## Exciting Waves/Modes in Black-Hole Accretion Disks and other Rotating Astrophysical Flows

Dong Lai Cornell University

MPA/ESO Joint Colloquium, Garching, June 24, 2010







#### **High-Frequency QPOs in BH X-Ray Binaries**



Remillard & McClintock 2006

#### X-ray QPO (P ~ 1 hr) from active galaxy RE J1034+396



Gierlinski et al 2008, Nature

#### QPOs from Ultra-Luminous X-ray Source NGC 5408 X-1 (an Intermediate-mass BH?)



Strohmayer & Mushotzky 2009

#### Global wave modes and instabilities in accretion disks

Super-reflection

Role of corotation resonance

Trapped modes (p-modes): stability vs overstability

GR effects

Magnetic field effects

Other diskoseismic modes in BH accretion disks

QPOs in black-hole X-ray binaries

Other rotating astrophysical flows

with David Tsang (Cornell Ph.D. 09 --> Caltech) Wen Fu (Cornell Ph.D. student)

## Free waves in 2D disks (Spiral density waves): $\delta v, \delta P \propto \exp(ik_r r + im\varphi - i\omega t)$

**Dispersion relation:** 

$$ilde{\omega}^2 = \kappa^2 + k_r^2 c_s^2$$
 $ilde{\omega} \equiv \omega - m\Omega$ 
 $\kappa^2 = rac{2\Omega}{r} rac{d}{dr} (r^2 \Omega)$ 
Lindblad Resonance:
 $ilde{\omega} = \pm \kappa$ 

Wave can propagates in the region:

 $r < r_{\rm ILR}$  or  $r > r_{\rm OLR}$ 



wave at  $r > r_{OLR}$ :  $\omega/m > \Omega \Rightarrow$  positive energy wave at  $r < r_{ILR}$ :  $\omega/m < \Omega \Rightarrow$  negative energy





Trapped mode between  $r_{in}$  and  $r_{ILR}$ : overstable

## This is not the whole story:

So far we have neglected the corotation resonance, where

$$\omega/m = \Omega$$
  
or  $\tilde{\omega} = \omega - m\Omega = 0$ 

Fluid equations for  $\delta P, \delta \Sigma, \delta \mathbf{v} \propto \exp(im\phi - i\omega t)$ reduce to (for barotropic flow):

$$\begin{bmatrix} \frac{d^2}{dr^2} - V_{\text{eff}}(r) \end{bmatrix} \eta(r) = 0, \qquad \eta \propto \frac{\delta P}{\Sigma}$$
$$V_{\text{eff}}(r) \simeq \frac{\kappa^2 - \tilde{\omega}^2}{c_s^2} + \frac{m^2}{r^2} - \frac{2m\Omega}{r\tilde{\omega}} \left(\frac{d}{dr}\ln\zeta\right)$$
$$\zeta \equiv \frac{\kappa^2}{2\Omega\Sigma} = \frac{(\nabla \times \mathbf{v_0}) \cdot \hat{z}}{\Sigma} \qquad \text{(vortensity)}$$









$$\begin{split} &\Rightarrow \mathcal{D}_c > 0 \\ &\Rightarrow |\mathcal{R}|^2 = 1 + |\mathcal{T}|^2 + \mathcal{D}_c > 1 \end{split}$$

 $\Rightarrow \mathcal{D}_c < 0$ 

#### WKB calculations of reflectivity/transmission:

$$\delta h = \sqrt{S/k} \left[ \exp\left(-i \int_{r_{\rm IL}}^{r} k dr + \frac{\pi}{4}\right) + \mathcal{R} \exp\left(i \int_{r_{\rm IL}}^{r} k dr - \frac{\pi}{4}\right) \right]$$
$$\delta h = \sqrt{S/k} \mathcal{T} \exp\left(i \int_{r_{\rm OL}}^{r} k dr + \frac{\pi}{4}\right)$$

- Solve wave equation in different regions
- Match the solutions using asymptotic expansions
- Around corotation: Whittaker function; Stokes phenomenon

$$\mathcal{R} = \frac{1 + \frac{1}{4} \left( e^{-i2\pi\nu} + \sin^2 \pi\nu \right) e^{-2\Theta_{\mathrm{II}}} + \frac{\pi\nu}{2} \frac{e^{-2\Theta_{\mathrm{IIa}}}}{(\Gamma(1-\nu))^2} - \frac{\pi\nu}{2} \frac{e^{-2\Theta_{\mathrm{IIb}}}}{(\Gamma(1+\nu))^2}}{1 - \frac{1}{4} \left( e^{-i2\pi\nu} + \sin^2 \pi\nu \right) e^{-2\Theta_{\mathrm{II}}} - \frac{\pi\nu}{2} \frac{e^{-2\Theta_{\mathrm{IIa}}}}{(\Gamma(1-\nu))^2} - \frac{\pi\nu}{2} \frac{e^{-2\Theta_{\mathrm{IIb}}}}{(\Gamma(1+\nu))^2}}{1 - \frac{1}{4} \left( e^{-i2\pi\nu} + \sin^2 \pi\nu \right) e^{-2\Theta_{\mathrm{II}}} - \frac{\pi\nu}{2} \frac{e^{-2\Theta_{\mathrm{IIa}}}}{(\Gamma(1-\nu))^2} - \frac{\pi\nu}{2} \frac{e^{-2\Theta_{\mathrm{IIb}}}}{(\Gamma(1+\nu))^2}}$$







Tsang & DL 2008

# Summary: For $\frac{d\zeta}{dr} \neq 0$ : $|\mathcal{R}|^2 = 1 + |\mathcal{T}|^2 + \mathcal{D}_c \simeq 1 + \mathcal{D}_c$



 $\Rightarrow \mathcal{D}_c > 0$ 



$$\Rightarrow \mathcal{D}_c < 0$$

# Summary: For $\frac{d\zeta}{dr} \neq 0$ : $|\mathcal{R}|^2 = 1 + |\mathcal{T}|^2 + \mathcal{D}_c \simeq 1 + \mathcal{D}_c$



$$\Rightarrow \mathcal{D}_c > 0$$

Overstable mode



$$\Rightarrow \mathcal{D}_c < 0$$

Damped mode

**General Relativity Effect** 





radius *r* 

frequency

vortensity  $\zeta$ 



radius r

frequency

vortensity  $\zeta$ 



DL & Tsang 2009

## Boundary Conditions at the Inner Disk Edge

 For thin disks, radial velocity goes through sonic point near r<sub>ISCO.</sub> (viscous slim disk solution)

#### We found (DL & Tsang 2009)

- Radial inflow tends to damp the mode (cf. Blaes 1987)
- The disk inner edge is partially reflective due to steep radial gradient in density and radial velocity
  - ===> Even with radial inflow, global unstable mode is still possible under some (realistic) conditions (when the density/velocity gradient is large).

## Real accretion disk is more complicated...

- Global MHD simulations of inner disks (still in the early of development. e.g. Gammie, Hawley, Krolik, Blaes, Fragile, etc)
- Magnetic fields may accumulate in the inner disk and inside (e.g. Lovelace et al 2009)
  - ==> The inner disk edge may be more reflective than transonic flow (Toy-model example: Tsang & DL 2009b)

Implications: Growing modes (QPOs) may appear only in certain state of accreting BHs (e.g. damped in the thermal state, but appears in "steep power-law state")

## A bit more theory...

So far I have assumed the disk is barotropic fluid (P is a function of density)  $\zeta \equiv \frac{\kappa^2}{2\Omega\Sigma} \quad \text{(vortensity)}$ 

For non-barotropic disk (Tsang & DL 2009;

cf. Lovelace et al. 1999; Baruteau & Masset 2008)

$$\zeta_{
m eff}\equiv rac{\kappa^2}{2\Omega\Sigma S^{2/\Gamma}} \qquad ext{ where } S\equiv P/\Sigma^{\Gamma}$$
 ("entropy")

For alpha-disks, this typically makes mode grow faster

#### **High-Frequency QPOs in BH X-Ray Binaries**



Remillard & McClintock 2006

## Ideas/Models of High-Freq QPOs

• Orbiting blobs (hot spots) in disks (e.g., Stella et al 1999;

Schnittman & Bertschinger 2004)

- Acoustic modes in torus (Rezzolla el al 2003; Lee, Abramowicz & Kluzniak 2004; Blaes et al. 2007; Sramkova et al 2007; Horak 2008)
- Nonlinear resonances of some kind (Abramowicz, Kluzniak, Horak, Rebusco)
- Disk/Magnetosphere Boundary Layer Oscilations (Li & Narayan 2004; Tsang & DL 2009c)
- Diskoseismology in relativistic disks (Kato; Wagoner & collaborators)
  - -- Oscillation modes (m=0 inertial modes) excited by global disk deformation (e.g. warps) (Kato 2003,2008; Ferreira & Ogilvie 2008; Henisey et al.2009?)
  - -- Oscillation (p-) modes driven by Accretion-Ejection/Rossby wave Instabilities in magnetized disks (Varinere & Tagger 2002; Tagger & Varniere 2006 etc)
  - -- Oscillation modes: Corotational effects, magnetic fields (Tsang & DL 2008,2009a,b; DL & Tsang 2009; Fu & DL 2009,2010)

## **Diskoseismic Modes in Black-Hole Accretion Disks**

• Inertial-Acoustic Modes (P-Modes) = Global spiral density waves

= What I have been discussing so far...



radius r

• Other modes: G-modes and C-modes

High-Freq. QPOs from Overstable P-Modes (My story so far...)

Low-order p-modes trapped between inner boundary and ILR provides a possible explanation for HFQPOs

 $\omega \simeq \beta m \Omega(r_{\rm in})$ 

 $eta=0.55{-}0.75~{
m depending}~{
m on}~{
m disk}~{
m models}$  and inner BC

• Mode frequency varies (~10%) as Mdot changes (~3)

• Frequency ratio close to 1:2:3:4..., but not exactly

# Overstable due to corotation resonance (vortensity gradient and GR plays important role)

- Mode growth rate: m=1 much slower than m=2,3,4...
- Damping at ISCO: growth rate depends on inner BC
  - ==> net mode growth maybe possible only in certain spectral state ("steep power-law state"?)

## Effects of Magnetic Fields on P-Modes

## Effects of Magnetic Fields on P-Modes

$$\frac{d\xi_r}{dr} = A_{11}\xi_r + A_{12}\delta h,$$
$$\frac{d\delta h}{dr} = A_{21}\xi_r + A_{22}\delta h,$$

where

$$\begin{split} A_{11} &= \frac{r\tilde{\omega}^2 \left[ (\omega_{A\phi}^2 - \Omega^2) \tilde{\omega}^2 + \omega_{A\phi}^2 \omega^2 \right]}{(c_s^2 + v_A^2) (\tilde{\omega}^2 - m^2 \omega_{A\phi}^2) (\tilde{\omega}^2 - \omega_s^2)} + \frac{g\tilde{\omega}^2}{(c_s^2 + v_A^2) (\tilde{\omega}^2 - \omega_s^2)} - \frac{\tilde{\omega}^2 + 2m\tilde{\omega}\Omega + m^2 \omega_{A\phi}^2}{r(\tilde{\omega}^2 - m^2 \omega_{A\phi}^2)}, \\ A_{12} &= -\frac{\tilde{\omega}^4}{(c_s^2 + v_A^2) (\tilde{\omega}^2 - m^2 \omega_{A\phi}^2) (\tilde{\omega}^2 - \omega_s^2)} + \frac{m^2}{r^2 (\tilde{\omega}^2 - m^2 \omega_{A\phi}^2)}, \\ A_{21} &= \tilde{\omega}^2 - m^2 \omega_{A\phi}^2 - \frac{4(m\omega_{A\phi}^2 + \tilde{\omega}\Omega)^2}{\tilde{\omega}^2 - m^2 \omega_{A\phi}^2} + r\frac{d}{dr} (\omega_{A\phi}^2 - \Omega^2) + (\omega_{A\phi}^2 - \Omega^2) \frac{r}{\rho} \frac{d\rho}{dr} + \frac{g}{\rho} \frac{d\rho}{dr} \\ &+ \frac{1}{(c_s^2 + v_A^2) (\tilde{\omega}^2 - m^2 \omega_{A\phi}^2) (\tilde{\omega}^2 - \omega_s^2)} \left\{ r \left[ (\omega_{A\phi}^2 - \Omega^2) \tilde{\omega}^2 + \omega_{A\phi}^2 \omega^2 \right] + g(\tilde{\omega}^2 - m^2 \omega_{A\phi}^2) \right\}^2, \\ A_{22} &= -\frac{r\tilde{\omega}^2 \left[ (\omega_{A\phi}^2 - \Omega^2) \tilde{\omega}^2 + \omega_{A\phi}^2 \omega^2 \right]}{(c_s^2 + v_A^2) (\tilde{\omega}^2 - m^2 \omega_{A\phi}^2) (\tilde{\omega}^2 - \omega_s^2)} - \frac{g\tilde{\omega}^2}{(c_s^2 + v_A^2) (\tilde{\omega}^2 - m^2 \omega_{A\phi}^2)} + \frac{2m(m\omega_{A\phi}^2 + \tilde{\omega}\Omega)}{r(\tilde{\omega}^2 - m^2 \omega_{A\phi}^2)} - \frac{1}{\rho} \frac{d\rho}{dr} \end{split}$$

### Effective Potential for p-modes: B=0



#### Effective potential for p-modes: with toroidal fields

 Wave zone is largely unaffected: acoustic wave ---> fast wave

 $\tilde{\omega}^2 = \kappa^2 + k_r^2 (c_s^2 + v_A^2)$ 

==> mode frequency slightly affected by B-field



#### Effective potential for p-modes: with toroidal fields

• Wave zone is largely unaffected: acoustic wave ---> fast wave

 $\tilde{\omega}^2 = \kappa^2 + k_r^2 (c_s^2 + v_A^2)$ 

- ==> mode frequency slightly affected by B-field
- Corotation resonance splits into two magneic (slow-wave)
   resonances:

$$\tilde{\omega} = \pm \frac{c_s v_A}{\sqrt{c_s^2 + v_A^2}} \, \frac{m}{r}$$



Fu & DL 2010



Toroidal fields tend to suppress corotational instability (bad news!?)



Toroidal fields tend to suppress corotational instability (bad news !?)

#### With both toroidal and (uniform) poloidal fields...



Corotation resonance splits into four:

- Inner/outer Magnetic (Slow) Resonances
- Inner/outer Alfven Resonances:  $\tilde{\omega} = \pm \frac{m v_{A\phi}}{r}$

## Accretion-Ejection Instability

Tagger, Varniere, etc

Disks threaded by large-scale vertical field embedded in vacuum or tenuous corona ==> Instability



## Unsolved Issue: Effects of disk turbulence

- P-modes are robust in the presence of MHD turbulence? (Arras, Blaes & Turner 2006; Reynolds & Miller 2009)
- Turbulent viscosity excites p-modes?
- Vorticity perturbation (of turbulence) excites p-mdes? (e.g., Heinemann & Papaloizou 2009)

## Other Diskoseismic Oscillation Modes Around BH

G-Modes (Inertial-Gravity Modes) (studied extensively by Kato, Wagoner, etc)

• Dispersion relation:

$$(\tilde{\omega}^2 - \kappa^2)(1 - n_z \Omega_\perp^2 / \tilde{\omega}^2) = k_r^2 c_s^2 \qquad n_z > 0$$

Can propagate only between ILR and OLR

$$\Omega - \frac{\kappa}{m} < \frac{\omega}{m} < \Omega + \frac{\kappa}{m}$$
 (self-trapped!!)

#### Non-axisymmetric G-Modes (Inertial-Gravity Modes)



Maybe strongly affected ("destroyed") by MRI turbulence??? (Arras et al; Reynolds & Miller)

Cavity is destroyed by B-field (Fu & DL 2009)

Axisymmetric (m=0) G-modes (Inertial-Gravity Modes)



- Self-trapped!
- Can be excited by global disk distortion (Kato, Ferreira & Ogilvie)

Axisymmetric (m=0) G-modes (Inertial-Gravity Modes)



- Self-trapped!
- Can be excited by global disk distortion (Kato, Ferreira & Ogilvie)
- Problem: Cavity (trapping zone) disappears with B field (sub-thermal) (Fu & DL 2009)

### **C-Modes**

- Dispersion relation:  $(\tilde{\omega}^2 \kappa^2)(1 n_z \Omega_\perp^2 / \tilde{\omega}^2) = k_r^2 c_s^2$
- Trapped between inner disk edge and IVR (inner-vertical resonance)
- Damped due to wave tunneling and absoption at corotation (Tsang & Lai 2009)



frequency

# Summary

### Global instabilities/modes in accretion disks

- Super-reflection
- Role of corotation resonance (vortensity gradient)
- Trapped p-modes: overstable due to wave absorption at corotation
- GR effects
- Magnetic field effects

#### QPOs in black-hole X-ray binaries

- Overstable p-modes **maybe** promising
- Other modes (g- and c-modes) **may** have problems

#### Many unsolved issues

- Understand magnetic field effects
- Role of MHD turbulence (or no turbulence? MRI surpressed by strong B)
- How disk oscillation manifests observationally?

## **Final Remarks:**

The same processes/dynamics are also relevant in other astrophysical systems/contexts

Examples....

#### **Planet-disk interaction (planet migration)**

advective transport. Substituting equation (53) into equation (27), we obtain

$$F_A = -\frac{\pi^2}{4} m \operatorname{sgn}(x) \left[ \frac{\varphi_1^2}{d\Omega/dr} \frac{d}{dr} \left( \frac{\sigma}{B} \right) \right]_{r_o} \exp\left( -|qx| \right),$$
(55)

to lowest order in  $(c/\Omega r)$ . Note that  $F_A \to 0$  as  $|x| \to \infty$ , so angular momentum is not transported to infinity. Curiously, there is a net flux of angular momentum into the resonance:

$$F_A(-0) - F_A(+0) = \frac{\pi^2 m}{2} \left[ \frac{\varphi_1^2}{d\Omega/dr} \frac{d}{dr} \left( \frac{\sigma}{B} \right) \right]_{r_c}$$
(56)

Goldreich & Tremaine 1979

Many recent papers ....

#### **Global instability of accretion tori**

- May be formed in the collapse of rotating massive star (colapsar) or NS binary merger (e.g. Duez et al. 2009; Rezzolla et al. 2010)
- May be unstable due to corotation (Papaloizou-Pringle instability)
   => Variability of GRB central engines?
- Magnetic field effect on the instability (Fu & DL 2010)



Stabilize thin torii, while destabilize thick torii

# Global rotational instability of differentially rotating proto-neutron stars



- Could affect the GW signature of core-collapse SNe.
- Can operate with T/|W|~0.03, a regime where bar-mode instability doesn't work
- Might be a class of corotation shear instability
- Effects of B field need to be explored

# Summary

### Global instabilities/modes in accretion disks

- Super-reflection
- Role of corotation resonance (vortensity gradient)
- Trapped p-modes: overstable due to wave absorption at corotation
- GR effects
- Magnetic field effects

#### QPOs in black-hole X-ray binaries

- Overstable p-modes **maybe** promising
- Other modes (g- and c-modes) **may** have problems

#### Many unsolved issues

- Understand magnetic field effects
- Role of MHD turbulence (or no turbulence? MRI surpressed by strong B)
- How disk oscillation manifests observationally?

## Thanks