Probing Extreme Physics with Compact Objects: Black Holes

Dong Lai

Department of Astronomy Cornell University

"Dark Star" Concept: John Michell (1783) Pierre Laplace (1795)

• Although "correct" answer, derivation/interpretation wrong

"Black Hole" Concept:

• Einstein (1915): General Relativity

Gravity is not a force, but rather it manifests as curvature of spacetime caused by matter and energy

Einstein field equation: $G_{\mu\nu} = 8\pi T_{\mu\nu}$

The first exact solution to Einstein field equation

$$ds^{2} = \left(1 - \frac{R_{S}}{r}\right)c^{2}dt^{2} - \frac{dr^{2}}{1 - \frac{R_{S}}{r}} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)$$

The horizon radius (Schwarzschild radius):

$$R_S = \frac{2GM}{c^2}$$

• Roy Kerr (1963):

Solution for spinning black holes

Astrophysical Black Holes: Kerr Metric

Two parameters: M, a=J/M

$$ds^2 = -\left(1 - \frac{2Mr}{\rho^2}\right)dt^2 - \frac{4aMr\sin^2\theta}{\rho^2}dtd\phi + \frac{\rho^2}{\Delta}dr^2 + \rho^2d\theta^2 + \left(r^2 + a^2 + \frac{2Mra^2\sin^2\theta}{\rho^2}\right)\sin^2\theta d\phi^2$$

Isolated Black Holes are "boring" (unobservable)

Accreting Black Holes

Stellar-mass BHs in binaries

Supermassive BHs in Galaxies

Accreting gas has angular momentum

==> Accretion disk

==> Radiation from disk (x-rays)
Outflows (jets)

Tidal Disruption of Stars by BH

==> Electromagnetic Flares

BH - Neutron Star Binary Merger ==> (short) GRBs ?

Binary BH Merger

==> Gravitational waves

Black Holes in Astrophysics

Stellar-mass BHs in X-ray Binaries
Supermassive BHs in active galaxies
Intermediate-mass BHs (ULXs)?

Tidal disruption of stars

BH/NS or BH/BH mergers

Black Hole Power in Astrophysics

(1) Accretion Power

$$L_{\rm acc} = \epsilon \dot{M} c^2$$

€ = Binding energy (per unit mass) at ISCO
= 5.7% for a=0
42% for a=M

Inner-most stable circular orbit r_{ISCO}=6M for a=0 =M for a=M

Note:

- --The above applies to thin ("cold") disks (radiative efficient disks);
- -- "Radiative Inefficient Disks" (e.g. ADAF), efficiency is smaller...

Black Hole Power in Astrophysics

(2) Spin Power

Extracting spin energy from BH (Penrose Process)

BH area theorem -->
$$M_{\rm irr}=\left(\frac{A}{16\pi}\right)^{1/2}=\frac{M}{\sqrt{2}}\left(1+\sqrt{1-\frac{a^2}{M^2}}\right)^{1/2}$$

Maximum efficiency of energy extraction =
$$1 - M_{irr}/M$$
 = 29.3% for a=M

How to do it?

Interaction of BH with magnetized plasma (a la pulsar)... Blandford-Znajek (1977)

Blandford-Znajek Process

Interaction of BH with magnetized plasma (a la pulsar)...

Kip Thorne

Black Hole Power in Astrophysics

- (1) Accretion Power
- (2) Spin Power

Relative importance ??

Highlight #1: Mass and Spin of BHs

Mass of BHs in X-ray binaries

Well measured for 23 systems (McClintock et al. 2011)

Note: BH mass gap: 2-5 M_{sun}
--> implication for supernova?
(O'Connor & Ott 11)

Mass of Supermassive BHs

NGC 3842: 9.7x10¹⁰M_{sun}

NGC 4889: ~10¹⁰M_{sun}

McConnell et al. 2011

Spin of BHs in X-ray Binaries

• Method 1: Continuum Fitting

Measure the temperature of the inner disk in thermal state (thin disk)

==> Radius of the inner edge of the disk

==> BH spin

Key assumption:

disk inner edge at ISCO (no radiation inside ISCO)

BH spin measurement using continuum fitting method

	Source	Spin a_*
1	GRS 1915+105	> 0.98
2	LMC $X-1$	$0.92^{+0.05}_{-0.07}$
4	M33 X-7	0.84 ± 0.05
3	$4U\ 154347$	0.80 ± 0.05
5	GRO J $1655-40$	0.70 ± 0.05
6	$XTE\ J1550-564$	$0.34^{+0.20}_{-0.28}$
7	LMC $X-3$	$< 0.3^{\rm b}$
8	A0620-00	0.12 ± 0.18

McClintock et al 2011

Spin of BHs

• Method 2: Broad Fe K line shape

Fabian et al 2000

Miniutti et al 2007

MGC-6-30-15: a>0.989 (?)

Evidence for jet powered by BH Spin?

Narayan & McClintock '11

BH Binary	a_*	$M~(M_{\odot})$	$D (\mathrm{kpc})$	$i (\deg)$	$(S_{\nu})_{ m max, 5GHz}$ (Jy)
A0620-00	0.12 ± 0.19	6.61 ± 0.25	1.06 ± 0.12	51.0 ± 0.9	0.203
XTE J1550-564	0.34 ± 0.24	9.10 ± 0.61	4.38 ± 0.50	74.7 ± 3.8	0.265
GRO J1655-40	0.7 ± 0.1	6.30 ± 0.27	3.2 ± 0.5	70.2 ± 1.9	2.42
GRS 1915+105	0.975 ± 0.025	14.0 ± 4.4	11.0 ± 1.0	66.0 ± 2.0	0.912
4U 1543-47	0.8 ± 0.1	9.4 ± 1.0	7.5 ± 1.0	20.7 ± 1.5	$> 1.16 \times 10^{-2}$

Highlight #2: Rapid Variabilities of Accreting BHs and Dynamics of Inner Disks

High-Frequency QPOs in BH X-Ray Binaries

Basic Facts about HFQPOs

- 40-450 Hz: ~ orbital frequency at r_{isco}
- Frequency stable (<10% change when Mdot doubles)
- Some systems: ~2:3 ratio
- Weak QPOs: ~1% flux variation (in hard X-rays), Q~2-10
- Only occur in "Transitional state" (Episodic jet)

X-ray QPO (P ~ 1 hr) from active galaxy RE J1034+396

Gierlinski et al 2008, Nature

QPOs from Ultra-Luminous X-ray Source NGC 5408 X-1 (an Intermediate-mass BH?)

Strohmayer & Mushotzky 2009

High-Frequency QPOs in BH X-Ray Binaries

Ideas/Models of HFQPOs

- Orbiting blobs (hot spots) in disks (Stella et al '99; Schnittman & Bertschinger '04)
- Nonlinear resonances of some kind (Abramowicz, Kluzniak, Horak, Rebusco)
- Acoustic modes in torus (Rezzolla el al '03; Lee, Abramowicz & Kluzniak '04; Blaes et al. '07; Sramkova et al '07; Horak'08)
- Disk/Magnetosphere Boundary Layer Oscilations (Li & Narayan '04; Tsang & DL '09)
- Oscillation modes in relativistic disks (Kato; Wagoner & collaborators)
 - -- m=0 inertial modes excited by global disk deformation (e.g. warps) (Kato '03,'08; Ferreira & Ogilvie '08; Henisey et al.10)
 - -- Rossby modes trapped in special region of a magnetic disk (Tagger & Varniere '06; see also Tagger & Pallet '99; Varniere & Tagger'02)
 - -- Cornell effort: Mode growth due to corotational resonance, magnetic fields (DL & Tsang '09; Tsang & DL '08,'09a,b; Fu & DL '09,'11a,b)

P-modes of BH Accretion Disks "inertial-acoustic modes", "spiral density modes"

- -- Trapped (partially) in the innermost region of disk
- -- Frequencies can be calculated: robust, agree with observations
- Can grow due to corotation resonance ("corotational instability")
 GR plays an important role
- -- B field effect

with David Tsang (Cornell Ph.D. 09 --> Caltech)
Wen Fu (Cornell Ph.D. student)

References: DL & Tsang 2009; Tsang & DL 2008, 2009; Fu & DL 2009,2011 Fu & DL 2012

Waves in 2D disks (Spiral density waves):

$$\delta v, \delta \Sigma \propto \exp(im\varphi - i\omega t)$$

Can propagate only in the region:

$$r < r_{\rm ILR}$$
 or $r > r_{\rm OLR}$

Lindblad Resonances:
$$\omega - m\Omega(r) = \pm \kappa(r)$$

where
$$\Omega(r)={
m disk}$$
 rotation rate
$$\kappa(r)={
m radial\ epicyclic\ frequency}$$

$$\kappa^2=\frac{2\Omega}{r}\frac{d}{dr}(r^2\Omega)$$

Wave propagation diagram (effective potential)

wave at $r > r_{\rm OLR}$: $\omega/m > \Omega \Rightarrow$ positive energy

wave at $r < r_{\rm ILR}$: $\omega/m < \Omega \Rightarrow \text{negative energy}$

$$(-1) = (-1)|\mathcal{R}|^2 + |\mathcal{T}|^2$$

 $\Rightarrow |\mathcal{R}|^2 = 1 + |\mathcal{T}|^2 > 1$

Super-reflection

Trapped mode between $r_{\rm in}$ and $r_{\rm ILR}$: overstable

Even more interesting...

Corotation resonance, where

$$\omega/m = \Omega$$

$$(-1) = (-1)|\mathcal{R}|^2 + |\mathcal{T}|^2 + \mathcal{D}_c$$

 $\Rightarrow |\mathcal{R}|^2 = 1 + |\mathcal{T}|^2 + \mathcal{D}_c$

Wave absorption at corotation

Can have both signs!

Calculations of reflectivity/transmission:

$$\delta h = \sqrt{S/k} \left[\exp\left(-i \int_{r_{\text{IL}}}^{r} k dr + \frac{\pi}{4}\right) + \mathcal{R} \exp\left(i \int_{r_{\text{IL}}}^{r} k dr - \frac{\pi}{4}\right) \right]$$
$$\delta h = \sqrt{S/k} \, \mathcal{T} \exp\left(i \int_{r_{\text{OL}}}^{r} k dr + \frac{\pi}{4}\right)$$

- Solve wave equation in different regions
- Match the solutions using asymptotic expansions
- Around corotation: Whittaker function; Stokes phenomenon

$$\mathcal{R} = \frac{1 + \frac{1}{4} \left(e^{-i2\pi\nu} + \sin^2 \pi\nu \right) e^{-2\Theta_{\text{II}}} + \frac{\pi\nu}{2} \frac{e^{-2\Theta_{\text{IIa}}}}{(\Gamma(1-\nu))^2} - \frac{\pi\nu}{2} \frac{e^{-2\Theta_{\text{IIb}}}}{(\Gamma(1+\nu))^2}}{1 - \frac{1}{4} \left(e^{-i2\pi\nu} + \sin^2 \pi\nu \right) e^{-2\Theta_{\text{II}}} - \frac{\pi\nu}{2} \frac{e^{-2\Theta_{\text{IIa}}}}{(\Gamma(1-\nu))^2} - \frac{\pi\nu}{2} \frac{e^{-2\Theta_{\text{IIb}}}}{(\Gamma(1+\nu))^2}}$$

Tsang & DL

$$\mathcal{T} = \frac{ie^{-2\Theta_{\rm II}}e^{i\pi\nu}}{1 - \frac{1}{4}\left(e^{-i2\pi\nu} + \sin^2\pi\nu\right)e^{-2\Theta_{\rm II}} - \frac{\pi\nu}{2}\frac{e^{-2\Theta_{\rm IIa}}}{(\Gamma(1-\nu))^2} - \frac{\pi\nu}{2}\frac{e^{-2\Theta_{\rm IIb}}}{(\Gamma(1+\nu))^2}}$$

$$\Theta_{\mathrm{IIa}} = \int_{r_{\mathrm{IL}}}^{r_c} |k| \, dr$$
 $\Theta_{\mathrm{IIb}} = \int_{r_c}^{r_{\mathrm{OL}}} |k| \, dr$

Reflectivity at ILR:
$$|\mathcal{R}|^2 = 1 + |\mathcal{T}|^2 + \mathcal{D}_c \simeq 1 + \mathcal{D}_c$$

Sign depends on sign of $\,d\zeta/dr$

$$\zeta = rac{\kappa^2}{2\Omega\Sigma}$$
 (vortensity)

Reflectivity at ILR:
$$|\mathcal{R}|^2 = 1 + |\mathcal{T}|^2 + \mathcal{D}_c \simeq 1 + \mathcal{D}_c$$

Sign depends on sign of $\,d\zeta/dr\,$

$$\frac{d\zeta}{dr} > 0$$

ILR CR OLR

$$\zeta = rac{\kappa^2}{2\Omega\Sigma}$$
 (vortensity)

$$\Rightarrow \mathcal{D}_c > 0$$

Reflectivity at ILR: $|\mathcal{R}|^2 = 1 + |\mathcal{T}|^2 + \mathcal{D}_c \simeq 1 + \mathcal{D}_c$

Sign depends on sign of $\,d\zeta/dr$

$$\frac{d\zeta}{dr} > 0$$
ILR CR OLR

$$\zeta = rac{\kappa^2}{2\Omega\Sigma}$$
 (vortensity)

$$\Rightarrow \mathcal{D}_c > 0$$

$$\frac{d\zeta}{dr} < 0$$

$$\Rightarrow \mathcal{D}_c < 0$$

Reflectivity at ILR: $|\mathcal{R}|^2 = 1 + |\mathcal{T}|^2 + \mathcal{D}_c \simeq 1 + \mathcal{D}_c$

Sign depends on sign of $\,d\zeta/dr$

$$rac{d\zeta}{dr} > 0$$
 (vortensity)

General Relativity Effect

Vortensity
$$\zeta = \frac{\kappa^2}{2\Omega\Sigma}$$

GR makes $d\zeta/dr > 0$ in the Inner-most disk region ==> makes the mode grow !

Linear Mode Calculation (Mode freq. and growth rate)

$$\Sigma \propto r^{-1}, \quad c_s = 0.1r\Omega, \quad m = 2$$

 $\omega_r = 0.93 \, \Omega_{\rm ISCO}, \quad \omega_i/\omega_r = 0.0029$

Nonlinear Simulation (2D) of Growing Modes

Properties of Overstable Disk P-Modes:

Low-order p-modes trapped between inner disk edge and ILR

$$\omega \simeq \beta m \Omega(r_{\rm in})$$

 $\beta = 0.55 - 0.75$ depending on disk models and inner BC

- Mode frequencies robust, consistent with known BH mass (and spin)
- Frequency ratio approximately: 1:2:3:4... (not exactly)

Grow due to corotation resonance (GR plays important role)

A promising candidate for HFQPOs

Complications...

Complications...

Mode damping due to radial infall

Competition: mode growth (due to corotation) and damping
==> HFQPOs do not always appear
 e.g. in thermal state (standard thin disk) no QPOs observed

Effects of magnetic fields

- -- Mode frequencies are slightly affected
- -- Large-scale B field enhances the growth rate

Disks threaded by large-scale poloidal magnetic fields (embedded in a corona)

-- Increase the p-mode growth rate due to corotation resonance

Disk + Corona (coupled by B field) oscillate together, the "clock" is mainly set by disk

Disks threaded by large-scale poloidal magnetic fields (embedded in a corona)

- -- Increase the p-mode growth rate due to corotation resonance
 - Disk + Corona (coupled by B field) oscillate together, the "clock" is mainly set by disk
- -- Such large-scale field is ideal for producing jets/outflows QPOs are observed at the same time as episodic jets

Recap of HFQPOs

- Intriguing puzzle --- Dynamics of inner-most region of BH accretion disks (No standard models yet)
- P-modes (spiral density modes) partially trapped in the inner-most region of disks is promising candidate:
 - -- Frequencies can be calculated from first principle, robust, agree with observations (consistent mass, spin)
 - -- Can grow naturally due to corotation resonance (GR important)

Incomplete: Complications, other issues (turbulence)...

Highlight #3: Merging Binary Black Holes/Neutron Stars

Merging Neutron Stars:

Taylor & Weisberg 2005

NS-NS Merger

Shibata et al. 2006

BH-NS Merger

F. Foucart et al (Cornell) 2011

Merging NSs (NS/BH or NS/NS) as Central Engine of (short/hard) GRBs

The last few minutes: Gravitational Waveform

Gravitational Waves

- Warpage of Spacetime
- Generated by time-dependent quadrupoles
- Detector response to passage of GWs:

Gravitational Wave Interferometer

Final merger wave form probes NS EOS

Probe NS EOS using Inspiral Waveform

Idea:

- For point masses, the number of GW cycles is known exactly
- Rosonant tidal excitations of NS oscillation modes during inspiral
 ==> transfer orbital energy to NS
 ==> Missing GW cycles

Resonant Excitations of NS Modes During Binary Inspiral

Non-rotating NS:

G-mode (Reisenegger & Goldreich 1994; DL 1994)

Rotating NS:

G-mode, F-mode, R-mode (Wynn Ho & DL 1999)

Inertial modes (DL & Yanqin Wu 2006)

R-mode (excited by gravitomagnetic force; Racine & Flanagan 2006)

Results:

- For R=10 km NS, the number of missing cycles < 0.1, unlikely measurable (unless NS is rapidly rotating)
- Number of missing cycles $\Delta N \propto R^4$ (g mode) or $R^{3.5}$ (r mode) Important for larger NS
- Crustal modes: important? Could shatter crust, pre-cursor of short GRB (D. Tsang et al. 2011)

BH-BH Merger

Cornell-Caltech collaboration

Summary

- Compact Objects (White dwarfs, Neutron stars and Black Holes) have diverse observational manifestations can be studied in many different ways: radio -- gamma rays, GWs
- They present a rich set of astrophysics/physics problems
 Ideal laboratory for probing physics under extreme conditions

Obrigado!!

Black Hole Power in Astrophysics

Accretion Power

$$L_{\rm acc} = \epsilon \dot{M} c^2$$

€ = Binding energy (per unit mass) at ISCO
 = 5.7% for a=0
 42% for a=M

Inner-most stable circular orbit

"Spin" Power

Extracting spin energy from BH (Penrose)

BH area theorem -->
$$M_{\rm irr}=\left(\frac{A}{16\pi}\right)^{1/2}=\frac{M}{\sqrt{2}}\left(1+\sqrt{1-\frac{a^2}{M^2}}\right)^{1/2}$$

Maximum efficiency of energy extraction = $1 - M_{irr}/M$ = 29.3% for a=M