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Hot Jupiters:

Giant planets with
P<10d

Ultra-Short Planets:
Small planets with
P<1d



Hot Jupiter Formation

(see Dawson & Johnson 2018 for HJ review)

Formation in Protoplanetary Disks (Migration vs In-Situ)
— Young proto-HJ candidates observed (e.g. CI Tau)
-- WASP-47b (HJ with small neighbors)

— Can misalignment (stellar spin vs orbit) be produced?
(e.g. Bate+10; Lai+11; Batygin 12; Batygin & Adams 12; Lai 14; Spalding & Batygin 14; Zanazzi & Lai 18)

HIGH-ECCENTRICITY MIGRATION

(e.g. Eggleton+01; Wu & Murray 03; Fabrycky & Tremaine 07; Nagasawa+08; Wu & Lithwick 11; Beauge &
Nesvorny 12; Naoz+12; Storch et et al.14; Petrovich 15a,b; Anderson+16; Munoz & Lai+16; Wu 18;
Vick & Lai+19; Teyssandier, Lai+19 )



High-eccentricity Migration

1. Planet (formed at ~AU) 1s excited to a high-e orbit (small pericenter) by
interactions with other planet(s) or companion star(s)

2. Tidal dissipation in the planet circularizes and shrinks the orbit

Pros:

-- Accounts for HJ pile-up at a few Roche radii

-- Explains the lack of nearby low-mass neighbors for most HJs (Huang+16)

-- Can naturally account for large stellar obliquities (spin-orbit coupling
dynamics important; Storch+2014; Anderson+16)



Tidal dissipation in giant planet
Previous works

-- Based on weak friction tidal model
(parameterized); must assume that the
planet is 10+ more dissipative than
Jupiter for efficient migration

Dissipation i1s
parameterized by
tidal lag time Az

-- Hard to produce HJs with P>5d
Ga

-- HJ formation fraction is significantly Gia
reduced by tidal disruption

Star



Recent work: Dynamical (chaotic) tides in migrating giant planets
significantly resolves these issues and “improves” high-e migration theories
Vick & Lai 2018

Wu 2018
Vick, Lai & Anderson 2019

Michelle Vick (Cornell Ph.D. 2020)



Dynamical tides of planet on eccentric orbit

-- Near pericenter, the tidal potential of the star excites oscillation modes
of the planet (f-modes, inertial modes, etc)

-- The energy transfer in each pericenter passage depends on the oscillation phase
of the mode

Typical scale of energy transfer in each passage =AE, ("peri)

-- Need to evolve complex mode amplitude and orbit simultaneously

(for high-e system, evolution can be modeled with an iterative map)

Gas
Giant




How does the mode energy evolve over many orbits?
Two different behaviors:



How does the mode energy evolve over many orbits?

Behavior 1: Low-amplitude oscillations

o 0817 i 29 AP /2n | Oceurs for relatively 1

o Py/2m=12439.29, |AP;|/2m = 0.0008 ccurs Ior relatively large T'peri
n

n

g 06! | Mode energy stays around small values
=0

i

e

=5 0.4/

&

@

P

20 0.2¢

)

-

)

s

2 0.0 .

= peri = 0,022 (AU), e = 0.99

0 10 20 30 40 50

/4 (number of passages)



How does the mode energy evolve over many orbits?

Behavior 2: Chaotic mode growth (quasi-diffusive)
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How does the mode energy evolve over many orbits?

Behavior 2: Chaotic mode growth (quasi-diffusive)
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nonlinear dissipation
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large values — of order the initial
orbital binding energy
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When the mode energy
reaches some fraction of the
planet binding energy =>»
rapid nonlinear dissipation.
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Maximum mode energy reached in 10,000
orbits (in units of the initial orbital energy)
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Small r,, large e
=» Chaotic mode growth

Regular - Chaotic transition:
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Example of High-eccentricity Migration:
the Lidov-Kozai Effect

An inclined companion
induces oscillations in the
eccentricity of the inner orbit




Lidov-Kozai Migration with Weak Tidal Friction
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Lidov-Kozai Migration with Dynamical Tides
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Lidov-Kozai Migration with Dynam1ca1 T1des
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Lidov-Kozai Migration with Dynamical Tides
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Migration occurs in two stages:

1.Chaotic dynamical tides rapidly shrink the orbit
=>» eccentric warm Jupiter (decoupled from the
perturber).

2. Weak tidal friction efficiently circularizes the orbit
=>» hot Jupiter.



Lidov-Kozai Migration with Dynamical Tides
“Nice” Features of Dynamical (Chaotic) Tides :

1. Reduce migration time (by >10) M,=1M;, R,=1.6R;  M,=1M;, R,=1.0R,

0.20
2. Save some planets from tidal disruption ®!°|
(strong dissipation truncates high-e excursion) 0.10
0.05 |
=» Higher HJ formation efficiency 0.00|
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3. Can produce HJs at ~5 days “easily”

(strong dissipation, younger/bigger planets) My, = 1My, Ity = 1. 61, M, =1M;, i, = 1.0k,
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Another flavor of high-e migration: Secular Chaos

Secular interactions between three giant planets can chaotically push the inner planet to high e when
(1) Sufficient “Eccentricity reservoir” (Angular Momentum Deficit, AMD) is present in the system;
(2) Secular resonances exist and overlap

Suggested by Wu & Lithwick (2011) for HJ formation (see Laskar 2008)

Teyssandier, Lai & Vick (2019): First systematic study including proper physical ingredients: Tidal disruption,

|

tidal dissipation (weak friction & dynamical tides), spin-orbit couplings

J. Teyssandier



a,p.q (AU)

High-e migration via secular chaos: An example
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Key messages:

-- With only weak friction, (almost) all planets that migrate inward are tidally disrupted.
--- Dynamical tides help !



High-e migration via secular chaos & dynamical tides

Even with dynamical tides...
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Summary on HJ Formation

Disk migration contributes some fraction?
young HJs, WASP-47b

High-e migration is alive and well

-- Sudden e-excitation is not favored: Planets are tidally disrupted
e.g. strong scatterings, octupole (eccentric) Kozai, secular chaos
Gentle/slow e-excitation (e.g., simple Lidov-Kozai) works better

-- Dynamical tides (chaotic behavior) on giant planets (physics-based theory)

resolve many problems of high-e migration
Increase the HJ formation efficiency
Save some planets from tidal disruption
Produce planets with longer P (peak at 3-5 days)

-- Unsolved issues: What happens to the planet with tidal heating?



Ultra-Short-Period Planets (USPs)



Orbital period [days]

Ultra-Short-Period Planets (USPs)
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Small planets (R<2Ry) with P< 1 day
~70 so far found by transits

~0.5% of Sun-like stars have USPs



USPs are likely a distinct population
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USPs are likely a distinct population

-- Period distribution differs from “normal” short-perio-
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USP Formation Mechanisms

 In-Situ formation: unlikely
T~2000K at P=1d

* Migration

-- Disk migration
Could play a role, but P<1d is well inside magnetospheric truncation of PPD (Lee & Chiang 17)

-- Tidal dissipation in host star (Lee & Chiang 2017)
Could play a role, but require P<1d to migrate within 10 Gyr;
inconsistent with HJs with P<1 day

-- Tidal dissipation in planet
Require a way to excite/maintain the planet’s eccentricity

=>» Low-eccentricity migration (pu & Lai 2019)

Alternative: high-e migration via secular chaos (Petrovich+18)



Low-e migration/formation of USPs ru&raico

Start with

-- Kepler multi’s with at least 3 planets, with inner P,= a few days

-- Innermost one (m,) has low mass (a few Earth), outer ones somewhat more massive

Bonan (Michael) Pu

-- Initial e; ~ 0.05-0.1, mutual inclination ~ a few degrees

What happens?

-- Eccentricity vectors of planets “communicate” with each other through gravity
each planet undergoes apsidal precession and “shares” eccentricities
“sharing” can be strong due to apsidal precession resonances

-- Tidal dissipation on inner planet damps its eccentricity,
balanced by “receiving” eccentricity from the outer planets

-- With non-zero eccentricity maintained, the inner planet undergoes tidal decay in orbit =» USP



Equations
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Technical challenges of solving equations:

Orbital decay occurs over ~10 Gyrs, but apsidal precession can be as short as ~10 years
=> Direct integration requires ~10° cycles

Trick:

Eccentricity eigenmodes, proper phase averaging (need to capture apsidal resonances)



Three sample evolutions:
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Criteria for USP formation
(Why need N>2 planets?)

1. The system must have adequate Angular Momentum Deficit (AMD)
AMD; = m;/GM,a; <1 — /1 - e?) “eccentricity reservoir”’

Require eccentric, massive companion(s) at large distances to supply enough AMD;
otherwise all planets maybe circularized before the inner planet decays to short period

2. The forced (“shared”) eccentricity e, must be > a few % in order to
have appreciable orbital decay within 10 Gyrs

Require eccentric, massive companions at small distances



Bonus: Excitation of mutual inclination

During low-e migration, the mutual inclination of planets is excited
Inclination resonance roughly coincide with eccentricity/apsidal resonance
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Simple Population Model

Generate one million 3-planet proto-USP systems

m; ~ log-uniform in [1, 3] Mg,

m,, m; ~ log-uniform in [3, 20] M__ .,

Initial P, ~ power-law distribution dN/d In P = P1-*> on [0.5, 8] days
P,/P, and P;/P, ~ log-uniform on [2, 4]

Q.. chosen randomly from [10¢, 107, 108]

Q, chosen randomly from [1/70, 1/200, 1/700]

Evolve for 10 billion years

Star has initial spin-period 5 days and spin downs to 35 days
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Our model produces large mutual inclinations for USP systems
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Our model produces large period ratios for USP systems
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Summary on USPs

Low-e tidal migration can robustly make USPs out of normal Kepler multis
Requires small inner planet at 1 < P < 3 days, with 2 or more external super-Earth or mini-Neptune companions
that are mildly eccentric (>0.05-0.1); they can have wide range of masses and periods

Key physics
-- “Sharing” of eccentricities between different planets by gravitational interactions
-- Apsidal resonance enhances the sharing
-- Orbital decay due to planetary tide (and stellar tides at P < 1d)
-- Excitation of mutual inclinations

Adding more planets make it easier --- More AMD and more resonances

The final dlStrlbutIOIl of USPs produced atgrees with observations under wide conditions
e.g., Q' =107, and is robust agamst factor of a tew changes in 1, mq etc.
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