# **Tidal Dissipation in Binaries**

From Merging White Dwarfs to Exoplanetary Systems

Dong Lai
Cornell University

March 14, 2013, Harvard ITC Colloquium

# **Tidal Dissipation in Binaries**

- I. Merging White Dwarf Binaries
- II. Kepler Heartbeat Stars (KOI-54)
- III. Exoplanetary Systems
  - (a) Hot Jupiters
  - (b) Host Stars

# **Equilibrium Tide**



# **Equilibrium Tide**



### **Equilibrium Tide**



#### **Problems:**

- -- Parameterized theory
- -- The physics of tidal dissipation is more complex:

  Excitation/damping of internal waves/modes (Dynamical Tides)
- -- For some applications, the parameterization is misleading

# **Compact White Dwarf Binaries**





- -- May lead to various outcomes: R CrB stars, AM CVn, SN Ia, AIC-->NS, transients, etc
- -- Gravitational waves (eLISA-NGO)

#### 12 min orbital period double WD eclipsing binary



SDSS J0651+2844

Primary & secondary eclipses Ellipsoidal (tidal) distortion Doppler boosting

Brown et al. 2011

- -- Will merge in 0.9 Myr
- -- Large GW strain ==> eLISA
- -- Orbital decay measured from eclipse timing (Hermes et al. 2012)

# **Dynamical Tides in Compact WD Binaries**

with Jim Fuller (Ph.D. 2013)

#### Issues:

- -- Spin-orbit synchronization?
- -- Tidal dissipation and heating?
- -- Effect on orbital decay rate? (e.g. eLISA-NGO)

#### **White Dwarf Propagation Diagram**



CO WD  $0.6M_{\odot},~8720\,\mathrm{K}$ 



He-core WD  $0.3M_{\odot},\ 12000\,\mathrm{K}$ 

#### **Resonant Tidal Excitation of G-modes**

As the orbit decays, resonance occurs when

$$\omega = 2(\Omega_{
m orb} - \Omega_s) = \omega_{lpha}$$

Calculation: mode amplitude evolution + orbital evolution

#### **Resonant Tidal Excitation of G-modes**

As the orbit decays, resonance occurs when

$$\omega = 2(\Omega_{
m orb} - \Omega_s) = \omega_{lpha}$$

Calculation: mode amplitude evolution + orbital evolution



Result: Surface displacement is ~ R ==> Dissipation==> No standing wave

# "Continuous" Excitation of Gravity Waves

Waves are excited in the interior/envelope, propagate outwards and dissipate near surface

# "Continuous" Excitation of Gravity Waves

Waves are excited in the interior/envelope, propagate outwards and dissipate near surface



$$M=0.6M_{\odot},~\omega=0.01$$

Torque = 
$$G\left(\frac{M'}{a^3}\right)^2 R^5 F(\omega)$$



# Why is $F(\omega)$ not smooth?







$$M=0.6M_{\odot},\ T=8720\ \mathrm{K}$$



 $\omega$ 

$$M=0.6M_{\odot},\ T=5080\ \mathrm{K}$$



$$M=0.3M_{\odot},\ T=12000\ \mathrm{K}$$

#### **Spin-Orbit Synchronization**



Critical orbital 
$$\Omega_c$$
:  $\dot{\Omega}_s = \frac{\text{Torque}}{I} \simeq \dot{\Omega}_{\text{orb}} = \frac{3\Omega_{\text{orb}}}{2t_{\text{GW}}}$ 

For 
$$\Omega_{\rm orb} > \Omega_c$$
:  $\dot{\Omega}_s > \dot{\Omega}_{\rm orb}$ 

$$\dot{\Omega}_s - \dot{\Omega}_{
m orb} \ll \dot{\Omega}_{
m orb} \Longrightarrow \dot{E}_{
m tide} = \Omega_{
m orb} T \simeq rac{3I\Omega_{
m orb}^2}{2t_{
m GW}}$$

# **Tidal Heating Rate**



# **Consequences of Tidal Heating**

Depend on where the heat is deposited ...

If deposited in shallow layer: thermal time short ==> change T<sub>eff</sub>

Explain SDSS J0651+2844

If deposited in deeper layer:
 (common: critical layer...)
 thermal time longer than orbital
 ==> Nuclear flash

\* "Tidal Nova"



# **Summary: Tides in White Dwarf Binaries**

- -- Dynamical tides: Continuous excitation of gravity waves, outgoing, nonlinear breaking/critical layer...
- -- Spin synchronized prior to merger (but not completely)
- -- Tidal heating important... Tidal novae

# "Heartbeat Stars"

**Tidally Excited Oscillations in Eccentric Binaries** 

# **KOI-54a,b Binary**

Welsh et al 2012

A-type stars: 2.32, 2.38  $M_{sun}$ 

P=42 days, e=0.834, face-on (5.5 deg)

--> At periastron:  $a_p = 6.5R, f_p = 20 f_{\rm orb}$ 





| 30 pulsations                | (21 | are | integer | $\times f_{\mathrm{orb}})$ |
|------------------------------|-----|-----|---------|----------------------------|
| $22.42f_{ m orb}  ightarrow$ | 91f | orb |         |                            |

| 1/// | Joh | et a | しつひき | ( ') |
|------|-----|------|------|------|
| vv   |     | -    |      | _    |

| amplitude          | $f/f_{orbit}$ |
|--------------------|---------------|
| $(\mu \text{mag})$ |               |
| 004 4              | 00.00         |
| 297.7              | 90.00         |
| 229.4              | 91.00         |
| 97.2               | 44.00         |
| 82.9               | 40.00         |
| 82.9               | 22.42         |
| 49.3               | 68.58         |
| 30.2               | 72.00         |
| 17.3               | 63.07         |
| 15.9               | 57.58         |
| 14.6               | 28.00         |
| 13.6               | 53.00         |
| 13.4               | 46.99         |
| 12.5               | 39.00         |
| 11.6               | 59.99         |
| 11.5               | 37.00         |
| 11.4               | 71.00         |
| 11.1               | 25.85         |
| 9.8                | 75.99         |
| 9.3                | 35.84         |
| 9.1                | 27.00         |
| 8.4                | 42.99         |
| 8.3                | 45.01         |
| 8.1                | 63.09         |
| 6.9                | 35.99         |
| 6.8                | 60.42         |
| 6.4                | 52.00         |
| 6.3                | 42.13         |
| 5.9                | 33.00         |
| 5.8                | 29.00         |
| 5.7                | 48.00         |
| 0.1                | 40.00         |
|                    |               |

## **Tidally Forced Oscillations: Flux Variations**



Most of the observed flux variations are explained by m=0 modes (more visible for near face-on orientation)

Variations at 90,91 harmonics require very close resonances  $(N\Omega = \omega_{\alpha})$ 

Why N=90,91?

# The probability of seeing high-amplitude modes

Consider mode near resonance  $\omega_{lpha} = (N + \epsilon)\Omega$ 

By chance

$$P_{|\epsilon|<\epsilon_0}\simeq 2\epsilon_0$$

likely for N=20-80 (  $\epsilon_0 \sim 0.1$ )

If mode dominates tidal energy transfer

$$P_{|\epsilon|<\epsilon_0} = rac{\Delta t_{
m res}}{\Delta t_{
m nonres}} \sim rac{8\pi^2}{3} \epsilon_0^3$$

unlikely for N=90,91 (require  $\epsilon_0 < 0.01$ )

## **Resonance Locking**

• Tidal excitation of modes ==> Orbitdal decay, spinup of star, change mode frequency

$$\omega_{\alpha} = \omega_{\alpha}^{(0)} + mB_{\alpha}\Omega_{s}$$

• At resonance,  $\ \, rac{\omega_{lpha}}{\Omega} = N \,$ 

• Mode can stay in resonance if  $\frac{d}{dt}\left(\frac{\omega_{\alpha}}{\Omega}\right)=0$  or  $\left(\frac{\dot{\omega}_{\alpha}}{\omega_{\alpha}}\right)_{\mathrm{tide}}=\left(\frac{\dot{\Omega}}{\Omega}\right)_{\mathrm{tide}}$ 

$$=> N_c = m \left(\frac{B_{\alpha} \mu a^2}{3I}\right)^{1/2} \simeq 130 - 145$$

$$\left(\frac{\dot{\Omega}}{\Omega}\right)_{\text{tide}} = \left(\frac{N}{N_c}\right)^2 \left(\frac{\dot{\omega}_{\alpha}}{\omega_{\alpha}}\right)_{\text{tide}}$$

## **Resonance Locking (continued)**

Including intrinsic stellar spin-down torque:

$$\dot{\Omega}_s = (\dot{\Omega}_s)_{\mathrm{tide}} + (\dot{\Omega}_s)_{\mathrm{sd}}$$

===>

$$\frac{\dot{\omega}_{lpha}}{\omega_{lpha}} = \left(\frac{\dot{\omega}_{lpha}}{\omega_{lpha}}\right)_{
m tide} + \left(\frac{\dot{\omega}_{lpha}}{\omega_{lpha}}\right)_{
m sd}$$

$$\frac{\dot{\Omega}}{\Omega} = \left(\frac{\dot{\Omega}}{\Omega}\right)_{\mathrm{tide}} = \left(\frac{N}{N_c}\right)^2 \left(\frac{\dot{\omega}_{\alpha}}{\omega_{\alpha}}\right)_{\mathrm{tide}}$$

===> Mode can lock into resonance if  $N < N_c$ 

$$\frac{\omega_{\alpha}}{\Omega} < N_c$$

# **Resonance Locking: Numerical Examples**

Coupled evolution of orbit, spin and mode amplitudes...





# **Resonance Locking in Both Stars**

Locking in one star:

$$N_c = m \left(\frac{B_\alpha \mu a^2}{3I}\right)^{1/2} \simeq 130 - 145$$

Similar modes are locked simultaneously in both stars

$$N_c = 92 - 102$$

Explain the observed N=90,91 harmonics

# **Non-Linear Mode Coupling**

- 9 oscillations detected at non-integer multiples of orbital frequencies
- Could be produced by nonlinear coupling to daughter modes

$$\omega_p = \omega_{d1} + \omega_{d2}$$

• In KOI-54,

$$\frac{\omega_2}{\Omega} = 91.00$$
  $\frac{\omega_5}{\Omega} = 22.42$   $\frac{\omega_6}{\Omega} = 68.58$ 

 Other non-integer modes likely due to nonlinear coupling in which one of the daughter modes is invisible

| amplitude          | $f/f_{orbit}$ |
|--------------------|---------------|
| $(\mu \text{mag})$ |               |
| 297.7              | 90.00         |
| 229.4              | 91.00         |
| 97.2               | 44.00         |
| 82.9               | 40.00         |
| 82.9               | 22.42         |
| 49.3               | 68.58         |
| 30.2               | 72.00         |
| 17.3               | 63.07         |
| 15.9               | 57.58         |
| 14.6               | 28.00         |
| 13.6               | 53.00         |
| 13.4               | 46.99         |
| 12.5               | 39.00         |
| 11.6               | 59.99         |
| 11.5               | 37.00         |
| 11.4               | 71.00         |
| 11.1               | 25.85         |
| 9.8                | 75.99         |
| 9.3                | 35.84         |
| 9.1                | 27.00         |
| 8.4                | 42.99         |
| 8.3                | 45.01         |
| 8.1                | 63.09         |
| 6.9                | 35.99         |
| 6.8                | 60.42         |
| 6.4                | 52.00         |
| 6.3                | 42.13         |
| 5.9                | 33.00         |
| 5.8                | 29.00         |
| 5.7                | 48.00         |
|                    |               |

# **Summary: Lessons from KOI-54 (Heartbeat Stars)**

- Direct detection of tidally excited oscillations in eccentric binary
   => Dynamical tides at work
- Resonance locking
- First direct evidence of nonlinear mode coupling
- More such systems ...

# **Tides in Exoplanetary Systems**





Slide from Josh Winn



# S\*-L<sub>p</sub> misalignment in Exoplanetary Systems → The Importance of few-body interactions

1. Kozai + Tide migration by a distant companion star/planet (e.g., Wu & Murray 03; Fabrycky & Tremaine 07; Naoz et al.12)

#### 2. Planet-planet Interactions

-- Strong scatterings

(e.g., Rasio & Ford 96; Chatterjee et al. 08; Juric & Tremaine 08)

-- Secular interactions ("Internal Kozai", chaos) + Tide (e.g Nagasawa et al. 08; Wu & Lithwick 11; Naoz et al.11)

Misaligned protostar - protoplanetary disk ? (e.g. Solar system) (Bate et al.2010; DL, Foucart & Lin 2011; Batygin 2012)

### **Kozai Migration with Tide**

#### Kozai (1962), Lidov (1962):

When  $i > \cos^{-1}\sqrt{\frac{3}{5}} \simeq 40^{\circ}$  (and  $i < 140^{\circ}$ ), the orbit of planet oscillates in e and I

$$\sqrt{GMa(1-e^2)}\cos i = \mathrm{const}, \quad a = \mathrm{const}$$

$$\implies e_{\mathrm{max}}^2 = 1 - \frac{5}{3}\cos^2 i_{\mathrm{initial}}$$

$$P_{\mathrm{Kozai}} \sim \frac{M}{M'} \frac{(P')^2}{P_{\mathrm{max}}}$$



Importance of higher-order effect (Naoz et al.2011; Katz et al.2011)

#### **Tidal dissipation in planet:**

Circluarize the orbit at small radius

## **Kozai Migration with Tide**



Wu & Murray 2003



Naoz et al. 2011

# High-e Migration requires tidal dissipation in giant planets

# **Tidal Q of Solar System Planets**

Measured/constrained by orbital evolution of their satellites (Goldreich & Soter 1966,.....)

### Jupiter:

$$6 imes 10^4 \lesssim Q \lesssim 2 imes 10^6$$
  $P_{\rm tide} = 6.5~{
m hr}$   $Q \simeq 4 imes 10^4$  (Lainey et al. 2009)

#### Saturn:

$$2 \times 10^4 \lesssim Q \lesssim 10^5$$
 
$$Q = (1-2) \times 10^3$$
 (Lainey et al. 2012)

# **Theory of Tidal Q of Giant Planets**

- Viscous (turbulent) dissipation of equilibrium tide in convective envelope → Q>10<sup>13</sup>
- Gravity waves in outer radiative layer → Q>10<sup>10</sup>



#### -- Inertial waves

(Ogilvie & Lin 2004,07; Ogilvie 2009,13; Goodman & Lackner 2009)

## **Inertial Waves in Rotating Fluid**

Dispersion relation (in rotating frame)

$$\omega = \pm 2\,\mathbf{\Omega}_s \cdot \mathbf{\hat{k}}$$

Can be excited if tidal forcing frequency satisfies

$$|\omega| < 2\Omega_s$$



Ogilvie & Lin 2004

# Tidal Dissipation in High-e Migration: Phenomenological Approach

Using measured Q for Jupiter (single freq), extrapolate to high-e (many frequencies) using weak friction theory: (many papers...)

$$\delta \sim \omega_{\mathrm{tide}} \Delta t_{\mathrm{lag}} \sim 1/Q$$
 with  $\Delta t_{\mathrm{lag}} = \mathrm{const}$ 

→ Hot Jupiters need to be >10 times more dissipative than our Jupiter (e.g., Socrates et al 2013)

# **Tidal Dissipation in Solid Core of Giant Planets**

with Natalia Shabaltas



Rocky/icy core: highly uncertain ... Can be important if  $R_{\rm core} \gtrsim 0.1 R_p$ 

# Tidal response of Jupiter with visco-elastic core



Shabaltas & DL 2013

# Orbital decay of proto hot Jupiters

(visco-elastic core vs weak friction)



Shabaltas & DL 2013

# Hot Jupiter Radius Anomaly



Leconte et al. 2010

# **Tidal Dissipation in Planet Host Stars:**

**Misalignment Damping and Survival of Hot Jupiters** 



### **Correlation: Misalignment -- Stellar Temperature/Mass**

Winn et al. 2010; Schlaufman 2010



## **Correlation: Misalignment -- Stellar Temperature/Mass**



### **Correlation: Misalignment -- Stellar Age**

Triaud 2011



**Fig. 2.** Secure, absolute values of  $\beta$  against stellar age (in Gyr), for stars with  $M_{\star} \geq 1.2 \, M_{\odot}$ . Size of the symbols scales with planet mass. In blue squares, stars with  $M_{\star} \geq 1.3 \, M_{\odot}$ ; in red diamonds  $1.3 > M_{\star} \geq 1.2 \, M_{\odot}$ . Horizontal dotted line show where aligned systems are. Vertical dotted line shows the age at which where misaligned planets start to disappear.

# **Reasonable Hypothesis:**

Many hot Jupiters are formed in misaligned orbits

Tidal damping of misalignment (especially for cooler stars)

#### Problem with Equilibrium Tide (with the parameterization...)

$$t_{
m decay} \simeq 1.3 \left( rac{Q_{\star}'}{10^7} 
ight) \left( rac{M_{\star}}{10^3 M_p} 
ight) \left( rac{P_{
m orb}}{1 \, 
m d} 
ight)^{13/3} 
m Gyr$$

$$\frac{t_{\rm align}}{t_{\rm decay}} \simeq \frac{2S_{\star}}{L} \simeq 2\, \left(\frac{M_{\star}}{10^3 M_p}\right) \left(\frac{10\,{\rm d}}{P_s}\right) \left(\frac{1\,{\rm d}}{P_{\rm orb}}\right)^{1/3}$$

**Possible Solution:** (see DL 2012)

Different Tidal Q's for Orbital Decay and Alignment?

# **Tidal Forcing Frequency=?**

For aligned system

$$\omega = 2(\Omega_{
m orb} - \Omega_s)$$

For misaligned system

$$\omega = m'\Omega_{\rm orb} - m\Omega_{s}$$
  $m, m' = 0, \pm 1, \pm 2$ 

7 physically distinct components

==> Effective tidal evolution equations with 7 different Q's

## **Inertial Waves in Rotating Fluid**

Dispersion relation (in rotating frame)

$$\omega = \pm 2\,\mathbf{\Omega}_s \cdot \mathbf{\hat{k}}$$

Can only be excited if tidal forcing frequency satisfies

$$|\omega| < 2\Omega_s$$

### **Stellar Tides in Hot Jupiter Systems**

#### For aligned system:

$$\omega = 2(\Omega_{\rm orb} - \Omega_s) \gg \Omega_s$$

==> Cannot excite inertial waves

#### For misaligned system:

$$\omega = m'\Omega_{\rm orb} - m\Omega_s$$

The m'=0, m=1 component has  $\,\omega=-\Omega_s\,$ 

This component leads to alignment, but not orbital decay

# **Summary: Tides in Hot Jupiter Systems**

### Tidal dissipation in giant planets:

- -- Required for high-e migration
- -- Inertial wave excitation?
- -- Dissipation in solid core?

### Tidal dissipation in host stars:

- Spin-orbit misalignment may be damped faster than orbital decay
- Different Q's for different processes
   (equilibrium tide parameterization misleading)

Thanks!