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Structure Formation and Supermassive BHs

● Idea: Every galaxy has a central BH.

● Structures merge hierarchically.

● As galaxies merge, so do their BHs?



GW strain estimates
GW frequency:



Detectability: PTAs, LISA



Merging by GW emission takes a long time!

Evolution of a from GW luminosity:

To merge within a Hubble time, must start within ~10-3 pc.

How do they get this close?



Getting closer: dynamical friction
Chandrasekhar:

“Hardening radius”:



Can they get close enough?

Hence “final parsec problem”.

Ways to get around it:

● Galaxies aren’t really spheres.

● Stalled binaries will eventually 
meet a third BH.



A possible solution: triaxiality

Triaxiality → Loss cone refilling

● “Loss cone”: phase space region of stars with ang. mom. 
small enough to interact with (& be ejected by) the central BH

● In a spherical galaxy, ang. mom. is conserved, so the loss 
cone is eventually emptied, & binary stalls.

● In realistic galaxies (triaxial ellipsoids), global 
torques can refill the loss cone.



The “worst” case: multi-BH interactions
If all SMBH binaries stall:

● Cosmic population of stalled 
binaries exists

● Eventually, another galaxy will 
merge & add its SMBH

● Three-body interactions 
between SMBHs can shrink orbit 
into GW regime.
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Modern cosmology has established a model in which galaxies and galaxy
clusters form by repeated mergers over the lifetime of the universe, and where
nearly every galaxy contains a central supermassive black hole with a mass
of at least 106M�, with some being as large as a few times 109M�. It is
reasonable to assume that the black holes at the centers of merging galax-
ies will themselves eventually merge, particularly because dynamical fric-
tion will draw them toward the center of the merged galaxy. Before they
completely merge, the supermassive black holes will form a binary system,
which is in principle observable through the gravitational waves it emits,
and potentially through modifications to the electromagnetic waves emitted
as the black holes accrete matter from the surrounding galaxy. Although
a few promising candidates have been identified, no conclusive evidence of
these supermassive black hole binaries yet exists. However, their gravita-
tional wave signatures may soon be detected by pulsar timing arrays and/or
space-based interferometers such as LISA. In the following, I will derive es-
timates for the gravitational wave frequencies and amplitudes that should
be expected from such systems, and discuss the mechanisms responsible for
shrinking their orbits to the point where they can merge via gravitational
wave emission. Simple arguments suggest that the binaries may not be able
to shrink rapidly enough via interactions with the stars in the center of the
merged galaxy to reach the point where they can merge via gravitational
wave emission within the current age of the universe. This is known as the
“final parsec problem”, and I will discuss both the source of the problem and
some mechanisms which may resolve it.
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1 Gravitational wave parameters

Here I derive estimates and scaling relations for the frequency and amplitude
of the gravitational waves produced by a supermassive black hole binary.

1.1 Frequency

The frequency of gravitational waves emitted by a binary system is twice the
orbital frequency. The orbital angular frequency is well approximated by the
Keplerian value

ΩK =

√
GM

a3
. (1)

Here a is the binary separation (semimajor axis), and M = M1 + M2 is the
total mass. It follows that the gravitational wave frequency is

fGW =
2ΩK

2π
=

1

π

√
GM

a3
. (2)

Using nominal values for M and a of 106M� and 10−3 pc, respectively, gives

fGW = 2.1× 10−8 Hz

(
M

106M�

)(
a

10−3 pc

)− 3
2

. (3)

The relevance of the nominal separation will be seen later; it is approxi-
mately the maximum separation that two supermassive black holes can have
to merge within the age of the universe through gravitational wave emission
alone.

A supermassive black hole binary will emit the highest-frequency gravi-
tational radiation when it is at the point of merger. We can obtain a rough
estimate of the frequency at merger by setting the separation a in the above
equations equal to the radius of the innermost stable circular orbit (ISCO):

a = rISCO =
6GM

c2
= 2.9× 10−7 pc

(
M

106M�

)
. (4)

While strictly speaking the ISCO is only well-defined for a test mass of neg-
ligible size orbiting a single black hole or relativistic neutron star, it gives a
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reasonable estimate of the separation below which a pair of black holes will
merge. Substituting a = 6GM into (2) gives

fmerg =

√
GM

(6GM)3
=

1

6
√

6GM
= 4.4× 10−3 Hz

(
M

106M�

)−1

. (5)

Of the detectors sensitive to gravitational waves from supermassive black
hole binaries, pulsar timing arrays are most sensitive at frequencies between
about 10−9 and 10−7 Hz, and space-based interferometers such as LISA are
most sensitive at frequencies between 10−4 and 10−2 Hz. From the scaling
relations above, it is clear that 106M� binaries merge in the LISA band,
and binaries of 109M� and higher emit gravitational waves in the nanohertz
band (detectable by PTAs) when their separations are of order 10−5 pc, a
good deal smaller than the nominal radius used above.

1.2 Strain

The gravitational wave strain produced by a binary system is given by

hij =
2G

rc4
:Īij, (6)

where Ī is the trace-reversed moment of inertia tensor. The moment of
inertia I scales as µa2, where µ is the reduced mass of the binary and a is
the separation. It follows that the gravitational wave strain scales as

h ∼ G

rc4
Ω2µa2, (7)

since each derivative introduces a factor of the orbital frequency Ω. In more
detail, the amplitude is directionally dependent, but this estimate is suffi-
cient to give the correct order of magnitude. Using the Keplerian orbital
frequency (1) for Ω gives

h ∼ G2Mµ

arc4
. (8)

Using nominal values of 10−3 pc for a, 1 Mpc for r, and 106M� for the mass
M1 of the larger black hole, this becomes

h ∼ 2.3× 10−18

(
M1

106M�

)2(
a

10−3 pc

)−1(
r

1 Mpc

)−1
M2

M1

. (9)
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1.3 Lifetime

To find the separation aGW from which a supermassive black hole binary
can merge within the lifetime of the universe, we can set the time derivative
of the binding energy equal to the negative gravitational wave luminosity
LGW. Because the intention here is only to provide a rough estimate of this
distance, I will use the Newtonian form of the binding energy. This gives

d

dt

(
−GMµ

2a

)
=
GMµ

2a2
da

dt
= −32G4M3µ2

5c5a5
. (10)

Separating the variables, we have

a3 da = −64G3M2µ

5c5
dt ⇒ 1

4
a4 − 1

4
a40 = −64G3M2µ

5c5
(t− t0), (11)

where a0 is the binary separation at the arbitrary reference time t0. If we
take t0 to be the time of merger, then a0 = 0, and, defining τ = t0 − t to be
the time until merger, we have

a4GW =
256G3M2µ

5c5
τ. (12)

Plugging in numbers produces the scaling relation

aGW = 2.2× 10−3 pc

(
M1

106M�

) 3
4
(

τ

14 Gyr

) 1
4
(
M2

M1

(
1 +

M2

M1

)) 1
4

, (13)

where M1 is the mass of the larger black hole and M2 is the mass of the
smaller one. This is the source of the nominal value of 10−3 pc for the binary
separation used previously.

2 The final parsec problem

The scale of the smallest separation attainable by supermassive black hole
binaries through dynamical friction and scattering of stars is set by the point
where the binding energy per unit mass of the binary is comparable to the ve-
locity dispersion of the stars in the center of the merged galaxy. Symbolically,
this is

Gµ

2ah
=
〈
v2
〉
, (14)
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where ah is the “hardening radius” at which dynamical friction ceases to be
effective at reducing the separation of the binary, and 〈v2〉 denotes the mean
squared velocity of stars in the center of the galaxy containing the binary.
Solving for the hardening radius ah gives

ah =
Gµ

2〈v2〉
≈ 0.22 pc

(
M2

106M�

)(
vrms

100 km/s

)−1(
1 +

M2

M1

)−1

, (15)

where again M1 is the mass of the larger black hole and M2 is the mass
of the smaller one. This is clearly significantly larger than the separation
aGW necessary for the black holes to merge within the age of the universe, as
computed earlier. This observation is the basis of the “final parsec problem”,
which was first described by Milosavljević and Merritt (2003).

2.1 Potential solutions

The hardening limit arises because stars in the galaxy must have sufficiently
small angular momentum to interact with the binary. The phase space re-
gion containing stars with sufficiently small angular momenta is called the
“loss cone”, and, in a spherical galaxy, it is eventually emptied out as stars
with sufficiently small angular momenta are ejected from the galaxy through
interactions with the central black hole binary.

However, in more realistic galaxies, a significant degree of triaxiality is
present, so the angular momentum of individual stars is not conserved – in
other words, the gravitational potential of the galaxy creates global torques.
Gualandris et al. (2017) explore these global torques as a possible solution
to the final parsec problem, and find that with realistic levels of triaxiality,
the loss cone refills sufficiently fast that supermassive black hole binaries can
reach aGW reasonably quickly.

Another possibility is that the stalling described by the final parsec prob-
lem really happens, and that there exists a cosmic population of stalled
supermassive black hole binaries. In this case, when a galaxy containing a
binary merges with another galaxy, a three-body system will be created at
the center of the new, merged galaxy, and chaotic three-body dynamics will
ensue, with the most likely endpoint being that one of the black holes is
ejected and the other two become even closer together than the original pair,
perhaps even close enough to merge by gravitational wave emission. This
possibility is explored by Ryu et al. (2018), who find that in such a sce-
nario, significant levels of low-frequency gravitational wave emission are still
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expected, albeit at a lower level than would be predicted if all supermassive
black hole binaries efficiently merged.
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