89 (blue), ωps,0 = 1.25 (green), ωps,0 = 2.13 (red), as well as a chaotic example
ωps,0 = 2.35 (purple). Compare with Figure S6. For the periodic examples δ remains small, while
in the chaotic example, δ increases exponentially, and eventually saturates to its maximum value
of δ = 2.
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