Probing Extreme Physics with Compact Objects: Black Holes

Dong Lai

Department of Astronomy
Cornell University
“Dark Star” Concept: John Michell (1783) Pierre Laplace (1795)

- Although “correct” answer, derivation/interpretation wrong

Escape velocity: \[v_{\text{esc}} = \left(\frac{2GM}{R} \right)^{1/2} \]

\[v_{\text{esc}} = c \]

\[R = \frac{2GM}{c^2} = 3 \text{ km} \left(\frac{M}{1\ M_\odot} \right) \]
“Black Hole” Concept:

• **Einstein (1915): General Relativity**
Gravity is not a force, but rather it manifests as curvature of spacetime caused by matter and energy

\[
G_{\mu\nu} = 8\pi T_{\mu\nu}
\]

• **Karl Schwarzschild (1916):**
The first exact solution to Einstein field equation

\[
ds^2 = \left(1 - \frac{R_S}{r}\right) c^2 dt^2 - \frac{dr^2}{1 - \frac{R_S}{r}} - r^2 (d\theta^2 + \sin^2\theta d\varphi^2)
\]

The horizon radius (Schwarzschild radius):

\[
R_S = \frac{2GM}{c^2}
\]

• **Roy Kerr (1963):**
Solution for spinning black holes
Astrophysical Black Holes: Kerr Metric

Two parameters: \(M, \quad a=J/M \)

\[
ds^2 = - \left(1 - \frac{2Mr}{\rho^2} \right) dt^2 - \frac{4aMr \sin^2 \theta}{\rho^2} dt d\phi + \frac{\rho^2}{\Delta} dr^2 + \rho^2 d\theta^2 + \left(r^2 + a^2 + \frac{2Mr a^2 \sin^2 \theta}{\rho^2} \right) \sin^2 \theta d\phi^2
\]
Isolated Black Holes are “boring”
(unobservable)
Accreting Black Holes

Stellar-mass BHs in binaries

Accreting gas has angular momentum

\Rightarrow Accretion disk

\Rightarrow Radiation from disk (x-rays)

Outflows (jets)

Supermassive BHs in Galaxies
Tidal Disruption of Stars by BH

==> Electromagnetic Flares

BH - Neutron Star Binary Merger

==> (short) GRBs?
Binary BH Merger

==> Gravitational waves
Black Holes in Astrophysics

Stellar-mass BHs in X-ray Binaries
Supermassive BHs in active galaxies
 Intermediate-mass BHs (ULXs) ?

Tidal disruption of stars

BH/NS or BH/BH mergers
Black Hole Power in Astrophysics

(1) Accretion Power

\[L_{\text{acc}} = \epsilon \dot{M} c^2 \]

\(\epsilon = \) Binding energy (per unit mass) at ISCO
- 5.7% for \(a=0 \)
- 42% for \(a=M \)

Inner-most stable circular orbit
- \(r_{\text{ISCO}} = 6M \) for \(a=0 \)
- \(=M \) for \(a=M \)

Note:
- The above applies to thin ("cold") disks (radiative efficient disks);
- "Radiative Inefficient Disks" (e.g. ADAF), efficiency is smaller…
Black Hole Power in Astrophysics

(2) Spin Power

Extracting spin energy from BH (Penrose Process)

BH area theorem -->

\[M_{\text{irr}} = \left(\frac{A}{16\pi} \right)^{1/2} = \frac{M}{\sqrt{2}} \left(1 + \sqrt{1 - \frac{a^2}{M^2}} \right)^{1/2} \]

Maximum efficiency of energy extraction = \[1 - \frac{M_{\text{irr}}}{M} \]

= 29.3% for a=M

How to do it?
Interaction of BH with magnetized plasma (a la pulsar)…
Blandford-Znajek (1977)
Blandford-Znajek Process
Interaction of BH with magnetized plasma (a la pulsar)...

Kip Thorne
Black Hole Power in Astrophysics

(1) Accretion Power

(2) Spin Power

Relative importance ??
Highlight #1: Mass and Spin of BHs
Mass of BHs in X-ray binaries

Well measured for 23 systems
(McClintock et al. 2011)

Note: BH mass gap: 2-5 M_{sun}
--> implication for supernova?
(O’Connor & Ott 11)
Mass of Supermassive BHs

NGC 3842: $9.7 \times 10^{10} M_{\odot}$
NGC 4889: $\sim 10^{10} M_{\odot}$

McConnell et al. 2011
Spin of BHs in X-ray Binaries

• **Method 1: Continuum Fitting**
 Measure the temperature of the inner disk in thermal state (thin disk)
 \[\Rightarrow\] Radius of the inner edge of the disk
 \[\Rightarrow\] BH spin

Key assumption:
 disk inner edge at ISCO
 (no radiation inside ISCO)

Penna et al. 2011
BH spin measurement using continuum fitting method

<table>
<thead>
<tr>
<th>Source</th>
<th>Spin a_*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GRS 1915+105</td>
<td>> 0.98</td>
</tr>
<tr>
<td>2 LMC X–1</td>
<td>0.92$^{+0.05}_{-0.07}$</td>
</tr>
<tr>
<td>4 M33 X–7</td>
<td>0.84 ± 0.05</td>
</tr>
<tr>
<td>3 4U 1543–47</td>
<td>0.80 ± 0.05</td>
</tr>
<tr>
<td>5 GRO J1655–40</td>
<td>0.70 ± 0.05</td>
</tr>
<tr>
<td>6 XTE J1550–564</td>
<td>0.34$^{+0.20}_{-0.28}$</td>
</tr>
<tr>
<td>7 LMC X–3</td>
<td>< 0.3b</td>
</tr>
<tr>
<td>8 A0620–00</td>
<td>0.12 ± 0.18</td>
</tr>
</tbody>
</table>

McCintock et al 2011
Spin of BHs

• Method 2: Broad Fe K line shape

Miniutti et al 2007
MGC-6-30-15: $a > 0.989$ (?)
Evidence for jet powered by BH Spin?

Narayan & McClintock ‘11

<table>
<thead>
<tr>
<th>BH Binary</th>
<th>a_*</th>
<th>M (M_\odot)</th>
<th>D (kpc)</th>
<th>i (deg)</th>
<th>$(S_\nu)_{\text{max},5\text{GHz}}$ (Jy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0620-00</td>
<td>0.12 ± 0.19</td>
<td>6.61 ± 0.25</td>
<td>1.06 ± 0.12</td>
<td>51.0 ± 0.9</td>
<td>0.203</td>
</tr>
<tr>
<td>XTE J1550–564</td>
<td>0.34 ± 0.24</td>
<td>9.10 ± 0.61</td>
<td>4.38 ± 0.50</td>
<td>74.7 ± 3.8</td>
<td>0.265</td>
</tr>
<tr>
<td>GRO J1655–40</td>
<td>0.7 ± 0.1</td>
<td>6.30 ± 0.27</td>
<td>3.2 ± 0.5</td>
<td>70.2 ± 1.9</td>
<td>2.42</td>
</tr>
<tr>
<td>GRS 1915+105</td>
<td>0.975 ± 0.025</td>
<td>14.0 ± 4.4</td>
<td>11.0 ± 1.0</td>
<td>66.0 ± 2.0</td>
<td>0.912</td>
</tr>
<tr>
<td>4U 1543–47</td>
<td>0.8 ± 0.1</td>
<td>9.4 ± 1.0</td>
<td>7.5 ± 1.0</td>
<td>20.7 ± 1.5</td>
<td>$>1.16 \times 10^{-2}$</td>
</tr>
</tbody>
</table>
Highlight #2: Rapid Variabilities of Accreting BHs and Dynamics of Inner Disks
High-Frequency QPOs in BH X-Ray Binaries

Remillard & McClintock 2006
Basic Facts about HFQPOs

- 40-450 Hz: ~ orbital frequency at r_{isco}
- Frequency stable (<10% change when Mdot doubles)
- Some systems: ~2:3 ratio
- Weak QPOs: ~1% flux variation (in hard X-rays), Q~2-10
- Only occur in “Transitional state” (Episodic jet)
X-ray QPO (P ~ 1 hr) from active galaxy RE J1034+396

Gierlinski et al 2008, Nature
QPOs from Ultra-Luminous X-ray Source NGC 5408 X-1 (an Intermediate-mass BH?)

Strohmayer & Mushotzky 2009
High-Frequency QPOs in BH X-Ray Binaries

Remillard & McClintock 2006
Ideas/Models of HFQPOs

• Orbiting blobs (hot spots) in disks (Stella et al ‘99; Schnittman & Bertschinger ‘04)

• Nonlinear resonances of some kind (Abramowicz, Kluzniak, Horak, Rebusco)

• Acoustic modes in torus (Rezzolla el al ‘03; Lee, Abramowicz & Kluzniak ‘04; Blaes et al. ‘07; Sramkova et al ‘07; Horak’08)

• Disk/Magnetosphere Boundary Layer Oscilations
 (Li & Narayan ‘04; Tsang & DL ‘09)

• Oscillation modes in relativistic disks (Kato; Wagoner & collaborators)
 -- m=0 inertial modes excited by global disk deformation (e.g. warps)
 (Kato ‘03,’08; Ferreira & Ogilvie ‘08; Henisey et al.10)
 -- Rossby modes trapped in special region of a magnetic disk
 (Tagger & Varniere ‘06; see also Tagger & Pallet ‘99; Varniere & Tagger’02)
 -- Cornell effort: Mode growth due to corotational resonance, magnetic fields
 (DL & Tsang ‘09; Tsang & DL ‘08,’09a,b; Fu & DL ‘09,’11a,b)
P-modes of BH Accretion Disks
“inertial-acoustic modes”, “spiral density modes”

-- Trapped (partially) in the innermost region of disk
-- Frequencies can be calculated: robust, agree with observations
-- Can grow due to corotation resonance (“corotational instability”)

GR plays an important role
-- B field effect

with David Tsang (Cornell Ph.D. 09 --> Caltech)
Wen Fu (Cornell Ph.D. student)

Fu & DL 2012
Waves in 2D disks (Spiral density waves):

\[\delta v, \delta \Sigma \propto \exp(i m \varphi - i \omega t) \]

Can propagate only in the region:

\[r < r_{\text{ILR}} \quad \text{or} \quad r > r_{\text{OLR}} \]

Lindblad Resonances:

\[\omega - m \Omega(r) = \pm \kappa(r) \]

where \(\Omega(r) = \) disk rotation rate

\(\kappa(r) = \) radial epicyclic frequency

\[\kappa^2 = \frac{2 \Omega}{r} \frac{d}{dr} (r^2 \Omega) \]
Wave propagation diagram (effective potential)

Wave at $r > r_{OLR}$: $\omega/m > \Omega \Rightarrow$ positive energy
Wave at $r < r_{ILR}$: $\omega/m < \Omega \Rightarrow$ negative energy
\[(-1) = (-1)|R|^2 + |T|^2 \]
\[\Rightarrow |R|^2 = 1 + |T|^2 > 1 \]

Super-reflection
Trapped mode between r_{in} and r_{ILR}: overstable
Even more interesting…

Corotation resonance, where

\[
\frac{\omega}{m} = \Omega
\]
\[(-1) = (-1)|R|^2 + |T|^2 + D_c \]
\[\Rightarrow |R|^2 = 1 + |T|^2 + D_c \]

Wave absorption at corotation

Can have both signs!
Calculations of reflectivity/transmission:

\[\delta h = \sqrt{S/k} \left[\exp \left(-i \int_{r_{IL}}^{r} k \, dr + \frac{\pi}{4} \right) + R \exp \left(i \int_{r_{IL}}^{r} k \, dr - \frac{\pi}{4} \right) \right] \]

\[\delta h = \sqrt{S/k} \, T \exp \left(i \int_{r_{OL}}^{r} k \, dr + \frac{\pi}{4} \right) \]

- Solve wave equation in different regions
- Match the solutions using asymptotic expansions
- Around corotation: Whittaker function; Stokes phenomenon

\[R = \frac{1 + \frac{1}{4} \left(e^{-i2\pi\nu} + \sin^2 \pi\nu \right) e^{-2\Theta_{II}} + \frac{\pi\nu}{2} \frac{e^{-2\Theta_{IIa}}}{(\Gamma(1-\nu))^2} - \frac{\pi\nu}{2} \frac{e^{-2\Theta_{IIb}}}{(\Gamma(1+\nu))^2}}{1 - \frac{1}{4} \left(e^{-i2\pi\nu} + \sin^2 \pi\nu \right) e^{-2\Theta_{II}} - \frac{\pi\nu}{2} \frac{e^{-2\Theta_{IIa}}}{(\Gamma(1-\nu))^2} - \frac{\pi\nu}{2} \frac{e^{-2\Theta_{IIb}}}{(\Gamma(1+\nu))^2}} \]

\[T = \frac{ie^{-2\Theta_{II}}e^{i\pi\nu}}{1 - \frac{1}{4} \left(e^{-i2\pi\nu} + \sin^2 \pi\nu \right) e^{-2\Theta_{II}} - \frac{\pi\nu}{2} \frac{e^{-2\Theta_{IIa}}}{(\Gamma(1-\nu))^2} - \frac{\pi\nu}{2} \frac{e^{-2\Theta_{IIb}}}{(\Gamma(1+\nu))^2}} \]

\[\Theta_{IIa} = \int_{r_{IL}}^{r_c} |k| \, dr \quad \Theta_{IIb} = \int_{r_c}^{r_{OL}} |k| \, dr \]
Reflectivity at ILR: \[|\mathcal{R}|^2 = 1 + |\mathcal{T}|^2 + D_c \simeq 1 + D_c \]

Sign depends on sign of \(d\zeta/dr \)

\[\zeta = \frac{\kappa^2}{2\Omega \Sigma} \] (vortensity)
Reflectivity at ILR: \[|\mathcal{R}|^2 = 1 + |\mathcal{T}|^2 + D_c \simeq 1 + D_c \]

Sign depends on sign of \(\frac{d\zeta}{dr} \)

\[\zeta = \frac{\kappa^2}{2\Omega \Sigma} \] (vortensity)

\[\Rightarrow D_c > 0 \]
Reflectivity at ILR: \[|\mathcal{R}|^2 = 1 + |\mathcal{T}|^2 + \mathcal{D}_c \simeq 1 + \mathcal{D}_c \]

Sign depends on sign of \(\frac{d\zeta}{dr} \)

\[\zeta = \frac{\kappa^2}{2\Omega\Sigma} \] (vortensity)

\[\Rightarrow \mathcal{D}_c > 0 \]

\[\Rightarrow \mathcal{D}_c < 0 \]
Reflectivity at ILR: \(|\mathcal{R}|^2 = 1 + |\mathcal{T}|^2 + \mathcal{D}_c \simeq 1 + \mathcal{D}_c\)

Sign depends on sign of \(\frac{d\zeta}{dr}\)

\[\zeta = \frac{\kappa^2}{2\Omega\Sigma}\]

(vortensity)

\[\Rightarrow \mathcal{D}_c > 0\]

Overstable mode

\[\Rightarrow \mathcal{D}_c < 0\]

Damped mode
General Relativity Effect

GR makes \(d\zeta/dr > 0 \) in the Inner-most disk region

\(\implies \text{makes the mode grow!} \)

Vortensity \(\zeta = \frac{\kappa^2}{2\Omega \Sigma} \)

ISCO
Linear Mode Calculation (Mode freq. and growth rate)

\[\Sigma \propto r^{-1}, \quad c_s = 0.1r \Omega, \quad m = 2 \]
\[\omega_r = 0.93 \Omega_{\text{ISCO}}, \quad \omega_i/\omega_r = 0.0029 \]

 DL & Tsang 2009,2010
Nonlinear Simulation (2D) of Growing Modes

Wen Fu & DL 2012, in prep
Properties of Overstable Disk P-Modes:

Low-order p-modes trapped between inner disk edge and ILR

\[\omega \simeq \beta m \Omega(r_{\text{in}}) \]

\[\beta = 0.55 - 0.75 \text{ depending on disk models and inner BC} \]

- Mode frequencies robust, consistent with known BH mass (and spin)
- Frequency ratio approximately: 1:2:3:4… (not exactly)

Grow due to corotation resonance (GR plays important role)

A promising candidate for HFQPOs
Complications...
Complications…

• Mode damping due to radial infall

 Competition: mode growth (due to corotation) and damping

 ==> HFQPOs do not always appear

 e.g. in thermal state (standard thin disk) no QPOs observed

• Effects of magnetic fields

 -- Mode frequencies are slightly affected

 -- Large-scale B field enhances the growth rate
Disks threaded by large-scale poloidal magnetic fields (embedded in a corona)

-- Increase the p-mode growth rate due to corotation resonance

Disk + Corona (coupled by B field) oscillate together, the “clock” is mainly set by disk
Disks threaded by large-scale poloidal magnetic fields (embedded in a corona)

-- Increase the p-mode growth rate due to corotation resonance

Disk + Corona (coupled by B field) oscillate together, the “clock” is mainly set by disk

-- Such large-scale field is ideal for producing jets/outflows

QPOs are observed at the same time as episodic jets
Recap of HFQPOs

• Intriguing puzzle --- Dynamics of inner-most region of BH accretion disks (No standard models yet)

• P-modes (spiral density modes) partially trapped in the inner-most region of disks is promising candidate:
 -- Frequencies can be calculated from first principle, robust, agree with observations (consistent mass, spin)
 -- Can grow naturally due to corotation resonance (GR important)

Incomplete: Complications, other issues (turbulence)…
Highlight #3: Merging Binary Black Holes/Neutron Stars
Merging Neutron Stars:

Nobel Prize 1993

Taylor & Weisberg 2005

Nobel Prize 1993
NS-NS Merger

Shibata et al. 2006
BH-NS Merger

F. Foucart et al (Cornell) 2011
Merging NSs (NS/BH or NS/NS) as Central Engine of (short/hard) GRBs
The last few minutes: Gravitational Waveform
Gravitational Waves

- Warpage of Spacetime
- Generated by time-dependent quadrupoles
- Detector response to passage of GWs:
Gravitational Wave Interferometer

\[\Delta L = h L \lesssim 4 \times 10^{-16} \text{ cm} \]

\[\lesssim 10^{-21} \]

4 km

Kip Thorne
Final merger wave form probes NS EOS
Probe NS EOS using Inspiral Waveform

Idea:

- For point masses, the number of GW cycles is known exactly.

- Rosonant tidal excitations of NS oscillation modes during inspiral
 \Rightarrow transfer orbital energy to NS
 \Rightarrow **Missing GW cycles**
Resonant Excitations of NS Modes During Binary Inspiral

Non-rotating NS:
 G-mode (Reisenegger & Goldreich 1994; DL 1994)

Rotating NS:
 G-mode, F-mode, R-mode (Wynn Ho & DL 1999)
 Inertial modes (DL & Yanqin Wu 2006)
 R-mode (excited by gravitomagnetic force; Racine & Flanagan 2006)

Results:
• For R=10 km NS, the number of missing cycles < 0.1, unlikely measurable
 (unless NS is rapidly rotating)
• Number of missing cycles \(\Delta N \propto R^4 \) (g mode) or \(R^{3.5} \) (r mode)
 Important for larger NS
• Crustal modes: important? Could shatter crust, pre-cursor of short GRB
 (D. Tsang et al. 2011)
BH-BH Merger

Cornell-Caltech collaboration
Summary

• Compact Objects (White dwarfs, Neutron stars and Black Holes) have diverse observational manifestations
can be studied in many different ways: radio -- gamma rays, GWs

• They present a rich set of astrophysics/physics problems
 Ideal laboratory for probing physics under extreme conditions
Obrigado !!
Black Hole Power in Astrophysics

Accretion Power

\[L_{\text{acc}} = \epsilon \dot{M} c^2 \]

\(\epsilon \) = Binding energy (per unit mass) at ISCO
= 5.7% for a=0
42% for a=M

“Spin” Power

Extracting spin energy from BH (Penrose)

BH area theorem -->

\[M_{\text{irr}} = \left(\frac{A}{16\pi} \right)^{1/2} = \frac{M}{\sqrt{2}} \left(1 + \sqrt{1 - \frac{a^2}{M^2}} \right)^{1/2} \]

Maximum efficiency of energy extraction = 1 − \(M_{\text{irr}}/M \)
= 29.3% for a=M