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I investigate tidal interactions and global oscillations in various types of stellar and

planetary systems, with a focus on dynamical tidal effects. Dynamical tides arise from

the excitation of non-hydrostatic waves within the stellar components, with tidal dissi-

pation resulting from the damping of the excited waves. The wave frequencies, char-

acteristics, and dissipative qualities vary greatly in different types of stellar systems, as

does the resultant tidally induced evolution.

The first few chapters of this thesis focus on the excitation and dissipation of grav-

ity waves within white dwarfs (WDs) in compact binary systems. I find that gravity

waves are excited at composition gradients within the WDs, and may reach non-linear

amplitudes in the outer layers of the star. At sufficiently short orbital periods, the waves

are strongly non-linear and will break in the envelope of the white dwarf, producing effi-

cient tidal dissipation. I show that this tidal dissipation will cause WDs to be nearly syn-

chronized upon gravitational radiation-driven orbital decay. Moreover, the dissipation

will heat the envelope of the WD, substantially increasing its luminosity and potentially

reigniting its hydrogen shell to create a tidally induced nova-like event.

I also study the tidal excitation of stellar oscillation modes in eccentric binary sys-

tems and in triple star systems, and I compare my theory with recent Kepler observa-

tions. In eccentric binary systems such as KOI-54, the tidal forcing excites stellar os-

cillation modes at discrete multiples of the orbital frequency. The resulting orbital and

spin evolution produced by the damping of these modes may lead to resonance lock-



ing, in which a stellar oscillation mode remains nearly resonant with the tidal forcing,

producing greatly enhanced tidal dissipation. In hierarchical triple star systems such as

HD 181068, the orbital motion of the inner binary can excite pressure modes in a red

giant tertiary component. No stable tidal equilibrium exists for these systems, and the

dissipation of the modes can cause the orbit of the inner binary to decay.

Lastly, I examine the oscillation mode spectrum of giant planets with a solid core.

The rigidity of the core allows for the existence of shear modes which are confined to

the solid core. In a rotating planet, the Coriolis force may cause substantial mixing

between core shear modes and fundamental or pressure modes that propagate in the

fluid envelope. The gravitational perturbations produced by these mixed modes can

excite visible disturbances within a planetary ring system, and I compare our theoretical

expectations with recent Cassini observations of waves in Saturn’s rings.
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CHAPTER 1

INTRODUCTION

The physics of tidal interactions in astronomical systems is an old and onerous sub-

ject. Indeed, Darwin (1879) realized that the mutual tidal distortion of the Earth and the

Moon, created by their mutual gravitational fields, would lead to tidal orbital and spin

evolution. Such evolution is caused by the dissipative effects of tidal distortions, which

arise from friction in the non-uniform velocity field of particles in a tidally distorted

object. The stable end-state of such evolution is a circular orbit in which both bodies

rotate synchronously with the orbit, such that the gravitational fields felt by particles in

each object are time-independent. Yet, despite more than a century of study, the exact

processes creating the tidal friction (and their associated orbital evolution time scales)

remain poorly understood in many astronomical systems.

Understanding tidal evolution is essential to our knowledge of the formation and

evolution of stars in compact multiple systems. Tidal interactions can cause orbits to

expand or to shrink, potentially inducing stellar mergers. In certain situations, tides

may create substantial frictional heating. Moreover, observations clearly indicate that

tidal friction is important in stellar systems of sufficiently short orbital periods. For

instance, binary stars with short orbital periods tend to be in circular orbits (Abt &

Boonyarak 2004, Abt 2005, Abt 2006) and the spins of the stellar components tend to

be synchronous and aligned with the orbital motion (Abt & Boonyarak 2004).

Despite observations that tidal effects are important in compact stellar systems, a

thorough understanding of the physics behind the tidal dissipation remains lacking. One

question that must be addressed is whether tidal friction arises primarily due to equi-

librium tides (i.e., quasi-static tides) or dynamical tides. The equilibrium tide is simply

the hydrostatic tidal bulge induced in a star by the tidal gravitational field of its compan-
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ion.1 Although the time-dependent motion of the equilibrium tide will be damped by the

microscopic viscosity associated with the motions of particles in the stellar plasma, the

associated time scales are extremely long and can not account for observed tidal effects.

If the star contains large convective zones, the turbulent motion of convective eddies

may create a greatly increased effective viscosity, leading to tidal dissipation through

the turbulent dissipation of the equlibrium tide (Zahn 2008 and references therein).

In this thesis, I attempt to better understand the influence of dynamical tides in var-

ious types of stellar systems. Dynamical tides are the result of non-hydrostatic motions

induced by the tidal gravitational field of a companion star, and are present in the form

of waves that propagate through the stellar interior. These waves have frequencies equal

to the tidal forcing frequencies and thus have frequencies that are typically smaller than

the star’s dynamical frequency (although see Chapter 7 for exceptions to this rule in

triple star systems). In stably stratified (i.e., non-convective) regions of a star, these

waves exist as gravity waves restored by the buoyancy force.2 If the waves are weakly

damped and confined to a propagation cavity within the star (i.e., they are reflected at

the boundaries of this cavity), they interfere and set up standing waves. Standing grav-

ity waves are referred to as gravity modes (g-modes), while standing acoustic waves are

referred to as pressure modes (p-modes).

In the simplest case, tidally excited oscillations can be calculated as adiabatic, linear

perturbations to a non-rotating, spherical star. The oscillations are then described by a

system of four linear coupled ordinary differential equations which may be easily solved

given appropriate boundary conditions. Numerous calculations of tidal dissipation from

1The assumption that the star remain near hydrostatic equilibrium is usually a good first approximation
because the dynamical time of a star is usually much shorter than the orbital period of its companion. In
most (but not all) cases, the physical displacements associated with the equilibrium tide are larger than
those associated with the dynamical tide.

2In neutrally stratified (convective) regions of a rotating star, inertial waves may exist, whose restoring
force is the Coriolis force. However, I do not explicitly investigate the influence of inertial waves in this
thesis.
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linearly excited waves (given the above simplifications) exist for main sequence stars

(e.g., Zahn 1977, Goldreich & Nicholson 1989, Lai 1996,1997, Kumar & Quataert 1998,

and Witte & Savonije 1999,2001, Goodman & Dickson 1998, Barker & Ogilvie 2010,

Weinberg et al. 2012).

In realistic situations, calculation of the tidal dissipation associated with dynamic

tides is hampered by several complicating factors. First, the degree of excitation of

gravity waves is strongly dependent on stellar structure, and therefore the resulting

dissipation strongly depends on the type of star involved. Second, gravity waves can

be significantly altered by rotational effects in the star, including differential rotation,

making detailed calculations significantly more difficult. Third, non-adiabatic effects

responsible for the dissipation of gravity waves can introduce considerable numerical

difficulty into wave excitation and dissipation calculations. Fourth, non-linear effects

(i.e., when the tidal effect can no longer be treated as a small perturbation) may be very

important in certain types of systems, making the analysis considerably more complex.

Finally, non-trivial orbital and spin evolution may result from the combined effects of

tidal dissipation and stellar evolution (e.g., due to various types of resonances), making

it necessary to understand the coupled orbital, spin, and stellar evolution of systems un-

dergoing tidal dissipation. I discuss all of the above processes at some point within the

chapters that follow.

The first four chapters of this thesis are devoted to understanding the tidal dissipa-

tion process in short orbital period (less than a few hours) white dwarf (WD) binaries.

Compact WD binaries emit gravitational waves, causing orbital decay that eventually

triggers mass transfer or a stellar merger. As the orbit decays, tidal interactions become

increasingly powerful and may have a profound effect on the pre-merger state of the

WDs. The question arises whether the tidal interactions are powerful enough to syn-
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chronize the WDs before the onset of mass transfer, and whether the associated tidal

heating will substantially effect the thermal state of the WDs.

In Chapter 2, I investigate the excitation of g-modes in inspiraling WD binaries. I

find that g-modes are excited to large amplitudes as the orbit decays through resonances

between the orbital frequency and the WD’s g-mode frequencies. Even before the res-

onance is reached, the mode amplitudes can be highly non-linear, invalidating a purely

linear analysis of standing g-modes. Therefore, in Chapter 3, I investigate the excita-

tion of traveling gravity waves that become highly non-linear in the envelope of the star,

causing them to break and locally deposit their energy and angular momentum. I find

that the gravity waves are excited at composition gradients within the WD, with a strong

dependence on the tidal forcing frequency. Therefore, tidal effects are negligible at long

orbital periods (periods greater than roughly two hours), but are powerful at short orbital

periods (periods less than about 45 minutes). I find that the gravity waves are capable

of bringing the WDs to nearly synchronous rotation rates by the onset of mass trans-

fer. Although tides cause negligible orbital decay compared to gravitational radiation,

they will produce substantial deviations to gravitational wave forms detectable by next

generation gravitational wave detectors such as ELISA.

Chapters 4 and 5 mostly focus on the tidal heating produced in binaries containing

both canonical CO WDs of mass M ∼ 0.6M� and low mass He WDs of mass M ∼

0.3M�. The tidal heating is localized to the outer layers of the WD where the gravity

waves break, although the exact location depends on the non-linear breaking criterion

and angular momentum transport processes within the WD. Using the MESA stellar

evolution code, I find that tidal heating substantially increases the temperatures of the

outer ∼ 10−4M� of the WD, leading to greatly increased luminosities for WDs with

orbital periods shorter than ∼20 minutes. If the tidal heat is deposited relatively deeply,
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it cannot quickly diffuse outward and can increase the temperature of the base of the

WD’s hydrogen shell to ∼ 107 K. At this point, the hydrogen will ignite, potentially

producing a tidally induced nova, whose characteristics may be similar to classical novae

observed in accreting WDs.

Dynamical tides are important in stars other than WDs, and Chapters 6 and 7 inves-

tigate the excitation of tidal oscillation modes in stars observed by the Kepler satellite.

In Chapter 6, I compare tidal theories to observations of the KOI-54 system, which is

composed of two A-type stars in a highly eccentric (e = 0.83) 42 day orbit (Welsh et

al. 2011). The stars excite g-modes in one another, which oscillate at exact integer

harmonics of the orbital frequency. Although most of the observed oscillations can be

adequately explained by simple linear tidal theory, the largest pulsations (at 90 and 91

times the orbital frequency, with luminosity fluctuation amplitudes of ∼ 2 × 10−4) are

more enigmatic. I propose that the pulsations are nearly-resonant oscillation modes that

are locked near resonance by the coupled orbital, spin, and stellar evolution.

In Chapter 7, I examine tidally induced pulsations in the hierarchical triple star sys-

tem HD 181068, composed of a red giant primary orbited every 45 days by a pair of

dwarf stars who orbit each another every 0.9 days (Derekas et al. 2012, Borkovits et al.

2012). I show that the orbital motion of the dwarf stars tidally excites p-modes in the red

giant primary at a few discrete frequencies. Luminosity fluctuations at these frequencies

are observed in the Kepler light curve, with amplitudes close to my estimates. I show

that these tidally excited p-modes can cause substantial orbital decay in the dwarf binary

during certain phases of the system’s evolution.

Finally, Chapter 8 examines the properties of oscillation modes in giant planets with

solid cores. While these oscillations may be an important aspect of dynamic tides in

planetary systems, this chapter focuses on the properties of the oscillations and their
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gravitational influence on a planetary ring system. I begin by evaluating the character-

istics of oscillation modes in non-rotating planets, focusing on the shear modes that can

propagate in a solid planetary core. Next, I study the process of rotationally-induced

mode mixing that can cause the shear modes (which are otherwise confined to the core)

to mix with envelope modes, thereby obtaining greatly enhanced observable signatures.

I conclude by comparing our theoretical expectations to the observations of Hedman et

al. (2013), which indicate the presence of waves in Saturn’s rings excited by gravita-

tional perturbations from Saturn’s oscillation modes. I find that mode mixing between

core shear modes and Saturn’s fundamental modes provides a possible (although some-

what incomplete) explanation for the wave features observed by Hedman et al. (2013).
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CHAPTER 2

TIDAL EXCITATIONS OF OSCILLATION MODES IN COMPACT WHITE

DWARF BINARIES: I. LINEAR THEORY

2.1 Introduction1

It is well known that non-radial gravity modes (g-modes) are responsible for the lumi-

nosity variations observed in some isolated white dwarfs (called ZZ Ceti stars) in the

instability strip. These g-modes are thought to be excited by a convective driving mech-

anism operating in the shallow surface convection zone of the star (see Brickhill 1983;

Goldreich & Wu 1999; Wu & Goldreich 1999).

In this paper we study the tidal excitation of g-modes in compact binary systems

containing a white dwarf (WD) and another compact object (white dwarf, neutron star

or black hole). The Galaxy is populated with ∼ 108 WD-WD binaries and several

106 of double WD-NS binaries [Nelemans et al. (2001); see also Nelemans (2009) and

references therein]. A sizeable fraction of these binaries are compact enough so that

the binary orbit will decay within a Hubble time to initiate mass transfer or a binary

merger. Depending on the details of the mass transfer process (including the response

of the WD to mass transfer), these ultra-compact binaries (with orbital period less than

an hour) may survive mass transfer for a long time or merge shortly after mass transfer

begins. A number of ultra-compact interacting WD-WD binary systems have already

been observed [including RX J0806.3+1527 (period 5.4 min) and V407 Vul (period 9.5

min); see Strohmayer 2005 and Ramsay et al. 2005]. Recent surveys (e.g., SDSS) have

also begun to uncover non-interacting compact WD binaries (e.g., Badenes et al. 2009;

Mullally et al. 2009; Kilic et al. 2009; Marsh et al. 2010; Kulkarni & van Kerkwijk

1This chapter is based on Fuller & Lai (2011).
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2010; Steinfadt et al. 2010). Depending on the total mass, the systems may evolve into

Type Ia supernovae (for high mass), or become AM CVn binaries or R CrB stars (for

low mass). Many of these WD binaries are detectable in gravitational waves by the

Laser Interferometer Space Antenna (LISA) (Nelemans 2009).

In this paper we consider resonant tidal interaction in WD binaries that are not un-

dergoing mass transfer. This means that the binary separation D is greater than Dmin, the

orbital radius at which dynamical merger or mass transfer occurs, i.e.,

D >∼ Dmin ' 2.5
(Mt

M

)1/3

R, (2.1)

where M is the WD mass, Mt = M + M′ is the total mass and R is the WD radius. This

corresponds to orbital periods of

P >∼ Pmin = 68.4
( R
104km

)3/2( M
M�

)−1/2

s. (2.2)

Since WD g-mode periods are of order one minute or longer, they can be excited by

the binary companion prior to mass transfer. In particular, as the binary orbit decays

due to gravitational radiation, the orbital frequency sweeps through a series of g-mode

frequencies, transferring orbital energy to the modes. Although the overlap integral

of the g-mode eigenfunctions with the tidal potential is generally quite small, a binary

system that spends a long time at resonance can still excite g-modes to large amplitudes.

Previous studies of tidal interaction in WD binaries have focused on quasi-static

tides (e.g., Iben, Tutukov & Fedorova 1998; Willems, Deloye & Kalogera 2009), which

essentially correpond to non-resonant f-modes of the star. Such static tides become

important only as the binary approaches the tidal limit (equation 2.1). Racine, Phinney

& Arras (2007) recently studied non-dissipative tidal synchronization due to Rossby

waves in accreting ultra-compact WD binaries. Rathore, Blandford & Broderick (2005)

studied resonant mode excitations of WD modes in eccentric binaries. They focused
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on f-modes, for which the resonance occurs when harmonics of the orbital frequency

matches the mode frequency. As mentioned above, for circular orbits, such resonance

with the f-mode does not occur prior to mass transfer or tidal disruption. Their published

analysis also did not include back reaction of the excited mode on the binary orbit.

The problem of resonant mode excitations in compact binaries has been studied be-

fore in the context of coalescing neutron star binaries: Reisenegger & Goldreich (1994),

Lai (1994) and Shibata (1994) focused on the excitations of g-modes of non-rotating

neutron stars; Ho & Lai (1999) and Lai & Wu (2006) studied the effects of NS rota-

tion – including r-modes and other inertial modes; Flanagan & Racine (2006) examined

gravitomagnetic excitation of r-modes. In the case of neutron star binaries, the orbital

decay rate (for orbital frequencies larger than 5 Hz) is large and the mode amplitude

is rather small, so the back reaction of the excited mode on the orbit can be safely ne-

glected (see section 5 of the present paper). By contrast, in the case of WD binaries, the

orbital decay is much slower and the excited mode can reach a much larger amplitude.

It thus becomes essential to take the back reaction into account.

In this paper, we consider WD binaries in circular orbits, consistent with the ob-

served population of compact WD binaries (e.g. Kulkarni & van Kerkwijk 2010). Such

circular orbits are a direct consequence of the circularization by gravitational radiation

and/or the common envelope phase leading to their formation. A key assumption of this

paper is that we assume the WD is not synchronized with the binary orbit. While it

is true that the tidal circularization time scale is much longer than the synchronization

time, the observed circular orbit of the WD binaries does not imply synchronization.

While there have been numerous studies of tidal dissipation in normal stars and giant

planets (e.g., Zahn 1970,1989; Goldreich & Nicholson 1977; Goodman & Oh 1997;

Goodman & Dickson 1998; Ogilvie & Lin 2004,2007; Wu 2005; Goodman & Lackner
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2009), there has been no satisfactory study on tidal dissipation in WDs. Even for normal

stars, the problem is not solved (especially for solar-type stars; see Goodman & Dickson

1999; see Zahn 2008 for review). In fact it is likely that the excitations of g-modes and

other low-frequency modes play a role in the synchronization process. The orbital decay

time scale near g-mode resonances is relatively short (of order 104 years for orbital pe-

riods of interest, i.e., minutes), so it is not clear that tidal synchronization can compete

with the orbital decay rate. Given this uncertainty, we will consider non-rotating WDs

(or slowly-rotating WDs, so that the g-mode properties are not significantly modified by

rotation) as a first step, and leaving the study of the rotational effects to a future paper.

The remainder of the paper is organized as follows. In Section 2.2, we present the

equations governing the evolution of the orbit and the g-modes. Section 2.3 examines

the properties of WD g-modes and their coupling with the tidal gravitational field of the

companion. In Section 2.4, we numerically study the evolution of the g-modes through

resonances, and in Section 2.5 we present analytic estimates of the resonant g-mode

excitation. We study the effect of mode damping on the tidal excitation in Section 2.6

and discuss the uncertainties and implications of our results in Section 2.7.

2.2 Combined Evolution Equations for Oscillation Modes and the

Binary Orbit

We consider a WD of mass M and radius R in orbit with a companion of mass M′ (an-

other WD, or NS or BH). The WD is non-spinning. The gravitational potential produced
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by M′ can be written as

U(r, t) = −
GM′

|r − D(t)|

= −GM′
∑
lm

Wlmrl

Dl+1 e−imΦ(t)Ylm(θ, φ), (2.3)

where r = (r, θ, φ) is the position vector (in spherical coordinates) of a fluid element in

star M, D(t) = (D(t), π/2,Φ(t)) is the position vector of M′ relative to M (D is the binary

separation, Φ is the orbital phase or the true anomaly) and the coefficient Wlm is given

by

Wlm = (−)(l+m)/2
[ 4π
2l + 1

(l + m)!(l − m)!
]1/2

×

[
2l
( l + m

2

)
!
( l − m

2

)
!
]−1

. (2.4)

Here the symbol (−)p is zero if p is not an integer. The dominant l = 2 component of the

tidal potential has W2±2 = (3π/10)1/2, W20 = (π/5)1/2, W2±1 = 0, and so only the m = ±2

modes can be resonantly excited.

The linear perturbation of the tidal potential on M is specified by the Lagrangian

displacement ξ(r, t), which satisfies the equation of motion

∂2ξ

∂t2 +L · ξ = −∇U, (2.5)

where L is an operator that specifies the internal restoring forces of the star. The normal

oscillation modes of the star satisfy L · ξα = ω2
αξα, where α = {n, l,m} is the usual mode

index and ωα is the mode frequency. We write ξ(r, t) as the sum of the normal modes:

ξ(r, t) =
∑
α

aα(t)ξα(r). (2.6)

The (complex) mode amplitude aα(t) satisfies the equation

äα + ω2
αaα =

GM′WlmQα

Dl+1 e−imΦ(t), (2.7)
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where Qα is the tidal coupling coefficient (also used by Press & Teukolski 1977), defined

by

Qα = 〈ξα|∇(rlYlm)〉

=

∫
d3x ρξ∗α · ∇(rlYlm)

=

∫
d3x δρ∗α rlYlm. (2.8)

Here δρα = −∇ · (ρξα) is the Eulerian density perturbation. In deriving (2.7) we have

used the normalization

〈ξα|ξα〉 =

∫
d3x ρ ξ∗α · ξα = 1. (2.9)

Resonant excitation of a mode α occurs when ωα = mΩ, where Ω is the orbital fre-

quency.

In the absence of tidal interaction/resonance, the WD binary orbit decays due to

gravitational radiation, with time scale given by (Peters 1964)

tD =
D
|Ḋ|

=
5c5

64G3

D4

MM′Mt

= 3.2 × 1010
( M2

�

MM′

)( Mt

2M�

)1/3( Ω

0.1 s−1

)−8/3

s, (2.10)

where Mt = M + M′ is the total binary mass. When a strong tidal resonance occurs, the

orbital decay rate can be modified, and we need to follow the evolution of the orbit and

the mode amplitudes simultaneously. The gravitational interaction energy between M′

and the modes in star M is

W =

∫
d3x U(r, t)

∑
α

a∗α(t) δρ∗α(r)

= −
∑
α

M′MR2

D3 WlmQα e−imΦ a∗α(t), (2.11)

where we have restricted to the l = 2 terms and set G = 1. The orbital evolution
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equations, including the effects of the modes, are then given by

D̈ − DΦ̇2 = −
Mt

D2 −
∑
α

3Mt

D4 WlmQα eimΦaα

−
Mt

D2

(
A5/2 + B5/2Ḋ

)
, (2.12)

Φ̈ +
2ḊΦ̇

D
=

∑
α

im
Mt

D5 WlmQα eimΦaα

−
Mt

D2 B5/2Φ̇. (2.13)

The last terms on the right-hand side of equations (2.12) and (2.13) are the leading-order

gravitational radiation reaction forces, with (see Lai & Wiseman 1996 and references

therein)

A5/2 = −
8µ
5D

Ḋ
(
18v2 +

2Mt

3D
− 25Ḋ2

)
, (2.14)

B5/2 =
8µ
5D

(
6v2 −

2Mt

D
− 15Ḋ2

)
, (2.15)

where µ = MM′/Mt and v2 = Ḋ2 + (DΦ̇)2. In equations (2.12)-(2.15) we have set

G = c = 1. We have dropped the other post-Newtonian terms since they have negligible

effects on tidal excitations. The mode amplitude equation is given by equation (2.7), or,

b̈α − 2imΩḃα + (ω2
α − m2Ω2 − imΩ̇)bα =

M′WlmQα

Dl+1 , (2.16)

where

bα = aα eimΦ. (2.17)

2.3 White Dwarf G-Modes and Tidal Coupling Coefficients

The non-radial adiabatic modes of a WD can be found by solving the standard stellar

oscillation equations, as given in, e.g., Unno et al. (1989). The g-mode propagation

zone in the star is determined by ω2
α < N2 amd ω2

α < L2
l , where Ll =

√
l(l + 1)as/r is the
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Lamb frequency (as is the sound speed), and N is the Brünt-Väisälä frequency, as given

by

N2 = g2
[ dρ
dP
−

(
∂ρ

∂P

)
s

]
, (2.18)

where g is the gravitational acceleration, and the subscript “s” means that the adiabatic

derivative is taken. Alternatively, N2 can be obtained from (Brassard et al. 1991)

N2 =
ρg2χT

Pχρ

(
∇s − ∇ + B

)
, (2.19)

where

χT =
(∂ln P
∂lnT

)
ρ,{Xi}

, χρ =
(∂ln P
∂lnρ

)
T,{Xi}

,

∇ =
dlnT
dlnP

, ∇s =
(∂lnT
∂lnP

)
s,{Xi}

. (2.20)

The Ledoux term B accounts for the buoyancy arising from composition gradient:

B = −
χY

χT

dlnY
dlnP

, (2.21)

where

χY =

(
∂lnP
∂lnY

)
ρ,T
, (2.22)

and Y is the mass fraction of helium. This equation is valid for a compositional transition

zone containing helium and one other element, as is the case for typical compositionally

stratified DA WD models.

Figure 2.1 shows the profiles of the Brünt Vaisälä and Lamb frequencies for one of

the WD models adopted in this paper. These models were provided by G. Fontaine (see

Brassard 1991). Since the pressure in the WD core is almost completely determined

by electron degeneracy pressure, N2 ∝ χT is very small except in the non-degenerate

outer layers. As a result, g-modes are confined to the outer layers of the star below the

convection zone. Lower-order modes have higher eigenfrequencies, so they are confined

to regions where N2 is especially large, i.e., just below the convection zone. Higher
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Figure 2.1: The square of the Brünt Väisälä (solid line) and Lamb (dotted line) frequen-
cies and the density (thick solid line) as a function of normalized radius in a DA WD
model, with M = 0.6M�, R = 8.97 × 103 km, Teff = 10800 K. The spikes in the Brünt
Väisälä frequency are caused by the composition changes from carbon to helium, and
from helium to hydrogen, respectively.

order modes have lower eigenfrequencies and can thus penetrate into deeper layers of

the star where the value of N2 is smaller. Cooler WDs have deeper convection zones

that cause the modes to be confined to deeper layers where N2 is smaller. Consequently,

the eigenfrequencies and associated values of Qα tend to be smaller in cooler WDs due

to the decreased value of N2 in the region of mode propagation.

The other feature of WDs that strongly effects their g-modes is their composition-

ally stratified layers. The sharp composition gradients that occur at the carbon-helium

transition and the helium-hydrogen transition create large values of the Ledoux term B

[equation (2.21)], resulting in sharp peaks in N2 as seen in Figure 2.1. These peaks have

a large effect on the WD g-modes, leading to phenomena such as mode-trapping (e.g.,

Brassard 1991) and irregular period spectra. Thus, the eigenfrequencies and eigenfunc-
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Table 2.1: The eigenfrequency ω̄α, tidal overlap parameter Q̄α, and numerical f-mode
overlap c0 for the first six l = 2 g-modes of a white dwarf model. The white dwarf model
has Teff = 10800K, M = 0.6M�, and R = 8.97 × 103 km. Note that ω̄α and Q̄α are in
dimensionless units such that G = M = R = 1, and (GM/R3)1/2/(2π) = 0.053 Hz.

n ω̄α |Q̄α| c0

0 2.08 0.428 1
1 0.298 1.27e-3 -1.80e-6
2 0.186 2.60e-3 3.91e-6
3 0.125 3.25e-5 3.62e-8
4 0.0900 8.91e-5 6.45e-7
5 0.0821 4.24e-4 1.32e-6
6 0.0715 6.91e-5 -2.54e-6

Table 2.2: Same as table 1, for a WD model of identical mass and composition but with
Teff = 5080K.

n ω̄α |Q̄α| c0

0 2.01 0.439 1
1 0.251 1.00e-3 -2.03e-6
2 0.156 2.40e-3 -3.76e-6
3 0.107 1.79e-5 -1.25e-7
4 0.0723 1.53e-5 4.95e-7
5 0.0537 8.42e-5 1.52e-6
6 0.0513 1.26e-4 1.42e-6

tions of WD g-modes are very sensitive to WD models.

Tables 1-2 give the l = 2 f-mode and g-mode frequencies and their tidal coupling

coefficients for two WD models. While the full oscillation equations need to be solved

to accurately determine the f-modes, the Cowling approximation (in which the perturba-

tion in the gravitational potential is neglected) gives accurate results for g-modes. Since

high-order g-modes have rather small |Qα|, the mode eigenfunction must be solved accu-

rately to obtain reliable Qα. To ensure that this is achieved in our numerical integration,

we use the orthogonality of the eigenfunctions to check the accuracy of the value of Qα

(see Reisengger 1994 for a study on the general properties of Qα). Since the numeri-

cal determination of an eigenfunction is not perfect, it will contain traces of the other
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eigenfunctions, i.e.,

(ξα)num = cαξα + c0ξ0 + c1ξ1 + · · · , (2.23)

with cα ' 1 and |cβ| � 1 for β , α. This means that the numerical tidal overlap integral

is

(Qα)num = 〈∇(rlYlm)|(ξα)num〉

= cαQα + c0Q0 + c1Q1 + . . . (2.24)

Since |Q0| (for the f-mode) is of order unity, while |Qα| � 1 for g-modes, to ensure

(Qα)num accurately represents the actual Qα, we require

|c0| ' |〈ξ0|ξα〉num| � |Qα|. (2.25)

The results shown in tables 1-2 reveal that |c0| is always more than an order of magnitude

less than Q̄α, so the above condition is satisfied for the modes computed in this paper.

We note from tables 1-2 that while in general higher-order g-modes tend to have

smaller |Qα|, the dependence of |Qα| on the mode index n is not exactly monotonic. This

is the result of the mode trapping phenomenon associated with composition discontinu-

ities in the WD. To see this, we note that a mode with amplitude ξα has energy given by

Eα = ω2
α

∫
d3x ρ |ξα|

2, thus we can define the mode energy weight function

dEα

d ln P
= ω2

αρ r2[ξ2
r + l(l + 1)ξ2

⊥

]
Hp, (2.26)

where Hp = dr/d ln P = P/(ρg) is the pressure scale height, and we have used

ξα =
[
ξr(r) er + rξ⊥(r)∇

]
Ylm (2.27)

(er is the unit vector in the r-direction). Figures 2.2 and 2.3 display the weight functions

for several g-modes of WD models. We can see that the weight functions for all the low-

order modes are largest in the region below the convective zone near the spikes in N2
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Figure 2.2: The mode energy weight functions for the n = 1 (thickest line), n = 2
(thick line), and n = 5 (top line) modes (all for l = 2) for a WD with Teff = 10800K,
M = 0.6M�,R = 8.97 × 103km, displayed as a function of logP so that the structure of
the outer layers of the WD is more evident. The y-axis for a given mode is intended
only to show the relative value of the weight function. The squares of the Brünt Väisälä
(thin solid line) and Lamb (dotted line) frequencies are displayed to demonstrate how
their values constrain the region of mode propagation.

produced by the composition gradients. For the modes shown in Figure 2.2, the smooth

fall-off of the weight function just below the convective zone indicates that these modes

are confined by the falling value of the Lamb frequency in this region. The weight

functions of higher-order modes and the modes in WDs with deeper convective zones

may drop sharply at the convective boundary, indicating that these modes are trapped by

the convective zone rather than the decreasing Lamb frequency.

The weight functions also reveal the phenomenon known as mode trapping caused

by the composition gradients. Mode trapping is especially evident for the n = 2 mode,

as it is confined to the helium layer between the spikes in N2. It is clear that the mode

is reflected by the carbon-helium boundary at larger depths and by the helium-hydrogen

boundary at shallower depths. See Brassard (1991) for a more detailed description of
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Figure 2.3: Same as Figure 2.2, except for a WD model with Teff = 5080K. Note that
the convection zone extends deeper in this model, pushing the modes to larger depths.

the effects of mode trapping.

The weight function is essentially the energy of a mode as a function of radius, so

it tells us where orbital energy is deposited when a mode is excited. Since the weight

function is largest in the hydrogen and helium layers just below the convection zone,

most of the mode energy exists in this region of the WD. Thus, if the mode is damped,

most of the mode energy will be damped out in this region.

2.4 Numerical Results for Mode-Orbit Evolution Through Reso-

nance

Having obtained the mode frequency and the tidal coupling coefficient, we can deter-

mine the combined evolution of the resonant mode and the binary orbit using equations

(2.7), (2.12), and (2.13). These are integrated from well before resonance until well after
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the resonance is complete. The initial mode amplitude bα and its derivative ḃα (prior to

a resonance) are obtained by dropping the b̈α, ḃα and Ω̇ terms in equation (2.16), giving

bα '
M′WlmQα

Dl+1(ω2
α − m2Ω2)

, (2.28)

ḃα '
[
− (l + 1)

Ḋ
D

+
2m2ΩΩ̇

ω2
α − m2Ω2

]
bα, (2.29)

with Ω̇ ' −(3Ḋ/2D)Ω. These expressions are valid for for (ωα/mΩ)2−1 � Ω̇/(mΩ2) '

3/(2mΩtD) (see section 5).

The evolution equations (2.7), (2.12), and (2.13) form a very stiff set of differential

equations. The reason for this is that the problem involves two vastly different time

scales: the orbital decay time scale which is on the order of thousands of years, and

the orbital time scale (or the resonant mode oscillation period) which is on the order of

minutes. Consequently, a typical Runge-Kutta scheme would require the integration of

millions of orbits, demanding a high degree of accuracy for each orbit. To avoid this

problem, we employ the Rossenberg stiff equation technique (Press et al. 2007). The

integrator requires a Jacobian matrix of second derivatives, meaning that we need to

supply the 8 × 8 matrix of second derivatives corresponding to our 8 first-order differ-

ential equations. The evolution equations are sufficiently simple that this matrix can be

found analytically.

Figure 2.4 depicts an example of the mode amplitude and orbit evolution near the

resonance for the n = 3 g-mode. Before the resonance, the mode must oscillate with

the same frequency as the binary companion, so the amplitude |bα| is smooth. After the

resonance, the mode oscillates at its eigenfrequency (which is now different from the

forcing frequency). The amplitude of the mode continues to fluctuate after resonance

because it is still being forced by the binary companion, although the amplitude of these

fluctuations diminishes over time as the orbit moves further from resonance.
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Figure 2.4: Mode amplitude |bα| and orbital distance D as a function of time during
resonance. The amplitude and distance oscillate after resonance, causing the curves to
appear as filled shapes due to the short period of the oscillations with respect to the total
integration time. These oscillations occur due to the continued interaction between the
excited mode and the orbit. Note the sharp drop in orbital distance at resonance, which
is caused by the transfer of orbital energy into the mode. The mode parameters are given
in table I (n = 3). The companion mass is M′ = M = 0.6M�.

Figure 2.5 displays the average post-resonance amplitudes for the first five modes

given in Table I. Note that no mode exceeds a maximum amplitude of |bα| = 0.1, and

we expect that our linear approximation is a reasonable first approach to the problem

before non-linear effects can be included. In general, lower-order modes reach larger

amplitudes (due to their larger coupling coefficients), but higher-order modes with an

abnormally high value of Qα (trapped modes) may reach large amplitudes as well.
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Figure 2.5: The average post-resonance amplitudes for the first five modes given in
Table I. The open triangles mark the results obtained from numerical integration, and
the asterisks indicate the results predicted by the analytical estimate described in section
2.5. The analytical estimates are usually accurate within a factor of 10%. The n = 2 and
n = 5 modes are trapped modes.

Figure 2.6: The average post-resonance amplitude |bα| for the n = 4 mode given in Table
I as a function of the mass of the binary companion. The post-resonance amplitude
increases with the mass of the binary companion as predicted by the analytical estimate
except for very high companion masses.
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2.5 Analytic Estimate of the Resonant Mode Amplitude

Here we provide an analytic estimate of the mode amplitude attained during a resonance

as well as the temporal duration of the resonance (i.e., the characteristic time during

which the resonant mode receives most of its energy from the orbit).

For a WD oscillation mode with frequency ωα, the resonant orbital radius is

Dα =

(
m2Mt

ω2
α

)1/3

. (2.30)

Prior to the resonance, as the orbital radius D decreases, the mode amplitude grows

gradually according to equation (2.28). At the same time, the orbit also loses its energy

to gravitational waves (GWs) at the rate

ĖGW = −
32(MM′)2Mt

5c5D5 = −
MM′/2D

tD
, (2.31)

where tD is given by equation (2.10). We can define the beginning of resonance as the

point where the orbital energy is transferred to the mode faster than it is radiated away

by GWs. That is, the resonance begins at the radius D = Dα+(> Dα), as determined by

Ėα = |ĖGW|, (2.32)

where Eα is the energy contained in the mode. Near the resonance, the mode oscillates

at the frequency close to ωα, so we can write the mode energy as Eα ' 2ω2
αb2

α (including

both the m = 2 and m = −2 terms), assuming ωα � |ḃα/bα|. Thus we have Ėα '

4ω2
αbαḃα. Using equations (2.28) and (2.29) for bα and ḃα, we find

ω2
α − (mΩ)2 =

[
24ω4

αM′(WlmQα)2

MD5

]1/3

at D = Dα+ (2.33)

or

Dα+ = Dα

1 + 0.436
(

M′

M

)1/3(Mt

M

)−5/9

ω̄4/9
α Q̄2/3

α

 , (2.34)
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where we have used l = m = 2 and ω̄α, Q̄α are in dimensionless units where G = M =

R = 1. The mode energy at D = Dα+ is

Eα(Dα+) =0.0701
(

M′

M

)4/3(Mt

M

)−8/9

× ω̄10/9
α (WlmQ̄α)2/3 M2

R
. (2.35)

Since for D < Dα+, the orbital energy will be deposited into the mode much faster than

it is being radiated away, we approximate that all the orbital energy between Dα+ and

Dα is transferred to the mode. Thus the mode energy increases by the amount

∆Eα = 2 ×
(MM′

2Dα

−
MM′

2Dα+

)
, (2.36)

where we have multiplied by a factor of two to account for the fact that energy is also

deposited at a nearly equal rate before resonance as it is after resonance. Using equation

(2.34), we find

∆Eα =0.2804
(

M′

M

)4/3(Mt

M

)−8/9

× ω̄10/9
α (WlmQ̄α)2/3 M2

R
. (2.37)

This is exactly four times of equation (2.35). Thus the maximum mode energy after

resonance is Eα,max = Eα(Dα+) + ∆Eα, or

Eα,max ' 5.75 × 10−4
(

M′

M

)4/3(Mt

M

)−8/9

×

(
ω̄α

0.2

)10/9( Q̄α

10−3

)2/3M2

R
. (2.38)

The corresponding maximum mode amplitude is

bα,max '8.48 × 10−2
(

M′

M

)2/3(Mt

M

)−4/9

×

(
ω̄α

0.2

)−4/9( Q̄α

10−3

)1/3

. (2.39)
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Figures 2.5 and 2.6 compare our numerical results with the analytical expressions

(2.38)-(2.39). We find good agreement for all the WD resonant modes considered. Fig-

ure 2.5 verifies the dependence of bα,max on the mode frequency and the value of Q̄α,

while figure 2.6 verifies the dependence of bα,max on the mass of the binary compan-

ion (except for the highest mass cases discussed below). Therefore equations (2.38)

and (2.39) provide fairly accurate estimates of the mode amplitude and energy without

performing numerical integrations.

For the very high companion masses (M′ >∼ 103M) shown in Figure 2.6, our analyt-

ical formula significantly overestimates the post-resonance amplitude. The reason for

this is that the gravitational decay time scale is shorter if the companion is more massive.

If the companion is massive enough, the orbit will decay through resonance due to grav-

itational radiation before the orbital energy of equation (2.37) can be deposited in the

mode (see below). Consequently, the amplitude to which a mode is excited decreases if

the mass of the companion becomes very high. Therefore our analytical formula overes-

timates the post-resonance amplitude for extremely massive companions. For any rea-

sonable WD or NS masses, our analytical estimate is accurate, but for a super-massive

black hole the estimate may become inaccurate.

It is interesting that the above analytical results for the resonant mode energy is

independent of the gravitational wave damping time scale tD, in contrast to the NS/NS

or NS/BH binary cases. In fact, for the above derivation to be valid, the following four

conditions must be satisfied at Dα+:

(i) ωα �
∣∣∣ḃα/bα∣∣∣ , (2.40)

(ii) ω2
α − (mΩ)2 � mΩ̇, (2.41)

(iii) ω2
α − (mΩ)2 � 2mΩ

∣∣∣ḃα/bα∣∣∣ , (2.42)

(iv) ω2
α − (mΩ)2 �

∣∣∣b̈α/bα∣∣∣ . (2.43)
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Conditions (i) and (ii) both lead to

ωαtD � 3
[

ω2
α

ω2
α − (mΩ)2

]
; (2.44)

condition (iii) gives

ωαtD � 6
[

ω2
α

ω2
α − (mΩ)2

]2

; (2.45)

and condition (iv) yields

ωαtD �
√

18
[

ω2
α

ω2
α − (mΩ)2

]3/2

. (2.46)

In equations (2.44)-(2.46), the right-hand sides should be evaluated at Dα+. Clearly,

condition (iii) is most constraining. With

ω2
α − (mΩ)2

ω2
α

= 3
(

Dα+ − Dα

Dα

)
= 0.0064

(
M′

M

)1/3(Mt

M

)−5/9(ω̄α

0.2

)4/9( Q̄α

10−3

)2/3
, (2.47)

we see that condition (iii) is satisfied if

tD �7.3 × 105
(

R3

GM

)1/2 (
M′

M

)−2/3(Mt

M

)10/9

×

(
ω̄α

0.2

)−17/9( Q̄α

10−3

)−4/3

. (2.48)

Since tD is on the order of a thousand years or more for orbital frequencies comparable

to WD g-modes, condition (iii) is always satisfied for WD/WD or WD/NS binaries. On

the other hand, the conditions (i)-(iv) are not all satisfied for NS/NS or NS/BH binaries.

For very massive companions, the inequality of equation (2.48) may not hold. Using

equation (2.10) for tD, equation (2.48) implies (for Mt/M ' M′/M)

M′

M
�5.5 × 104

(
ω̄α

0.2

)−7/10( Q̄α

10−3

)6/5
×

(
M
M�

)−9/4( R
104km

)9/4
. (2.49)
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The above inequality implies our estimates are valid for any feasible companion except

a super-massive black hole.2 We can also use this inequality to examine the inaccuracy

of our estimate in the highest mass cases of Figure 2.6. Figure 2.6 was generated using

the n = 4 mode parameters listed in Table 1 for a WD of M = 0.6M� and R = 8.97×103

km. Plugging in these parameters, equation (2.49) requires

M′

M
� 1.7 × 103 (2.50)

for our analytical estimates in Figure 2.6 to be accurate. This explains why the analytical

estimates of Figure 2.6 are accurate when M′ <∼ 1000M but diverge from the numerical

results when M′ >∼ 1000M.

Given the maximum mode amplitude reached during a resonance, we can now esti-

mate the temporal duration of the resonance. Letting aα = cαe−iωαt, the mode amplitude

evolution equation (2.7) becomes

c̈α − 2iωαċα =
M′WlmQα

D3 eiωαt−imΦ. (2.51)

Assuming that during the resonance, ωα − mΩ ' 0, the right-hand-side of equation

(2.51) can be taken as a constant, we then have

ċα '
iM′WlmQα

2ωαD3 , (2.52)

i.e., the mode amplitude grows linearly in time. Thus, the duration of the resonance is

2Obviously, our estimate would not apply for a WD in a highly eccentric orbit around an intermediate
mass black hole, which may form in dense clusters as described by Ivanov & Papaloizou (2007).
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of order

tres =

∣∣∣∣∣bα,max

ċα

∣∣∣∣∣
' 3.42

(
M′

M

)−1/3(Mt

M

)5/9
ω̄−13/9
α Q̄−2/3

α

(
R3

M

)1/2
= 3.50 × 103

(
M′

M

)−1/3(Mt

M

)5/9
×

(
ω̄α

0.2

)−13/9( Q̄α

10−3

)−2/3 (
R3

M

)1/2
. (2.53)

Since the dynamical time (R3/GM)1/2 for typical WDs is on the order of one second,

the resonance duration is typically an hour or longer. Note that the above estimate is

formally valid only when [ω − mΩ(Dα+)] tres � 1, so that we can set ωα − mΩ ≈ 0

for the duration of the resonance. Using equations (2.47) and (2.53), we find [ωα −

mΩ(Dα+)]tres ≈ 1 for typical parameters. Thus we should consider equation (2.53) as an

order-of-magnitude estimate only. Also, we can check that the GW energy loss during

the resonance, ∆Egw ' (MM′/2Dα)(tres/tD), is much less than Eα,max, justifying our

derivation of Eα,max given by equation (2.38). Indeed, the above condition simplifies to

equation 2.49, since in both cases it is the energy carried away by gravitational waves

that is limiting the mode growth.

We can use the same method to solve for the size of the fluctuations in mode ampli-

tude after resonance. Due to the symmetry of the harmonic oscillator, the fluctuation in

mode amplitude about the mean value after the resonance is identical to the zeroth-order

estimate of the mode amplitude before resonance [see eq. (2.28)], i.e.,

∆a ≈
M′WlmQα

Dl+1(m2Ω2 − ω2
α)
. (2.54)

These fluctuations occur with frequency mΩ − ωα, since this is the difference in fre-

quency between the eigenfrequency at which the WD is oscillating and the orbital forc-

ing frequency. So, as the orbital frequency continues to increase after the resonance,
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the amplitude of the fluctuations becomes smaller while the frequency of the amplitude

oscillations becomes higher.

2.6 Effect of Mode Damping

The results in the previous two sections neglect mode energy damping in the WD. Since

the duration of the resonance is much longer than the mode period [see equation (2.53)],

internal mode damping could affect the energy transfer during resonance if the damp-

ing rate is sufficiently large. To address this issue, we incorporate a phenomenological

damping rate −γαωαȧα to the mode equation (2.7) to study how mode damping affects

energy transfer during a resonance. Figure 2.7 shows the excitation of a mode through

resonance for different values of γα. We see that, as expected, when the internal damping

time is larger than the resonance duration (equation 2.53), the maximum mode energy

achieved in a resonance is unaffected.

G-modes in white dwarfs are damped primarily by radiative diffusion. For suffi-

ciently large mode amplitudes, non-linear damping is also important (e.g., Kumar &

Goodman 1996; see section 2.7 for more discussion on this issue). Wu (1998) presents

estimates for the non-adiabatic radiative damping rates of WD g-modes in terms of

ωi = γωr. Extrapolating Wu’s values to l = 2 modes for a white dwarf of temperature

T = 10800 K, we find γ ∼ 10−11 for modes near n = 1 and γ ∼ 10−4 for high-order

modes with n >∼ 20. So, while the maximum amplitude of low-order modes is com-

pletely unaffected by non-adiabatic effects, high-order modes will damp on time scales

similar to the excitation time scale. Therefore these high-order modes will attain ampli-

tudes somewhat smaller than estimated in the previous section. This continual process

of high-order mode damping may extract energy out of the orbit more efficiently than
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Figure 2.7: The amplitude of a mode as a function of time near its resonance for different
values of the damping coefficient γα. The curves have γα = 0 (black), γα = 10−9 (dark
blue), γα = 10−8 (yellow-green), γα = 10−7 (light blue), γα = 10−6 (red), γα = 10−5

(green), and γα = 10−4 (purple). For this mode, we have set ωα = 0.1s−1 and Qα =

1 × 10−4 so that tres ≈ 105s. Note that the damping term does not greatly affect the
maximum mode amplitude except when γα >∼ 10−4, or when γαωαtres >∼ 1. Also note that
modes with larger values of γα evolve on a much shorter time scale because their orbits
decay quickly due to the conversion of orbital energy into heat via mode damping.

discrete resonance events, causing a steady decay of the binary’s orbit.

2.7 Discussion

We have shown that during the orbital decay of compact white dwarf binaries (WD/WD,

WD/NS or WD/BH), a series of g-modes can be tidally excited to large amplitudes (up

to 0.1 in dimensionless units) as the orbital frequency sweeps through the resonant mode

frequencies. Such mode excitations can significantly affect the orbital decay rate near

resonance. Indeed, to properly calculate the resonant mode amplitude, it is necessary

30



to take into account of the back-reaction of the excited modes on the orbit. One conse-

quence of the resonant mode excitations is that the low-frequency (<∼ 10−2 Hz) gravita-

tional waveforms emitted by the binary, detectable by LISA, will deviate significantly

from the point-mass binary prediction. This is in contrast to the case of neutron star

binaries (NS/NS or NS/BH) studied previously (Reisenegger & Goldreich 1994; Lai

1994; Shibata 1994; Ho & Lai 1999; Lai & Wu 2006; Flanagan & Racine 2006), where

the resonant mode amplitude is normally too small to affect the binary orbital decay

rate and the gravitational waveforms to be detected by ground-based gravitational wave

detectors such as LIGO and VIRGO.

In the case of WD binaries studied in this paper, the number of of orbits skipped as

a result of a resonant mode excitation is

∆Norb =
tD

Porb

Eα,max

Eorb
, (2.55)

where tD is the gravitational wave decay time scale given in equation (2.10), Porb is the

orbital period, and Eorb is the orbital energy at resonance. Using equation (2.38) for

Eα,max, we find

∆Norb =3.4 × 106
( M17

�

M9M′6M2
t

)1/9
( R
104km

)2/3( Q̄α

10−3

)2/3( Ω

0.1s−1

)−11/9

. (2.56)

The number of skipped orbital cycles should be compared to the number of orbits in a

decay time, expressed by

dNorb

d ln Ω
=

1
3π

ΩtD

= 3.3 × 108
( M2

�

MM′

)( Mt

2M�

)1/3( Ω

0.1 s−1

)−5/3

. (2.57)

The huge number of skipped orbital cycles implies that such a resonant interaction

would be important, but because the number of skipped orbital cycles is much smaller
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than the number of orbital cycles in a decay time, resonances will not dominate the

decay process.

A second possible consequence of resonant mode excitations is that the large mode

energy may lead to significant heating of the white dwarf prior to the binary merger.

Indeed, equation (2.38) shows that for typical binary parameters, the mode energy can

be a significant fraction (∼ 10−4–10−3) of the gravitational binding energy of the star,

and comparable to the thermal energy. Indeed, the thermal energy of the WD is of order

Eth ≈
MkTc
Amp

, where Tc is the core temperature of the WD and A is the mean atomic

weight. The ratio of post-resonance mode energy to thermal energy is then

Eα,max

Eth
≈ 1.7

(
M′

M

)4/3(Mt

M

)−8/9(ω̄α

0.2

)10/9

×

(
Q̄α

10−3

)2/3(107K
Tc

) (
M
M�

) (
104km

R

)
. (2.58)

This implies that the white dwarf may become bright thousands of years before the

binary merger.

A third consequence that may result from a resonance is significant spin-up of the

WD. If we assume that all the angular momentum transferred to the WD during a res-

onance eventually manifests as rigid body rotation of the WD, the change in spin fre-

quency of the WD is

∆Ωs =
Eα,max

IΩ
, (2.59)

where Ωs is the spin frequency of the WD and I is its moment of inertia. Plugging in

our expression for Eα,max, we find

∆Ωs =0.29
(
0.2
κ

)(
M′

M

)4/3(Mt

M

)−8/9

×

(
ω̄α

0.2

)−8/9( Q̄α

10−3

)2/3
Ω, (2.60)

where κ = I/(MR2) ≈ 0.2. We can thus see that a given resonance may deposit enough

angular momentum to completely spin up the WD (or significantly alter its spin) by
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the time the mode damps out. This implies that mode resonances are potentially very

important in the spin synchronization process.

However, before these implications can be taken seriously, one should be aware of

the limitations of the present study. One issue is the assumption that the white dwarf is

non-rotating (and not synchronized), already commented on in section 1. More impor-

tantly, we have assumed that the white dwarf oscillations can be calculated in the linear

regime. While the mass-averaged dimensionless amplitude |aα| = |bα| of the excited

g-modes are less than 0.1 [see Fig. 5 and Eq. (2.39)], the physical fluid displacements

in the stellar envelope are much larger since g-modes of white dwarfs are mainly con-

centrated in the outer, non-degenerate layers. Figure 2.8 gives some examples: it shows

the horizontal and radial displacements of three modes at their post-resonance ampli-

tudes. These are obtained from ξ = aαξα, with ξα the normalized eigenfunction (see

section 2.3) and aα computed from equation (2.39) with M′ = M. In general, the linear

approximation is valid only if |ξ| � |kr|
−1, where kr is the WKB wave number, given by

k2
r '

l(l + 1)(N2 − ω2)
ω2r2 . (2.61)

Clearly, the three modes depicted in Fig. 8 strongly violate the linear approximation

beyond the radius r ≈ 0.85R, near the jump in N2 associated with the carbon-helium

boundary.

Therefore, the results presented in this paper should be treated with caution as non-

linear effects will likely limit mode growth. Rather than increasing to the large dis-

placements shown in Figure 2.8, the white dwarf oscillations will undergo non-linear

processes such as mode coupling that will transfer energy to high-order modes. These

high-order modes have much shorter wavelengths and thus damp on very short time

scales. As non-linearity is most important in the outer layers of the white dwarf, we ex-

pect that excited oscillations will dissipate their energy preferentially in the outer layers
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Figure 2.8: The horizontal (solid line) and radial (dashed line) displacements of the
n = 1 (top panel) and n = 5 (bottom panel) modes as a function of radius. The physical
displacements are calculated using the analytical estimates for the post-resonance am-
plitudes given in equation 2.39 using M = M′, giving |a1| = 0.0566 and |a5| = 0.0695.
Also shown is inverse of the WKB wave number 1/kr (dotted line).

and will not reflect back into the stellar interior. We plan to address these issues in our

next paper (Fuller & Lai 2012).
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CHAPTER 3

DYNAMICAL TIDES IN COMPACT WHITE DWARF BINARIES: TIDAL

SYNCHRONIZATION AND DISSIPATION

3.1 Introduction1

Compact white dwarf (WD) binary systems (with orbital periods in the range of minutes

to hours) harbor many interesting and unanswered astrophysical questions. An increas-

ing number of such systems are being discovered by recent surveys (e.g. Mullally et al.

2009; Kulkarni & van Kerkwijk 2010; Steinfadt et al. 2010; Kilic et al. 2011; Brown

et al. 2011; see Marsh 2011 for a review). The orbits of these systems decay via the

emission of gravitational waves, which could be detected by the planned Laser Interfer-

ometer Space Antenna (LISA) (Nelemans 2009). Depending on the WD masses and the

physics of the merger process, these merging WD systems may produce single helium-

rich sdO/sdB stars, giant stars (R CrB stars), stable mass transfer AM CVn binaries, or

possibly underluminous supernovae. Most importantly, compact WD binaries in which

the total mass is near the Chandrasekhar limit are thought to be the probable progeni-

tors of type Ia supernovae upon a stellar merger at the end of the orbital decay process

(Webbink 1984; Iben & Tutukov 1984). Recent studies have provided support for this

“double degenerate” scenario (e.g., Gilfanov & Bogdan 2010; Di Stefano 2010; Maoz

et al. 2010) and even sub-Chandrasekhar WD mergers may lead to type Ia supernovae

(van Kerkwijk et al. 2010).

Prior to merger, tidal interactions may affect the properties of the binary WDs and

their evolutions, including the phase evolution of the gravitational waves. Previous stud-

ies have focused on equilibrium tides (e.g., Iben et al. 1998; Willems et al. 2010), cor-

1This chapter is based on Fuller & Lai (2012B).
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responding to quasi-static deformation of the star. Such equilibrium tides are unlikely to

play a role in the tidal synchronization/dissipation process. Iben et al. (1998) estimated

the effect of tidal heating in the WD based on the assumption that the (spherically av-

eraged) local heating rate is equal to the rate of rotational energy deposition required to

maintain synchronization. They suggested that the binary WDs may brighten by several

magnitudes before merger.

In fact, in a compact WD binary, as the orbital decay rate due to gravitational wave

radiation increases rapidly with decreasing orbital period, it is not clear if tidal effects are

sufficiently strong to drive the binary system toward synchronous rotation. The critical

orbital period for synchronization is unknown. For this reason, the majority of recent

WD merger simulations (e.g., Segretain et al. 1997; Loren-Aguilar et al. 2009; Pak-

mor et al. 2010,2011) have assumed the merging WDs to be non-synchronized prior to

merger. However, whether the WDs are spin-synchronized may affect the merger prod-

uct and the possible supernova signature: for example, the strong velocity shear between

the stars upon contact would be significantly reduced for the merger of a synchronized

binary. The degree of synchronization also determines the tidal luminosity of the binary

prior to merger. Indeed, it is possible that tidal dissipation contributes significantly to

the brightness of some of the recently observed WD binaries (e.g., Brown et al. 2011).

In a recent paper (Fuller & Lai 2011, hereafter Paper I), we used linear theory to cal-

culate the the excitation of discrete gravity modes in a WD due to the tidal gravitational

field of a compact companion star (a WD, neutron star or black hole). The existence

of discrete modes requires that gravity waves be reflected near the surface of the WD.

In this case, tidal energy and angular momentum is transferred only near a mode res-

onance, when the g-mode frequency σα equals 2Ω (where Ω is the orbital frequency).

Our calculations showed that while the dimensionless (mass-weighted) amplitude of the
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resonantly excited g-mode is not extremely non-linear (it approaches ≈ 0.1), the dis-

placement associated with the mode becomes large in the outer layer of the WD where

the density is low. In other words, while the mode does not reach a non-linear ampli-

tude in the bulk interior of the star, it becomes very non-linear in the outer layers even

before resonance. We concluded that tidally excited gravity waves are likely to contin-

ually damp in the outer layer of the WD, preventing the formation of discrete modes. A

proper treatment of dynamical tides in binary WDs must take account of this continuous

wave damping.

In this paper, we calculate the tidal excitation of gravity waves in binary WDs as-

suming that the waves are efficiently damped in the WD envelope. To this end, we

implement an outgoing wave boundary condition near the WD surface. Unlike grav-

ity modes (which have a set of discrete eigenfrequencies), the outgoing wave boundary

condition permits the excitation of gravity waves at all frequencies, and thus allows for

a continuous process of tidal dissipation. Similar calculations have been implemented

for early-type stars (Zahn 1975,1977; Goldreich & Nicholson 1989) and solar-type stars

(Goodman & Dickson 1998; Ogilvie & Lin 2007). In early-type stars, gravity waves are

excited at the boundary between the convective core and radiative envelope, propagate

outwards and dissipate in the outer envelope. In solar-type stars, gravity waves are sim-

ilarly excited at the interface between the radiative core and convective envelope, but

propagate inward before dissipating (via non-linear wave breaking) near the center of

the star (Barker & Ogilvie 2010,2011). Unlike main-sequence stars, WDs do not con-

tain a simple two-zone structure of convective and radiative regions, and it is not clear

how and to what extent gravity waves are excited. The outgoing wave outer boundary

condition allows us to calculate the rate at which energy and angular momentum are

transferred to the WD as a function of orbital period. We can then calculate the orbital

period at which tidal effects can compete with orbital decay due to gravitational radi-

37



ation. At this orbital period, the synchronization process can begin. Furthermore, by

scaling our results to rotating WDs, we can determine the WD spin period and energy

dissipation rate at any orbital period.

This paper is organized as follows. In Sections 3.2-3.4 we derive the basic equations

for tidally forced stellar oscillations, the boundary conditions and the tidal angular mo-

mentum and energy transfer rates. In Section 3.5 we discuss our numerical method and

present several test calculations, where we emphasize the importance of using a self-

consistent stellar model in order to obtain reliable amplitudes for tidally excited gravity

waves. In Section 3.6 we present our numerical calculations of wave excitation for re-

alistic WD models. Since our numerical results reveal a complicated dependence of

the tidal energy transfer rate on the tidal frequency, we examine a simple semi-analytic

model in Section 3.7 to shed light on the mechanism of gravity wave excitation. In

Section 3.8 we use the results of previous sections to study the long-term spin-orbit

evolution of WD binaries, including spin synchronization, the tidal effect on the low-

frequency gravitational radiation waveforms and tidal heating of the WDs. We conclude

in Section 3.9 with a discussion of theoretical uncertainties and future work.

3.2 Basic Equations

The dynamical tide of the WD (mass M) is driven by the external gravitational potential

of the the companion (mass M′). The leading order (quadrupole) potential is

Uex(r, t) = U(r)
[
Y22(θ, φ)e−iωt + Y∗22(θ, φ)eiωt

]
(3.1)

with

U(r) = −
GM′W22

a3 r2. (3.2)
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Here a is the orbital separation, ω = 2Ω is the tidal frequency for a non-spinning WD

(we will account for the spin effect in Section 3.8), Ω is the orbital frequency, and

W22 =
√

3π/10. The actual fluid perturbations in the WD can be written as ξac(r, t) =

ξ(r, t) + ξ∗(r, t) for the Lagrangian displacement and δPac(r, t) = δP(r, t) + δP∗(r, t)

for the Eulerian pressure perturbation, and similarly for other quantities. In the fol-

lowing, we shall consider perturbations (ξ, δP, etc.) driven by the potential U(r, t) =

U(r)Y22(θ, φ)e−iωt. We shall adopt the Cowling approximation (so that the gravitational

potential perturbation δΦ associated with the density perturbation is neglected, i.e.,

δΦ = 0), which is valid for gravity waves in the star. We will consider adiabatic os-

cillations, for which the Lagrangian perturbations in pressure and density are related by

∆P = a2
s∆ρ, where as is the adiabatic sound speed. This is a good approximation in the

bulk of the star where the thermal time is much longer than the wave period.

Letting

δP(r, t) = δP(r)Y22(θ, φ)e−iωt, (3.3)

and

ξ(r, t) =
[
ξr(r)r̂ + ξ⊥(r)r∇⊥

]
Y22(θ, φ)e−iωt, (3.4)

the fluid perturbation equations reduce to

1
r2

(
r2ξr

)′
−

g
a2

s
ξr +

1
ρa2

s

(
1 −

L2
l

ω2

)
δP −

l(l + 1)U
ω2r2 = 0, (3.5)

and
1
ρ
δP′ +

g
ρa2

s
δP +

(
N2 − ω2)ξr + U′ = 0, (3.6)

where the ′ denotes d/dr. In equations (3.5) and (3.6), Ll and N are the Lamb and Brünt-

Vaisälä frequencies, respectively, given by [note we will continue to use the notations

Ll, l(l + 1), and m, although we focus on l = m = 2 in this paper]

L2
l =

l(l + 1)a2
s

r2 (3.7)
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and

N2 = g2
( dρ
dP
−

1
a2

s

)
. (3.8)

The other perturbation variables are related to δP and ξr by

ξ⊥ =
1

rω2

(
δP
ρ

+ U
)
, (3.9)

δρ =
1
a2

s
δP +

ρN2

g
ξr. (3.10)

Defining Z = χ−1/2r2ξr, where

χ =
r2

ρa2
s

( L2
l

ω2 − 1
)
, (3.11)

equations (3.5) and (3.6) can be combined to yield

Z′′ + k2(r)Z = V(r). (3.12)

Here,

k2(r) =
χρ(N2 − ω2)

r2 +
1
2

(
χ′

χ

)′
−

1
4

(
χ′

χ

)2

+
g
a2

s

[
−(g/a2

s)
′

g/a2
s

+
χ′

χ
−

g
a2

s

]
(3.13)

and

V(r) = χ−1/2
[ l(l + 1)

ω2

(
−χ′

χ
+

g
a2

s

)
+

2r
a2

s

]
U. (3.14)

In the WKB limit |k| � 1/H and |k| � 1/r, where H = |P/P′| ' a2
s/g is the pressure

scale height, equation (3.13) simplifies to

k2(r) =
1

a2
sω

2 (L2
l − ω

2)(N2 − ω2). (3.15)

This is the standard WKB dispersion relation for non-radial stellar oscillations (e.g.,

Unno et al. 1989). For ω2 � L2
l and ω2 � N2, the wave equation (3.12) reduces to

Z′′ +
l(l + 1)(N2 − ω2)

r2ω2 Z ' −χ−1/2 l(l + 1)N2

ω2

U
g
. (3.16)
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Then, as long as |Z′′/Z| � |χ′′/χ| (which we expect to be true because Z′′ ≈ −k2Z

and χ′′ ∼ χ/H2), equation (3.16) is identical to the oscillation equations used by Zahn

(1975) and Goodman & Dickson (1998).

3.3 Boundary Conditions

Equations (3.5) and (3.6) or equation (3.12) can be solved with the appropriate boundary

conditions at r = rout near the stellar surface and at r = rin → 0 at the center of the star.

The general solution of equation (3.12) can be written as

Z(r) = c+Z+(r) + c−Z−(r) + Zeq(r), (3.17)

where c+, c− are constants. Z+(r) and Z−(r) are two independent solutions of the homo-

geneous equation Z′′ + k2Z = 0, and Zeq(r) represents a particular solution of equation

(3.12). We choose the outer boundary rout to be in the wave zone (k2 > 0). If k2(r)

varies slowly such that |k′/k| � k > 0, then the two independent WKB solutions to the

homogeneous equation are

Z±(r) =
1
√

k
exp

(
± i

∫ r

ro

kdr
)
, (3.18)

where ro is an interior point (ro < rout). For ω2 � L2
l , the WKB wave dispersion relation

[equation (3.15)] reduces to ω2 = N2k2
⊥/(k

2 + k2
⊥), where k2

⊥ = l(l + 1)/r2, which implies

that the radial component of the group velocity is −ωk/(k2 + k2
⊥). Thus, with ω > 0

and k > 0, Z− ∝ e−i
∫ r

ro
kdr represents an outgoing wave, while Z+ ∝ ei

∫ r
ro

kdr represents an

ingoing wave. An approximate particular solution of equation (3.12) is

Zeq(r) '
V
k2 −

1
k2

( V
k2

)′′
, (3.19)
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where the second term is smaller than the first by a factor of (kH)2 or (kr)2. This repre-

sents the “non-wave” equilibrium solution.2

Throughout this paper, we adopt the radiative condition at the outer boundary (r =

rout), i.e., we require that only an outgoing wave exists:

Z(r) ' Zeq(r) +
c−
√

k
exp

(
− i

∫ r

ro

kdr
)
. (3.20)

This implicitly assumes that waves propagating toward the WD surface are completely

damped by radiative diffusion (Zahn 1975) or by non-linear processes. We will check

this assumption a posteriori from our numerical results (see Section 3.6.5). Thus, near

the outer boundary, the radial displacement ξr behaves as (for ω2 � L2
l )

ξr(r) =
χ1/2

r2 Z(r)

= ξ
eq
r (r) +

c−√
ρr2(N2 − ω2)

exp
(
− i

∫ r

ro

kdr
)
. (3.21)

Here ξeq
r represents the equilibrium tide

ξ
eq
r '

(
−

U
g

) N2

N2 − ω2

[
1 −

2gr
l(l + 1)a2

s

ω2

N2

]
, (3.22)

where we have retained only the first term of equation (3.19). For ω2 � N2, this further

simplifies to ξeq
r ' −U/g (Zahn 1975). The constant c− specifies the amplitude of the

outgoing wave which is eventually dissipated in the stellar envelope; this is the constant

we wish to determine from numerical calculations.

In practice, to implement equation (3.21) at the outer boundary, we require a very

accurate calculation of the non-wave solution ξeq
r . This can become problematic when

the conditions |k| � 1/H and ω � Ll are not well satisfied. Since the transverse

displacement ξ⊥ for gravity waves is much larger than the radial displacement in the

2Note that the equilibrium tide usually refers to the f-mode response of the star to the tidal force. Here,
we use the term “equilibrium” to refer to the “non-wave” solution.
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wave zone, it is more convenient to use ξ⊥ in our outer boundary condition. We define

Z1(r) =

(
ρ

D

)1/2

r2ω2ξ⊥(r), (3.23)

with D ≡ N2 − ω2. Equations (3.5) and (3.6) can be rearranged to yield

Z′′1 + k2
1(r)Z1 = V1(r), (3.24)

where

k2
1(r) = −

1
4

[(
ln
ρr2

D

)′]2

−
1
2

(
ln
ρr2

D

)′′
−

(N2

g

)′
−

N2

g

(
ln

r2

D

)′
+
ω2

a2
s

+
l(l + 1)D

r2ω2 (3.25)

and

V1(r) = −

(
ρr2

D

)1/2

×{
N2

g
U

[
ln

(r2N2

Dg
U

)]′
−
ω2

a2
s

U
}
. (3.26)

For k1 � 1/H and ω2 � L2
l , the functions k2

1(r) and V1(r) simplify to

k2
1(r) '

l(l + 1)(N2 − ω2)
ω2r2 (3.27)

and

V1(r) ' −
(
ρr2

D

)1/2 D
r2

(Ur2

g
N2

D

)′
. (3.28)

Again, adopting the radiative boundary condition at r = rout, we have

Z1(r) '
V1

k2
1

−
1
k2

1

(V1

k2
1

)′′
+

c−
k1

exp
(
− i

∫ r

ro

k1dr
)
, (3.29)

where c− is a constant. Thus, the transverse displacement ξ⊥(r) behaves as

ξ⊥(r) =

(D
ρ

)1/2 1
r2ω2 Z1(r)

= ξ
eq
⊥ + c−

( k1

ρr2

)1/2

exp
(
− i

∫ r

ro

k1dr
)
, (3.30)
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where several constants have been absorbed into c−. The equilibrium tidal transverse

displacement ξeq
⊥ (r) is given by

ξ
eq
⊥ (r) ' −

1
l(l + 1)r

(Ur2

g
N2

D

)′
. (3.31)

For ω2 � N2, this reduces to (for l = 2)

ξ
eq
⊥ (r) ' −

1
6r

(Ur2

g

)′
, (3.32)

in agreement with Goldreich & Nicholson (1989). Thus, we implement the radiative

boundary condition at r = rout as

(
ξ⊥ − ξ

eq
⊥

)′
=

[
−
(
ρr2/k1

)′
2
(
ρr2/k1

) − ik1

](
ξ⊥ − ξ

eq
⊥

)
, (3.33)

with ξ⊥ computed from ξr and δP using equation (3.9).

The inner boundary condition can be found by requiring the radial displacement to

be finite at the center of the star. This requires

ξr =
l
ω2r

(
δP
ρ

+ U
) (

Near r = 0
)
. (3.34)

3.4 Angular Momentum and Energy Flux

As the wave propagates through the star, it carries an angular momentum flux to the

outer layers. At any radius within the star, the z component of the time-averaged angular

momentum flux is

J̇z(r) =

〈 ∮
dΩr2ρ

(
δvr + δv∗r

)(
δvφ + δv∗φ

)
r sin θ

〉
, (3.35)

where
〈
...
〉

implies time averaging. With

δvr = −iωξr(r)Ylme−iωt (3.36)
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and

δvφ = −iωξ⊥(r)r∇φYlme−iωt =
mωξ⊥(r)

sin θ
Ylme−iωt, (3.37)

we find

J̇z(r) = 2
∮

dΩr3ρω2Re
[
iξ∗r (r)Y∗lmmξ⊥(r)Ylm

]
= 2mω2ρr3Re

(
iξ∗rξ⊥

)
. (3.38)

In the wave zone, the fluid displacement consists of an equilibrium (“non-wave”)

component and a dynamical (wave) component, ξ = ξeq + ξdyn. Since the equilib-

rium tide component is purely real (assuming negligible dissipation of the equilibrium

tide), Re
(
iξeq∗

r ξ
eq
⊥

)
= 0, and the equilibrium tide does not contribute to angular momen-

tum transfer. The cross terms Re
(
iξdyn∗

r ξ
eq
⊥

)
, and Re

(
iξeq∗

r ξ
dyn
⊥

)
are opposed by a nearly

equal and opposite Reynold’s stress term (see Goldreich & Nicholson 1989) and do not

contribute significantly to angular momentum transfer. Thus, the Re
(
iξdyn∗

r ξ
dyn
⊥

)
term

dominates angular momentum transfer.3 Equation (3.38) then becomes

J̇z(r) =2mω2ρr3Re
[
iξdyn∗

r ξ
dyn
⊥

]
. (3.39)

In the outer layers of the WD where ξdyn is a pure outgoing wave (∝ e−ikr), equation

(3.5) can be rearranged to obtain the relationship between ξ
dyn
⊥ and ξ

dyn
r in the WKB

approximation (k � 1/H) with ω2 � L2
l :

ξ
dyn
⊥ ' −i

kr
l(l + 1)

ξ
dyn
r . (3.40)

Then the angular momentum flux is

J̇z ' 2ml(l + 1)
ω2ρr2

k
|ξ

dyn
⊥ |

2

'
4
√

l(l + 1)ω3ρr3

N
|ξ

dyn
⊥ |

2. (3.41)

3It can be shown that in the WKB limit the Reynold’s stress associated with the dynamical response
is negligible.
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where we have used the dispersion relation (equation 3.27) with ω2 � N2 and set m = 2.

This expression agrees with that found in Goldreich & Nicholson (1989). From the

scaling of ξdyn
⊥ provided in equation (3.33), we see that the angular momentum flux is

constant (independent of radius) in the outer layers of the star. Since the wave pattern

frequency (in the inertial frame) is Ω (the orbital frequency), the energy flux carried by

the wave is given by Ė = ΩJ̇z.

Once we have solved our differential equations (3.5 and 3.6) with the appropriate

boundary conditions, we can use equation (3.39) to determine where angular momentum

and energy are added to the wave, i.e., where the wave is generated. In the WD interior,

the waves travel both inwards and outwards and thus carry no net angular momentum,

so the value of J̇z oscillates around zero. However, near the outer boundary, the value

of J̇z is constant and positive because there only exists an outgoing wave. The region

where the value of J̇z rises to its constant value is the region of wave excitation, because

it is in this region where energy and angular momentum are added to the waves (see

Section 3.6.3).

The energy and angular momentum carried by the outgoing wave is deposited in the

outer envelope of the star. Thus, the constant values of J̇z and Ė near the outer boundary

represent the net angular momentum and energy transfer rates from the orbit to the WD.

Since ξdyn
⊥ ∝ M′/a3, the angular momentum and energy transfer rates can be written in

the form

J̇z = T0F(ω), Ė = T0ΩF(ω), (3.42)

where

T0 ≡ G
(

M′

a3

)2

R5, (3.43)

and F is a dimensionless function of the tidal frequency ω and the internal structure of

the star. For WDs with rotation rate Ωs, the tidal frequency is ω = 2(Ω −Ωs).
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3.5 White Dwarf Models

Figure 3.1 depicts three WD models provided by G. Fontaine (see Brassard et al. 1991).

These WD models are taken from an evolutionary sequence of a M = 0.6M� WD, at

effective temperatures of T = 10800K, T = 6000K, and T = 3300K. The WD has a

radius R ' 8.97 × 108cm and a carbon-oxygen core surrounded by a ∼10−2M helium

layer, which in turn is surrounded by a ∼10−4M layer of hydrogen. The models shown

have been slightly altered in order to ensure thermodynamic consistency (see Section

3.6.1).

The Brünt-Väisälä frequency can be expressed as

N2 =
g2ρ

P
χT

χP

(
∇ad − ∇ + B

)
, (3.44)

where the symbols have their usual thermodynamic definitions, and the Ledoux term B

accounts for composition gradients (see Brassard et al. 1991). In the core of the WD,

the value of N2 is very small due to the high degeneracy pressure, which causes χT in

equation (3.44) to be small. The sharp spikes in N2 are created by the carbon-helium and

helium-hydrogen transitions, and are characteristic features of WD models. These sharp

features in realistic WDs make it difficult to construct toy WD models or to understand

how gravity waves propagate through the WD. From Figure 3.1, it is evident that cooler

WDs have smaller values of N2 throughout their interiors. However, the spikes in N2

have little dependence on WD temperature because they are produced by composition

gradients rather than thermal gradients, thus these features are unlikely to be strongly

affected by tidal heating.
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Figure 3.1: The square of the Brünt-Väisälä (thin solid lines) and Lamb (dashed lines)
frequencies (for l = 2), in units of GM/R3, and the density (thick solid line) as a function
of normalized radius in three WD models. The models are taken from an evolutionary
sequence of a DA WD with M = 0.6M�, R = 8.97 × 103 km, and effective temperatures
of T = 10800K (top), T = 6000K (middle), and T = 3300K (bottom). The spikes in the
Brünt Väisälä frequency are caused by the composition changes from carbon to helium,
and from helium to hydrogen, respectively. Note the formation of a convective zone just
below the carbon-helium transition zone as the WD cools.
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3.6 Numerical Calculations of Tidal Response

3.6.1 Numerical Method and Importance of Self-Consistent Stellar

Model

To calculate the amplitude of the gravity waves excited in a WD by its companion, we

integrate the inhomogeneous equations (3.5) and (3.6) with the appropriate boundary

conditions given by equations (3.33) and (3.34). We use the relaxation method dis-

cussed by Press et al. (2007). The integration requires a grid of points containing stellar

properties (ρ, N2, a2
s , g) as a function of radius, and solves the equations on a grid of

(possibly identical) relaxation points.

When creating the grid of data points representing the stellar structure, one must be

very careful in ensuring that the stellar properties are consistent with one another. In

particular, the Brünt Väisälä frequency is given by

N2 = −g
(
ρ′

ρ
+

g
a2

s

)
. (3.45)

If the value of N2 in our stellar grid is not exactly equal to the right hand side of the

above equation as calculated from the values of ρ, g, and a2
s , the stellar properties will

not be self-consistent. Such inconsistency may arise from the inaccuracy of the stellar

grids, or from the interpolation of the stellar grids (even if the original grids are exactly

self-consistent). We have found that even a small inconsistency can lead to a large error

in the computed wave amplitude. The reason for this can be understood by examining

equation (3.16). When tracing back to equations (3.5) and (3.6), one can see that the N2

term on the right-hand side is actually the sum of two terms. That is, the value of N2

on the right-hand side of equation (3.16) is calculated via equation (3.45) from our grid

of ρ, a2
s , and g values, while the N2 term on the left hand side of the equation is taken
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directly from our grid of N2 values. If these two values of N2 differ (by the amount

δN2), then a “false”excitation term will be introduced on the right-hand side of equation

(3.16), given by

V f ' −
l(l + 1)δN2

r2ω2

U
g
. (3.46)

This false term can vary rapidly with radius depending on the error in the stellar grid. In

Section 3.7, we discuss how sharp changes in the excitation term can be responsible for

the excitation of the dynamical component of the tidal response. Thus, the false excita-

tion term introduced by even small numerical inconsistencies can cause large errors in

calculations of the dynamical tide.

To test our methods, we calculated the tidal response for a simple massive star model.

The results are discussed in Appendix A, and are consistent with previous studies of

gravity waves in massive stars (e.g., Zahn 1975,1977 and Goldreich & Nicholson 1989).

3.6.2 Calculation with a Toy White Dwarf Model

To understand wave excitation in WDs, we first examine a toy model constructed to

mimic the structure of a WD. Examining the Teff = 10800K model, we see that it con-

tains a sharp rise in N2 at the carbon-helium boundary, preceded by a small dip in N2

near the top of the carbon layer. Consequently, we have created a toy model with a simi-

lar dip and rise in N2 in the outer part of the star. To create this model, we first construct

a smooth density profile (identical to that of an n = 2 polytrope, along with a smooth

N2 profile that mimics the dip-rise features associated with the C-He transition in real

WDs. Next, we compute a thermodynamically consistent sound speed profile using the

equation

a2
s =

( 1
dP/dρ

−
N2

g2

)−1

. (3.47)
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Figure 3.2: The square of the Brünt Vaisälä (thin solid line) and Lamb (dashed line)
frequencies (for l = 2), in units of GM/R3, as a function of normalized radius in a toy
WD model. Also plotted is the stellar density (thick solid line). The stellar properties
are only plotted out to r = 0.9R, the location where the outer boundary condition is
imposed in the tidal excitation calculation.

Since the density profile is that of a polytrope, the dP/dρ term can be calculated analyt-

ically.

We solve the forced oscillation equations as a function of the tidal frequency ω. Fig-

ure 3.3 shows the energy flux and wave amplitude as a function of radius for a given

value of ω. The small oscillations in energy flux are due to imperfect numerical calcu-

lation of the dynamical component of the wave and do not actually contribute to energy

or angular momentum transfer. We see that waves are excited near the dip of N2 (before

N2 rises to a maximum). This is similar to the location of wave excitation in real WD

models (see Section 3.6.3). The dip in N2 causes the wave to have a larger wavelength
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Figure 3.3: Dynamical tide in a toy WD model (based on the model depicted in Figure
3.2) driven by a companion of mass M′ = M, with the tidal frequency ω = 2.3 × 10−2.
Top: The energy flux Ė = ΩJ̇z (dark solid line) as a function of radius, with J̇z calculated
from equation (3.39). All values are plotted in units of G = M = R = 1. Bottom: The
real part of ξdyn

⊥ (dark solid line) and imaginary part of ξdyn
⊥ (dashed line) as a function

of stellar radius. The value of N2 has been plotted (light solid green line) in both panels.
In this model, the energy flux rises to its final value near the dip in N2, showing that the
wave is excited at this location.

in this region, and so it couples to the companion star’s gravitational potential best in

this region of the star. Note that although N2 is smaller near the center of the star, no

significant wave is excited there since U ∝ r2 is negligible.

Figure 3.4 shows a plot of F(ω). For this model, F(ω) is not a smooth, monotonic

function of ω as it is for the massive star model studied in Appendix A. Instead, there

are many jagged peaks and troughs, causing the value of F(ω) to vary by two or three

orders of magnitude over very small frequency ranges. These features are also present in

the real WD models, and will be discussed further in Section 3.7. Our numerical results
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Figure 3.4: The dimensionless tidal torque F(ω) = J̇z/To [see equation (3.42)] carried
by the outgoing gravity wave as a function of the tidal frequency ω (solid line), for the
toy WD model depicted in Figure 3.2. The frequency is in units of G = M = R = 1.
The straight light solid (green) line is calculated from equation (3.68) and is roughly
proportional to ω5. The dashed (red) line is our semi-analytical approximation, with
α = 1/5, β = 1/5, and δ = 0 (see Section 3.7).

indicate that the peaks of F(ω) can be fitted by F(ω) ∝ ω5, significantly different from

the massive star model.

3.6.3 Calculation with Realistic White Dwarf Model

We now present our numerical results for wave excitation in realistic WD models. Using

the outgoing wave outer boundary condition, we solved the oscillation equations (3.5)

and (3.6) for the three WD models described in Section 3.6.2 (see Figure 3.1). Figures

3.5 and 3.6 show plots of the outgoing energy flux as a function of radius for the model

with Teff = 10800K and tidal frequencies of ω = 2Ω = 10−2 and 1.1 × 10−2, in units
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Figure 3.5: Dynamical tide in a realistic WD model (with M = 0.6M�, R = 8.97 ×
103km, and Teff = 10800K) driven by a companion of mass M′ = M, with the tidal
frequency ω = 2Ω = 10−2. Top: The energy flux Ė = ΩJ̇z (thick solid line) as a
function of radius, calculated from equation (3.39). All values are plotted in units of
G = M = R = 1. Middle: The real part of ξdyn

⊥ (solid line) and imaginary part of ξdyn
⊥

(dashed line) as a function of stellar radius. Bottom: The same as the middle panel, but
zoomed in on the outer layer of the WD. The value of N2 has been plotted as dashed
(green) lines in each panel. The energy flux rises to near its final value around the
carbon-helium transition region, showing that the wave is excited at this location.
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Figure 3.6: Same as Figure 3.5, but for the tidal frequency ω = 1.1 × 10−2.

of G = M = R = 1. The energy flux jumps to its final value near the carbon-helium

transition zone. Once again, the oscillations in energy flux are due to imperfect numer-

ical calculation of the dynamical component of the wave and do not actually contribute

to energy or angular momentum transfer. In Figures 3.5 and 3.6, we have smoothed the

value of the energy flux to minimize the amplitude of the unphysical oscillations. Note

that although Figure 3.6 corresponds to a larger tidal frequency, the outgoing energy flux

is about 100 times less than in Figure 3.5. Thus, as in our toy WD model (see Section

3.6.2), the tidal energy flux is not a monotonic function of tidal frequency as it is for

early-type stars (see Section A).
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Figure 3.7: The dimensionless tidal torque F(ω) = J̇z/To [see equation (3.42)] carried
by outgoing gravity waves as a function of the tidal frequency ω for our WD model with
Teff = 10800K. The two boxed points correspond to ω = 10−2 and 1.1×10−2, as depicted
in Figures 3.5 and 3.6. The dashed (red) line is our semi-analytical approximation [see
equation (3.67)], with α = 1/5, β = 1/5, and δ = 0. The smooth solid line corresponds
to the maximum values of F(ω) in our semi-analytical equation, and is calculated from
equation (3.69). The dot-dashed (blue) line corresponds to F(ω) = 20ω̂5 (see Section
3.8). The diamonds connected by the dotted line are the tidal overlap integrals Qα as-
sociated with nearby gravity modes, and the n = 4 mode is the highest frequency mode
shown. The frequency and Qα are plotted in units of G = M = R = 1.

We have calculated the dimensionless tidal torque F(ω) = J̇z/To [see equation

(3.42)] as a function ofω for the three WD models depicted in Figure 3.1. The results are

shown in Figures 3.7, 3.8, and 3.9. In general, F(ω) exhibits a strong and complicated

dependence on ω, such that a small change in ω leads to a very large change in F(ω)

(see also Figures 3.5-3.6). This dependence is largely due to “resonances” between the

radial wavelength of the gravity waves and the radius of the carbon core, as discussed in

Section 3.7. We also find that the local maxima of F(ω) can be approximately fitted by

the scaling F(ω) ∝ ω5, similar to the toy WD model discussed in Section 3.6.2.
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Figure 3.8: Same as Figure 3.7, except for the Teff = 6000K WD model. In this plot, the
dot-dashed (blue) line corresponds to F(ω) = 200ω̂5. The n = 15 mode is the highest
frequency g-mode shown.

Figure 3.9: Same as Figure 3.7, except for the Teff = 3300K WD model. In this plot, the
dot-dashed (blue) line corresponds to F(ω) = 4 × 103ω̂5. The n = 9 mode is the highest
frequency g-mode shown.
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3.6.4 Relation to Tidal Overlap Integral

In an attempt to understand the erratic dependence of the tidal energy transfer rate Ė

on the tidal frequency ω, here we explore the possible relationship between Ė and the

tidal overlap integral. The energy transfer rate to the star due to tidal interactions can be

written as

Ė = −2 Re
∫

d3x ρ
∂ξ(r, t)
∂t

· ∇U?(r, t). (3.48)

With ξ(r, t) = ξ(r)e−iωt and U(r, t) = U(r)Y22e−iωt [see equations (3.1)-(3.2)], we have

Ė = 2ω
GM′W22

a3 Im
[ ∫

d3x ρ ξ(r) · ∇(r2Y?
22)

]
. (3.49)

We decompose the tidal response ξ(r, t) into the superposition of stellar oscillation

modes (with each mode labeled by the index α):

ξ(r, t) =
∑
α

aα(t)ξα(r), (3.50)

where the mode eigenfunction ξα is normalized via
∫

d3x ρ |ξα|
2 = 1. Then the mode

amplitude aα(t) satisfies the equation

äα + ω2
α aα + γα ȧα =

GM′W22Qα

a3 e−iωt, (3.51)

where ωα is the mode frequency, γα is the mode (amplitude) damping rate, and Qα is the

tidal overlap integral with mode α:

Qα =

∫
d3x ρ ξ?α(r) · ∇(r2Y22). (3.52)

The steady-state solution of equation (3.51) is

aα(t) =
GM′W22Qα

a3(ω2
α − ω

2 − iγαω)
e−iωt. (3.53)

Thus the tidal energy transfer rate to mode α is

Ėα = 2ω
(
GM′W22|Qα|

a3

)2
γαω

(ω2
α − ω

2)2 + (γαω)2 . (3.54)
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In paper I, we have computed ωα and Qα for adiabatic g-modes of several WD

models used in this paper. The eigenfunctions of these modes satisfy the “reflective”

boundary condition (i.e., the Lagrangian pressue perturbation ∆P vanishes) at the WD

surface. Our result showed that although the mode frequency ωα decreases as the ra-

dial mode number n increases (for a given l = 2), the overlap integral |Qα| is a non-

monotonic function of n (or ωα) due to various features (associated with carbon-helium

and helium-hydrogen transitions) in the N2 profile of the WD models. On the other hand,

our calculation of the tidal response ξ(r, t) presented in this paper adopts the radiative

outer boundary condition; this implies significant wave damping at the outer layer of the

star. Because of the difference in the outer boundary conditions, the mode frequency ωα

(as computed using the ∆P = 0 boundary condition) does not have special significance.

Nevertheless, we may expect that when ω = ωα, the tidal energy transfer is dominated

by a single mode (α) and Ė is correlated to |Qα|
2.

In Figures 3.7, 3.8, and 3.9 we show |Qα| as a function of ωα for a number of low-

order g-modes. It is clear that the peaks and troughs of F(ω) calculated with an outgoing

wave outer boundary condition are associated with the peaks and troughs in the value

of |Qα|
2. Thus, the peaks in the value of F(ω) are not due to resonances with g-modes,

but approximately correspond to the tidal frequencies near g-modes with large values

of |Qα|
2. Note this correspondence between |Qα|

2 and the local peaks of F(ω) is not

precise (as they are calculated using different boundary conditions), as is clear from the

Teff = 3300K model (Figure 3.9). Another way to understand the erratic dependence of

F(ω) on ω lies in the quasi-resonance cavity of the carbon core of the WD (see Section

3.7).
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3.6.5 Justification of the Outer Boundary Condition

Our calculations in this paper adopt the outgoing wave boundary condition near the

stellar surface. This implicitly assumes that gravity waves are absorbed in the outer layer

of the WD due to nonlinear effects and/or radiative damping. To analyze the validity of

this assumption, we plot the magnitude of the displacement, |ξdyn|, as a function of radius

in Figure 3.10. We have shown the results for tidal frequencies of ω = 2Ω = 0.028 and

0.0053 (corresponding to frequencies near the peaks in F(ω) shown in Figure 3.7) for

our WD model with Teff = 10800K. We have also plotted the local radial wavelength

k−1
r because we expect nonlinear wave breaking to occur when |ξdyn| & k−1

r .

It is evident from Figure 3.10 that at relatively high tidal frequencies, the gravity

waves become nonlinear in the outer layers of the star, justifying our outgoing wave

boundary condition. In some cases, the waves formally reach nonlinear amplitudes

(k−1
r |ξ

dyn| > 1) in the helium-hydrogen transition region (demarcated by the dip in k−1
r at

r ' 0.935). This implies that waves may be partially reflected at the helium-hydrogen

transition region, although nonlinear damping may also occur before the waves make it

to the outermost layers of the WD. The lower frequency gravity waves do not formally

reach nonlinear amplitudes in the region depicted in Figure 3.10. However, when ex-

tending to the lower-density region near the stellar surface, the wave amplitudes will

increase further and nonlinearity will set in, although partial reflection may occur due

to the shallow convection zone very near the stellar surface. Also note that our calcula-

tions are for Ωs = 0. If the WD has a non-negligible spin (Ωs), a given tidal frequency

ω = 2(Ω − Ωs) would correspond to a higher orbital frequency Ω, further increasing

the wave amplitudes compared to those shown in Figure 3.10. Furthermore, lower fre-

quency waves may damp efficiently via radiative diffusion near the stellar surface. We

therefore expect our outgoing wave outer boundary condition to be a good approxima-
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Figure 3.10: The magnitude of the gravity wave displacement vector |ξdyn| (solid line) as
a function of radius for a tidal frequency of ω = 0.028 (top) and ω = 0.0053 (bottom).
Also plotted is the local radial wavelength k−1

r (red dashed line). The wave displacement,
wavelength, and frequency are in units where G = M = R = 1.
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tion for the frequencies considered in this paper for our warmest WD model.

Our cooler WD models with Teff = 6000K and Teff = 3300K do not formally reach

the same nonlinear amplitudes as our warmest model. The cooler models have smaller

Brunt-Vaisala frequencies, particularly in their outer layers, as can be seen in Figure

3.1. Consequently, the gravity waves have smaller displacements (recall the WKB scal-

ing ξdyn
⊥ ∝ N1/2 for a constant J̇z) and larger wavelengths (recall kr ∝ N). Therefore,

gravity waves are less likely to damp due to nonlinear effects in our cooler models, and

our outgoing wave outer boundary condition may not be justified at all frequencies con-

sidered. More detailed analyses of the nonlinear effects in dynamical tides are necessary

(e.g., Barker & Ogilvie 2010, Weinberg et al. 2011).

3.7 Simple Model for Gravity Wave Excitation: Analytic Estimate

To understand our numerical result for the tidal energy transfer rate Ė (Section 3.6.3),

particularly its dependence on the tidal frequency ω, here we consider a simple stellar

model that, we believe, captures the essential physics of tidal excitation of gravity waves

in binary WDs. In this model, the star consists of two regions (see Figure 3.11): the outer

region with r > ra (region a) and the inner region with r < rb (region b). In each region,

the stellar profiles are smooth, but N2 jumps from N2
b at r = rb to N2

a (with N2
a � N2

b )

at r = ra. The tidal frequency ω satisfies ω2 � N2
b . As we will see, although waves

can propagate in both regions, the sharp jump in N2 makes the inner region behave like

a resonance cavity–this is ultimately responsible for the erratic dependence of F(ω) on

the tidal frequency ω.

We start from the wave equation (3.12) for Z(r) = χ−1/2r2ξr:

Z′′ + k2(r)Z = V(r), (3.55)
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Figure 3.11: A diagram showing a simplified model of a white dwarf used in our ana-
lytical estimate for gravity wave excitation. The arrows indicate that region b contains
both an inward and outward propagating wave, while region a contains only an outward
propagating wave.

with

k2(r) =
l(l + 1)N2

r2ω2 + ∆k2(r)

=
l(l + 1)N2

r2ω2

{
1 + O

[ r2

H2

ω2

l(l + 1)N2

]}
(3.56)

V(r) = −χ−1/2 l(l + 1)N2

ω2

U
g

[
1 −

2r
H

ω2

l(l + 1)N2

]
, (3.57)

where H = a2
s/g(<∼ r) is the pressure scale height. The above expressions are valid in

both regions of the star, and we have assumed ω2 � L2
l and ω2 � N2 [more general

expressions are given by equations (3.13) and (3.14)]. Since the stellar profiles are

smooth in each of the two regions, the non-wave (“equilibrium”) solution is given by

Zeq(r) '
V
k2 −

1
k2

( V
k2

)′′
= Z0 + ∆Z, (3.58)
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where

Z0 = −χ−1/2 r2U
g
, (3.59)

∆Z = Z0
β

k2H2 , (3.60)

and β is a constant (with β ∼ 1).4 Note that the above solution for Zeq breaks down

around r = rin (where ω2 = N2). At distances sufficiently far away from rin, we have

k � 1/H.

The general solution to equation (3.12) consists of the non-wave part Zeq and the

wave part Zdyn. In region b there exist both ingoing and outgoing waves. Thus

Z(r) =Zeq(r) + A+ exp
(
i
∫ r

rin

k dr
)

+ A− exp
(
− i

∫ r

rin

k dr
)

(3.61)

for rin < r < rb, where A+ and A− are slow-varying functions of r. In region a, we

require there be no ingoing wave. Thus for r > ra,

Z(r) = Zeq(r) + A exp
(
− i

∫ r

r0

k dr
)

(3.62)

where r0 > ra is a constant, and A varies slowly with r. Note that Zeq is discontinuous

between the two regions.

At the inner boundary r = rin, gravity waves are perfectly reflected. Thus we have

A− = −eiδA+, where δ is a constant phase that depends on the details of the disturbance

around and inside rin. To determine A and A+ we must match the solutions in the two

regions. Although in reality ra is somewhat larger than rb, we shall make the approxima-

tion ra ' rb, and label the physical quantities on each side with the subscript “a” or “b”.
4From equation (3.13), we find that ∆k2 in equation (3.56) is given by ∆k2 = (H−1

ρ )′/2 − (2Hρ)−2 +

H−1
p [−(ln Hp)′ + H−1

ρ − H−1
p ], where Hp = H and Hρ = −ρ′/ρ. In the isothermal region, Hρ = H, and we

have ∆k2 = −(2Hρ)−2. In the region satisfying P ∝ ρ5/3, we have Hρ = (5/3)H, and ∆k2 ' 1/(12H2
ρ).

Thus the parameter β in equation (3.59) ranges from |β| . 0.1 to 0.3.
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Note that Zeq
a − Zeq

b ' −∆Zb since k2
a � k2

b, and (dZeq/dr)a − (dZeq/dr)b ' −(α/H)∆Zb

where α is a constant (|α| ∼ 1). Matching Z and dZ/dr across r = rb ' ra, we obtain the

expression for the wave amplitude at r = ra:

A exp
(
− i

∫ ra

r0

k dr
)

= ∆Zb

[
1 − (α/kbH) tanϕ
1 + i(ka/kb) tanϕ

]
, (3.63)

which entails

|A| = |∆Zb|
|1 − (α/kbH) tanϕ|[

1 + (ka/kb)2 tan2 ϕ
]1/2 , (3.64)

where

ϕ =

∫ rb

r0

k dr −
δ

2
. (3.65)

Clearly, |A| reaches the maximum |∆Zb| at ϕ = 0, and |A| ' |∆Zb(α/kaH)| at ϕ = π/2.

The Lagrangian displacement for the outgoing gravity wave in region a is given by

ξ
dyn
⊥ ' −

ikr
l(l + 1)

ξ
dyn
r

= −
ikχ1/2

l(l + 1)r
A exp

(
−i

∫ r

r0

k dr
)
. (3.66)

The tidal energy transfer rate Ė is equal to the energy flux carried by the wave. Using

equation (3.41), we have

Ė = ΩJ̇z = 4Ωka|A|2, (3.67)

where ka =
√

l(l + 1)Na/(raω) and |A| are evaluated at r = ra. Using |A|max = |∆Zb|, we

obtain the maximum tidal energy transfer rate as a function of the tidal frequency ω and

the orbital frequency Ω:

Ėmax '
6πβ2

5
ρar7

aNa

N4
b [l(l + 1)]5/2g2

a

(
ra

Ha

)4(M′

Mt

)2
Ω5ω5. (3.68)

The corresponding dimensionless tidal torque [see equation (3.42)] is

Fmax(ω) =
6πβ2

5
Gρar7

aNa

N4
b [l(l + 1)]5/2 g2

aR5

(
ra

Ha

)4

ω5. (3.69)
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This scaling [F(ω) ∝ ω5] agrees with our numerical results for the toy WD models

(Section 3.6.2) and realistic WD models (Section 3.6.3).

Realistic WD models are obviously more complicated than the analytical model

considered in this section (see Figure 3.11). To evaluate the tidal energy transfer rate

Ė using equation (3.67) [with |A| given by equation (3.64)] and Ėmax using equation

(3.68) for our WD models, we choose rb at the location where d ln N2/dr is largest in

the helium-carbon transition region. We then set the location of ra to be one half of a

wavelength above rb, i.e., by finding the location ra such that the equation π =
∫ ra

rb
kdr

is satisfied, where k is given by equation (3.27). For the three models considered in

Section 6, we find that ra thus calculated typically lies near the peak in N2 associated

with the carbon-helium transition region.

In Figures 3.4, 3.7, 3.8, and 3.9, we compare the analytical results based on equa-

tions (3.67) and (3.68) to our numerical calculations. We see that the erratic dependence

of F(ω) on the tidal frequency ω can be qualitatively reproduced by our analytical ex-

pression (3.67), and the maximum Fmax is also well approximated by equation (3.69).

Our analytical estimate works best for the WD model with Teff = 10800K, but it does a

poor job of approximating the value of F(ω) for the WD model with Teff = 3300K. We

attribute this disagreement to the lower value of N2 in the cool WD model because our

assumption that N2 � ω2 is not satisfied. Instead, we find that gravity waves are excited

near the spike in N2 associated with the helium-hydrogen transition region in the cool

WD model.

For each model shown in Figures 3.7-3.9, our model also breaks down at the highest

and lowest frequencies shown. These discrepancies are likely related to errors in our

numerical methods. At the highest frequencies shown, the approximation kr � 1/H

begins to break down, causing error in our outer boundary condition. At the lowest
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frequencies shown, extremely fine grid resolution is needed to resolve the dynamical

component of the tidal response, and so slight thermodynamic inconsistencies may in-

troduce significant errors (see Section 3.6.1).

3.8 Spin-Orbit Evolution

The dissipation of tidally excited gravity waves cause energy and angular momentum

transfer from the orbit to the star, leading to spin-up of the WD over time. In this

section, we study the spin-orbit evolution of WD binaries under the combined effects of

tidal dissipation and gravitational radiation. In general, the tidal torque on the primary

star M from the companion M′ and the tidal energy transfer rate can be written as [see

equations (3.42) and (3.43)]

Ttide = T0F(ω), Ėtide = T0ΩF(ω), (3.70)

with T0 = G(M′/a3)2R5. In previous sections, we have computed F(ω) for various

non-rotating (Ωs = 0) WD models (and other stellar models). To study the spin-orbit

evolution, here we assume that for spinning WDs, the function F(ω) is the same as in

the non-rotating case. This is an approximation because a finite Ωs can modify gravity

waves in the star through the Coriolis force (gravity waves become the so-called Hough

waves) and introduce inertial waves, which may play a role in the dynamical tides. In

other words, the function F generally depends on not only ω but also Ωs. However,

we expect that when the tidal frequency ω = 2(Ω − Ωs) is larger than Ωs, i.e., when

Ω >∼ 3Ωs/2, the effect of rotation on the gravity waves is small. Also, we assume that

the WD exhibits solid-body rotation, which would occur if different layers of the WD

are strongly coupled (e.g., due to viscous or magnetic stresses).5

5In a medium containing a magnetic field, we expect differential rotation to be smoothed out by mag-
netic stresses on time scales comparable to the Alfven wave crossing time. The Alfven wave crossing time
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Before proceeding, we note that in the weak friction theory of equilibrium tides (e.g.,

Darwin 1879; Goldreich & Soter 1966; Alexander 1973; Hut 1981), the tidal torque is

related to the tidal lag angle δlag or the tidal lag time ∆tlag by

Ttide = 3k2T0δlag, with δlag = (Ω −Ωs)∆tlag, (3.71)

where k2 is the Love number. Often, a dimensionless tidal quality factor Qtide is intro-

duced (e.g. Goldreich & Soter 1966) such that ∆tlag = 1/(|ω|Qtide) (valid only forω , 0).

Thus, if we use the weak-friction theory to parametrize our dynamical tide, F(ω) would

correspond to

F(ω) = 3k2δlag

= 3k2(Ω −Ωs)∆tlag

=
3k2

2Qtide
sgn(Ω −Ωs). (3.72)

Obviously, the effective Qtide would depend strongly onω as opposed to being a constant

(assuming constant lag angle) or being proportional to 1/|ω| (assuming constant lag

time, appropriate for a viscous fluid).

With equation (3.70) and the assumption in F(ω), the WD spin evolves according to

the equation

Ω̇s =
T0F(ω)

I
, (3.73)

where I is the moment of inertia of the WD (I ' 0.169MR2 for our M = 0.6M� WD

models). The orbital energy Eorb = −GMM′/(2a) satisfies the equation

Ėorb = −Ėtide − ĖGW, (3.74)

where ĖGW(> 0) is the energy loss rate due to gravitational radiation. The evolution

is tA = R
√

4πρ/B ' 1yr for a magnetic field strength of B = 105gauss and a density of ρ = 106g/cm3.
Since the Alfven wave crossing time is always much smaller than the inspiral time for WDs, we expect
solid body rotation to be a good approximation.
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equation for the orbital angular frequency Ω = (GMt/a3)1/2 is then

Ω̇ =
3T0F(ω)
µa2 +

3Ω

2tGW
, (3.75)

where µ = MM′/Mt is the reduced mass of the binary, and tGW is the orbital decay time

scale (|a/ȧ|) due to gravitational radiation:

tGW =
5c5

64G3

a4

MM′Mt

= 3.2 × 1010
( M2

�

MM′

)( Mt

2M�

)1/3( Ω

0.1 s−1

)−8/3

s, (3.76)

3.8.1 Synchronization

Using our results for the function F(ω) obtained in previous sections, we integrate equa-

tions (3.73) and (3.75) numerically to obtain the evolution of the WD spin. Since at large

a (small Ω) the orbital decay time ∼ tGW ∝ Ω−8/3 is is much shorter than the time scale

for spin evolution, tspin = Ωs/Ω̇s ∝ 1/(Ω4F), we start our integration with Ωs � Ω at a

small orbital frequency (an orbital period of several hours).

The results for our three WD models are shown in Figures 3.12 and 3.13. Note we

only include the effects of tides in the primary star (M), and treat the companion (M′)

as a point mass. All three models have the same WD masses (M = M′ = 0.6M�),

but different temperatures. Also note that the minimum binary separation (before mass

transfer or tidal disruption occurs) is amin ' 2.5(Mt/M)1/3R, corresponding to the mini-

mum orbital period

Pmin ' (1.1 min) M−1/2
1 R3/2

4 , (3.77)

where M1 ≡ M/(1 M�) and R4 = R/(104 km). We see that for all models, appreciable

spin-orbit synchronization is achieved before mass transfer or tidal disruption. However,

depending in the WD temperature, the rates of spin-orbit synchronization are different.
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Figure 3.12: Evolution of the spin frequency Ωs in units of the orbital frequency Ω

as a function of the orbital period. The solid black, red, and blue lines correspond to
our WD models with Teff = 10800K, T = 6000K, and T = 3300K, respectively. The
black, red, and blue dashed lines correspond to evolutions using F = 20ω̂5, F = 200ω̂5,
F = 4 × 103ω̂5, respectively (these functions F(ω) approximate the like-colored WD
models, see Figures 3.7-3.9). The vertical dotted line denotes the critical orbital period,
2π/Ωc [see equation (3.79)], corresponding to the black dashed line. In these evolutions,
M′ = M and the WDs initially have Ωs = 0.

The basic feature of the synchronization process can be obtained using an approx-

imate expression for the dimensionless function F(ω). We fit the local maxima of our

numerical results depicted in Figures 3.7-3.9 by the function

F(ω) = fω5 = f̂ ω̂5, (3.78)

where ω̂ = ω/(GM/R3)1/2, and f̂ ' 20, 200, 4 × 103 for the Teff =10800K, 6000K,

and 3300K models, respectively. Suppose Ωs � Ω at large orbital separation. We can

define the critical orbital frequency, Ωc, at which spinup or synchronization becomes

efficient, by equating Ω̇ and Ω̇s (with Ωs � Ω). Note that since the orbital decay rate
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Figure 3.13: The spin frequency Ωs/(2π) in units of Hz as a function of orbital period.
The solid black, red, and blue lines correspond to our WD models with Teff = 10800K,
T = 6000K, and T = 3300K, respectively. The dashed line shows the orbital frequency,
Ω/(2π). The dotted vertical black, red, and blue lines are the values of 2π/Ωc for F =

20ω̂5, F = 200ω̂5, F = 4 × 103ω̂5, respectively. In these evolutions, M′ = M and the
WDs initially have Ωs = Ω/4.

due to tidal energy transfer [the first term in equation (3.75)] is much smaller than the

spinup rate Ω̇s, the orbital decay is always dominated by the gravitational radiation, i.e.,

Ω̇ ' 3Ω/(2tGW). With To = T̄oΩ
4 and tGW = t̄GWΩ−8/3, we find

Ωc '

( 3I
64 f T̄o t̄GW

)3/16

=

 3κ

5 f̂

M5/3
t

M′M2/3

(GM
Rc2

)5/23/16 (GM
R3

)1/2

= (3.8 × 10−3s−1)

κ0.17M5/3
t1 M9/2

1

f̂ M′
1R21/2

4

3/16

, (3.79)

where κ = 0.17κ0.17 = I/(MR2), M′
1 = M′/(1 M�), and Mt1 = Mt/(1 M�). For Ω <∼ Ωc,

tidal synchronization is inefficient. For Ω >∼ Ωc, the spinup rate Ω̇s becomes larger than
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Ω̇ and the system will become increasingly synchronized. In fact, when Ω >∼ Ωc, an

approximate analytic expression for the spin evolution can be obtained by assuming a

posteriori (Ω̇s − Ω̇) � Ω̇. With Ω̇ ' 3Ω/(2tGW) ' Ω̇s, we find

Ωs ' Ω −Ω16/15
c Ω−1/15 (

for Ω >∼ Ωc
)
. (3.80)

This expression provides an accurate representation of the numerical solutions.

Note that we can derive a similar equation as (3.80) for more general tidal torques.

For example, assume

Ω̇s = AΩ4(Ω −Ωs)n, (3.81)

where n and A are constants. With Ω̇ = BΩ11/3 (where B is a constant) and assuming

Ω̇s ' Ω̇, we find

Ωs ' Ω −Ωc

(
Ωc

Ω

)1/(3n)

, (3.82)

for Ω >∼ Ωc, where

Ωc =

(B
A

)3/(3n+1)

. (3.83)

Note that our equation (3.80) corresponds to n = 5, which implies Ω − Ωs ' Ωc for

Ω >∼ Ωc. By contrast, in the equilibrium tide model (with constant lag time), n = 1, so

(Ω −Ωs) changes moderately as the orbit decays.

3.8.2 Tidal Effect on the Orbital Decay Rate and Phase of Gravita-

tional Waves

Figure 3.14 shows the tidal energy transfer rate (from the orbit to the WD) Ėtide =

T0ΩF(ω). For Ω <∼ Ωc, ω ' 2Ω (assuming Ωs � Ω), we see that Ėtide depends on Ω in

a rather erratic manner. However, when Ω >∼ Ωc, efficient tidal synchronization ensures
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Figure 3.14: The tidal energy dissipation rate Ėtide (solid lines) and the tidal heating
rate Ėheat (dashed lines) as a function of orbital period. The black, red, and blue lines
correspond to our WD models with Teff = 10800K, T = 6000K, and T = 3300K,
respectively. Note that at small orbital periods, the Ėtide curves overlap for different WD
models. The dotted line is the energy dissipation rate due to gravitational waves, ĖGW.
In these evolutions, M′ = M and the WDs initially have Ωs = 0.

Ω̇ ' Ω̇s, or 3Ω/2tGW ' T0F(ω)/I, and thus Ėtide simplifies to

Ėtide '
3IΩ2

2tGW

(
for Ω >∼ Ωc

)
. (3.84)

Since Ėtide/ĖGW ' 3I/(µa2) � 1, the orbital decay is dominated by gravitational ra-

diation. Nevertheless, the orbital phase evolution is affected by the tidal energy trans-

fer, and such a phase shift can be measurable for short period binaries such as the re-

cently discovered 12 minute system SDSS J0651 (Brown et al. 2011; see Section 9).

Also, low-frequency (10−4 − 10−1 Hz) gravitational waveforms emitted by the binary,

detectable by LISA, will deviate significantly from the point-mass binary prediction.

This is in contrast to the case of neutron star binaries (NS/NS or NS/BH) studied pre-
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viously (Reisenegger & Goldreich 1994; Lai 1994; Shibata 1994; Ho & Lai 1999; Lai

& Wu 2006; Flanagan & Racine 2007), where the resonant mode amplitude is normally

too small to affect the gravitational waveforms detectable by ground-based gravitational

wave detectors such as LIGO and VIRGO.

The orbital cycle of a WD binary evolves according to

dNorb =
Ω

2π
dEorb

Ėorb
. (3.85)

Including tidal effects in Ėorb, we find

dNorb

d ln Ω
=

(
dNorb

d ln Ω

)
0

(
1 +

Ėtide

ĖGW

)−1

, (3.86)

where (
dNorb

d ln Ω

)
0

=
ΩtGW

3π
=

5c5

192πG5/3µM2/3
t (π fGW)5/3

= 2.3×109
( M2

�

MM′

)( Mt

2M�

)1/3( fGW

0.01 Hz

)−5/3

(3.87)

is the usual result when the tidal effect is neglected ( fGW = Ω/π is the gravitational wave

frequency). Thus, even though Ėtide/ĖGW � 1, the number of “missing cycles” due to

the tidal effect, (
d∆Norb

d ln Ω

)
tide
' −

(
dNorb

d ln Ω

)
0

Ėtide

ĖGW
, (3.88)

can be significant. Since Etide ∝ I, proper modelling and detection of the missing cycles

would provide a measurement of the moment of inertia of the WD.

3.8.3 Tidal Heating

The tidal energy transfer Ėtide does not correspond to the energy dissipated as heat in the

WD, because some of the energy must be used to spin up the WD. Assuming rigid-body
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rotation, the tidal heating rate is

Ėheat = Ėtide

(
1 −

Ωs

Ω

)
. (3.89)

Figure 3.14 shows Ėheat for our three binary WD models. At large binary seperations

(Ω <∼ Ωc) when Ωs � Ω, virtually all of the tidal energy transfer to the WD is dissipated

as heat. At smaller serparations, we have shown that the WD will retain a small degree

of asynchronization. Inserting equation (3.80) into equation (3.89), we find

Ėheat ' Ėtide

(
Ωc

Ω

)16/15

'
3IΩ2

2tGW

(
Ωc

Ω

)16/15

(for Ω >∼ Ωc). (3.90)

Thus, as the orbital frequency increases, a smaller fraction of the tidal energy is dissi-

pated as heat. Using equation (3.79) for Ωc, we have

Ėheat '(6.1 × 1036 erg s−1)κ6/5
0.17 f̂ −1/5M29/10

1

× (M′
1)4/5R−1/10

4

(
Ω

0.1 s−1

)18/5

. (3.91)

Note that Ėheat is relatively insensitive to f̂ , so its precise value is not important. Thus,

tidal heating of the WD can become significant well before merger. For example, for our

Teff = 10800K WD model (with M = M′ = 0.6M�, R = 8970 km and f̂ ∼ 20), we find

Ėheat ∼ 1.2×1032 erg/s at the orbital period P = 10 min, much larger than the “intrinsic”

luminosity of the WD, 4πR2σSBT 4
eff

= 3.3×1030 erg/s. Note that Ėheat is mainly deposited

in the WD envelope, so an appreciable fraction of Ėtide may be radiated, and the WD

can become very bright prior to merger. The 12 minute binary SDSS J0651 (Brown et

al. 2011) may be an example of such tidally heated WDs (see Section 9).
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3.9 Discussion

We have studied the tidal excitation of gravity waves in binary white dwarfs (WDs) and

computed the energy and angular momentum transfer rates as a function of the orbital

frequency for several WD models. Such dynamical tides play the dominant role in spin-

ning up the WD as the binary decays due to gravitational radiation. Our calculations

are based on the outgoing wave boundary condition, which implicitly assumes that the

tidally excited gravity waves are damped by nonlinear effects or radiative diffusion as

they propagate towards the WD surface. Unlike dynamical tides in early-type main-

sequence stars, where gravity waves are excited at the boundary between the convective

core and radiative envelope, the excitation of gravity waves in WDs is more compli-

cated due to the various sharp features associated with composition changes in the WD

model. We find that the tidal energy transfer rate (from the orbit to the WD) Ėtide is a

complex function of the tidal frequency ω = 2(Ω − Ωs) (where Ω and Ωs are the orbital

frequency and spin frequency, respectively; see Figures 3.7-3.9), and the local maxima

of Ėtide scale approximately as Ω5ω5. For most tidal frequencies considered, the gravity

waves are excited near the boundary between the carbon-oxygen core and the helium

layer (with the associated dip and sharp rise in the Brunt-Väisälä frequency profile). We

have constructed a semi-analytic model that captures the basic physics of gravity wave

excitation and reveals that the complex behavior of Ėtide as a function of the tidal fre-

quency arises from the partial trapping of gravity waves in the quasi-resonance cavity

provided by the carbon-oxygen core.

We have also calculated the spin and orbital evolution of the WD binary system

including the effects of both gravitational radiation and tidal dissipation. We find that

above a critical orbital frequency Ωc [see equation (3.79)], corresponding to an orbital

period of about an hour for our WD models, the dynamical tide BEGINS to drive the
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WD spin Ωs towards synchronous rotation, although a small degree of asynchroniza-

tion is maintained even at small orbital periods: Ω − Ωs ' Ωc(Ωc/Ω)1/15 [see equation

(3.80)]. Thus, numerical simulations of WD binary mergers should use synchronized

configurations as their initial condition – these may affect the property of the merger

product and possible supernova signatures.

We also show that, although gravitational radiation always dominates over tides in

the decay of the binary orbit, tidal effects can nevertheless affect the orbital decay and

introduce significant phase error to the low-frequency gravitational waveforms. Future

detection of gravitational waves from WD binaries by LISA may need to take these tidal

effects into account and may lead to measurements of the WDs’ moments of inertia.

Finally, we have calculated the tidal heating rate of the WD as a function of the orbital

period. We show that well before mass transfer or binary merger occurs, tidal heat

deposition in the WD envelope can be much larger than the intrinsic luminosity of the

star. Thus, the WD envelope may be heated up significantly, leading to brightening of

the WD binary well before merger. We plan to study this issue in detail in a future paper.

The recently discovered 12 minute WD binary SDSS J0651 (Brown et al. 2011)

can provide useful constraints for our theory. Applying equation (3.79) to this system,

we find that the orbital period (12.75 minutes) is sufficiently short that both WDs are

nearly (but not completely) synchronized with the orbit. Because of the orbital decay,

the eclipse timing changes according to the relation

∆t = Ṗt2/(2P), (3.92)

where t is the observing time. Gravitational radiation gives rise to ∆tGW = 5.6s (t/1yr)2.

Using equation (3.84) to evaluate the orbital decay rate Ṗtide due to tidal energy transfer,

we find ∆ttide ' 0.28s (t/1yr)2 (see also Benacquista 2011). Thus, the orbital decay

due to tidal effects should be measured in the near future. Also, our calculated heating
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rate, equation (3.91), indicates the SDSS J0651 WDs have undergone significant tidal

heating, although predicting the luminosity change due to tidal heating requires careful

study of the thermal structure of the WDs and knowledge of the location of tidal heating.

We note that Piro (2011) also considered some aspects of tidal effects in SDSS J0651,

but his results were based on parameterized equilibrium tide theory.

This paper, together with paper I, represents only the first study of the physics of

dynamical tides in compact WD binaries, and more works are needed. We have adopted

several approximations that may limit the applicability of our results. First, we have

not included the effects of rotation (e.g., the Coriolis force) in our wave equations. In

addition to modifying the properties of gravity waves (they become generalized Hough

waves), rotation also introduces inertial waves that can be excited once the WD spin

frequency becomes comparable to the tidal frequency – this may lead to more efficient

tidal energy transfer and synchronization. For example, if we parameterize the spinup

rate due to various mechanisms (including inertial waves) by equation (87), the critical

orbital frequency for the onset of synchronization (Ωc) is given by equation (3.83). For a

stronger tidal torque (larger A), Ωc is smaller. However, the tidal heating rate at Ω >∼ Ωc

becomes [cf. equation (3.90)]

Ėheat '
3IΩ2

tGW

(
Ωc

Ω

)(3n+1)/(3n)

. (3.93)

Thus, for stronger tidal torques, at a given orbital frequency (Ω >∼ Ωc), the tidal heating

rate is reduced because the WD is closer to synchronization.

Second, we have assumed that the WD rotates as a rigid body. As the tidally-excited

gravity waves deposit angular momentum in the outer layer of the WD, differential rota-

tion will develop if the different regions of the WD are not well coupled. Thus it may be

that the outer layer becomes synchronized with the companion while the core rotates at

a sub-synchronous rate, analogous to tidal synchronization in early-type main-sequence
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stars (Goldreich & Nicholson 1989). Third, we have implicitly assumed that the outgo-

ing gravity waves are efficiently damped near the WD surface. This may not apply for

all WD models or all orbital frequencies. If partial wave reflection occurs, tidal dissi-

pation will be reduced compared to the results presented in this paper except when the

tidal frequency matches the intrinsic frequency of a g-mode (cf. Paper I). More detailed

studies on nonlinear wave damping (e.g., Barker & Ogilvie 2010; Weinberg et al. 2011)

and radiative damping would be desirable.

Finally, we have only studied carbon-oxygen WDs in this paper. Our calculations

have shown that the strength of dynamical tides depends sensitively on the detailed

internal structure of the WD. Recent observations (see references in Section 1) have

revealed many compact WD binaries that contain at least one low-mass helium-core

WD. The temperatures of these helium-core WDs tend to be high (Teff >∼ 104K). These

observations warrant investigation of tidal effects in hot, helium-core WDs, which have

significantly different internal structures from the cool, carbon-oxygen WDs considered

in this paper.
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CHAPTER 4

TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

4.1 Introduction1

Compact white dwarf (WD) binaries (with orbital periods in the range from minutes

to hours) are important for several areas of astrophysics. The orbits of these systems

decay via the emission of gravitational waves, constituting the largest signals for the next

generation of space-based gravitational wave interferometers. Systems of sufficiently

short orbital period will merge within a Hubble time, which may produce a variety of

exotic objects, such as helium-rich sdB stars, R CrB stars and AM CVn binaries. Most

importantly, when the total binary mass is near the Chandrasekhar limit, the merged

WDs may collapse into a neutron star or explode as a Type Ia supernova (e.g., Webbink

1984; Iben & Tutukov 1984). Recent studies have provided support for such “double

degenerate” progenitors of SNe Ia. (e.g., Gilfanov & Bogdan 2010; Di Stefano 2010;

Maoz et al. 2010; Li et al. 2011; Bloom et al. 2012; Schaefer & Pagnotta 2012).

The outcome of a WD binary merger depends on the masses of the WDs and their

pre-merger conditions (e.g., Segretain et al. 1997; Yoon et al. 2007; Loren-Aguilar et

al. 2009; van Kerkwijk et al. 2010; Dan et al. 2012; Raskin et al. 2012). Most previous

studies of pre-merger binary WDs have focused on equilibrium tides and considered

tidal dissipation in a parameterized way (e.g., Mochkovitch & Livio 1989; Iben et al.

1998; Willems et al. 2010; Piro 2011). None of these studies has sought to predict the

magnitude and location of tidal heating due to dynamical tides, which dominate the tidal

responses of the binary WDs.

1This chapter is based on Fuller & Lai (2012C).
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In two recent papers (Fuller & Lai 2011, 2012, hereafter paper I and paper II, respec-

tively), we presented the first ab initio calculations of dynamical tides in realistic WD

models. In paper I, we considered resonant excitations of WD g-modes during binary

decay and showed that the modes reach non-linear amplitudes near the surface of the

star. This implies that, rather than exciting discrete g-modes, the binary companion will

excite a continuous train of gravity waves, which propagate outward and dissipate in the

outer envelope of the WD. We studied such continuous tidally excited waves in paper

II. For a canonical carbon-oxygen WD (consisting of a CO core with a He-H envelope),

we showed that the outgoing waves are primarily launched at the CO/He transition re-

gion, and propagate toward the WD surface, where they are likely dissipated through a

combination of non-linear processes and radiative damping. We computed the energy

and angular momentum flux carried by the waves in order to predict the orbital and spin

evolution of WDs in compact binaries. We found that such dynamical tides cause the

binary WDs to be nearly synchronized prior to merger. Furthermore, the tidal heating

rate can be quite large at short orbital periods (exceeding tens of solar luminosities just

before merger, depending on the system parameters), potentially leading to significant

observable signatures.

In this Letter, we show that tidal heating may trigger a thermonuclear runaway hy-

drogen fusion event in a CO WD. The observational consequence of such an event would

likely be an outburst that resembles a classical nova. We call this new phenomenon a

“Tidal Nova” (TN). Unlike all other types of novae or supernovae, a TN does not rely

on mass accretion or collapse. We present a simple two-zone model for the angular

momentum evolution of a differentially rotating WD, which we use to calculate the ra-

dial tidal heating profile within the WD. We then evolve the WD model including tidal

heating to calculate changes in its temperature, luminosity, and internal structure. For a

wide range of physically plausible parameters, we demonstrate that tidal heating induces
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a thermonuclear runaway event. Finally, we discuss the observational signatures of such

an event, and compare our predictions to observations of short-period WD binaries.

4.2 Energy and Angular Momentum of Tidally Excited Gravity

Waves

Using the method described in Paper II, we calculate the amplitude of tidally excited

gravity waves inside a WD. We consider a circular orbit with angular frequency Ω.

The WD spins at an angular frequency Ωs, and the spin is aligned with the orbit. In

the corotating frame, the frequency of the dominant l = m = 2 tidal potential is ω =

2(Ω − Ωs). For a WD of mass M and radius R (and given internal structure) with a

companion of mass M′, the energy and angular momentum fluxes carried by the gravity

waves can be written as

J̇z(Ω, ω) = T0(Ω)F(ω), (4.1)

Ė(Ω, ω) = ΩT0(Ω)F(ω), (4.2)

where

T0(Ω) =
GM′2

a

(R
a

)5

, (4.3)

with Ω =
√

GMt/a3 the orbital angular frequency (Mt = M + M′ is the total mass and a

is the orbital semi-major axis).

The dimensionless function F(ω) (similar to the tidal lag angle in the language of

equilibrium tide theory) determines the magnitude of wave excitation, and is strongly

dependent on the internal structure of the WD and the tidal frequency ω. In Paper II we

have calculated F(ω) for 0.6M� CO WD models of various surface temperatures and
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slow rotation. We found that F(ω) is an erratic function of ω because of the “quasi-

resonance cavity” formed by the CO core inside the He/H shell. However, because

of the strong dependence of F(ω) on ω [the envelope of F(ω) approximately scales

as ω5], at sufficiently short orbital periods, tidal spin-up combined with orbital decay

via gravitational radiation ensure that ω remains nearly constant. The orbital period

at which this transition occurs is Pc ' 40 minutes, depending on the WD masses and

temperatures [see Eq. (79) of Paper II]. At periods P . Pc, the tidal energy transfer rate

is

Ė '
3IΩ2

2tGW
, (4.4)

where I is the moment of inertia of the WD, and tGW = |a/ȧ| is the binary inspiral time

due to gravitational radiation,

tGW = 4.2 × 105 yr
( M2

�

MM′

)( Mt

2M�

)1/3( P
10 min

)8/3
. (4.5)

When the outgoing gravity waves damp in the WD envelope and locally deposit their

angular momentum, some of the wave energy is converted into rotational kinetic energy,

while the rest is converted to heat. The heating rate is

Ėheat = Ė
(
1 −

Ωs

Ω

)
, (4.6)

assuming Ωs < Ω throughout the WD. If the WD maintains some differential rotation,

Ωs in the above equation should be the rotation rate of the layer in which the waves

damp, and heat will also be generated through viscous angular momentum transport.

4.3 Two Zone Model for Tidal Heat Deposition

Our calculations indicate that the gravity waves reach non-linear amplitudes and break in

the outer layers of the WD. The location of wave breaking depends on various parame-
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ters (e.g., orbital and tidal frequencies), but is always at r & 0.92R and the exterior mass

∆M . 10−4M (Paper II). Since a small fraction of the stellar mass absorbs the entire

angular momentum flux, the outer layer spins up rapidly. If it spins up faster than angu-

lar momentum can be transported to the core, the outer layer will rotate synchronously

with the orbit. Outgoing waves approaching the synchronized layer will be absorbed

near corotation and deposit their angular momentum, causing the synchronized layer to

move to larger depths (see Goldreich & Nicholson 1989).

We consider a simple two-zone model for the spin evolution of the WD. In this

model, the envelope of the star rotates synchronously with the orbit (Ωenv = Ω), while

the core rotates sub-synchronously (Ωcore < Ω). The envelope and core are coupled, with

angular momentum being transferred to the core according to a parameterized coupling

time, tcoup. The angular momentum of the core-envelope system evolves according to

d
dt

(IenvΩenv) = J̇z(Ω, ωcore) −
Ienv

tcoup
(Ωenv −Ωcore), (4.7)

d
dt

(IcoreΩcore) =
Ienv

tcoup
(Ωenv −Ωcore), (4.8)

where Ienv = I − Icore is the moment of inertia of the envelope. Here, J̇z is the angular

momentum flux which can be calculated from equation (4.1). We have assumed that

the gravity waves are excited in the core and absorbed in the envelope2. Consequently,

the angular momentum source term J̇z is only present in the envelope evolution equa-

tion, although it is dependent on the tidal frequency in the core, ωcore = 2(Ω − Ωcore).

Using Ωenv = Ω, equations (4.7) and (4.8) can be integrated to find Ienv and Ωcore as

a function of time or orbital period. The mass ∆Menv of the envelope corresponds to

Ienv ' (2/3)∆MenvR2.

The thickness (or ∆Menv) of the envelope is dependent on the parameter tcoup. In

2This assumption is valid as long as long as the core-envelope boundary is above the C/He transition
layer (with an exterior mass ∆M ≈ 10−2M�), which is the region where the outgoing gravity waves are
excited.
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Figure 4.1: The mass ∆Menv of the synchronized envelope as a function of orbital period
for a 0.6M� CO WD model with a 0.3M� companion. The solid (black) line has tcoup =

1 yr, the dot-dot-dashed (green) line tcoup = 10 yr, the dot-dashed (orange) line tcoup =

102 yr, and the dashed (red) line tcoup = 103yr.

stably stratified stars like WDs, angular momentum can be transported by magnetic

fields. In the presence of a poloidal field B connecting the core and envelope, tcoup can

be estimated from the Alfven wave crossing time,

tA =
R

√
4πρ

B
' 102 yr

(103G
B

)
(4.9)

for our CO WD model. For WDs without an intrinsic magnetic field, angular mo-

mentum may be transported via the Tayler-Spruit dynamo (Spruit 2002). To esti-

mate tcoup, we calculate the effective viscosity for angular momentum transport via the

Tayler-Spruit dynamo, νTS , as outlined in Spruit 2002.3 We find tTS ≡
∫ R

0
(r/νTS )dr ≈

103 yr (P/45min)3/2. Thus we expect the coupling time to lie in the range tcoup . 103 yr

for the short orbital periods of interest.

3For simplicity, we have calculated the viscosity νTS without including the effects of composition
gradients in the WD [see equation (32) in Spruit 2002]. A more realistic estimate of the rotational profile
of the WD should take composition gradients into account.
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Figure 4.1 plots the value of ∆Menv as a function of orbital period for our 0.6M� WD

model with a 0.3M� companion, using values of tcoup ranging from 1yr to 103yr. We

begin our calculation at Porb > 1hr and use Ienv,0 = 0 and Ωcore,0 = 0, as appropriate at

long orbital periods where tidal effects are negligible. We see that for the range of tcoup

considered, ∆Menv remains small (. 10−2M�) at all orbital periods of interest. Thus, the

synchronized envelope most likely does not extend down to the C/He transition layer

where the gravity waves are excited, justifying our assumption that J̇z is a function of

Ωcore. However, the envelope does extend to very large optical depths, suggesting that

binary WDs may be observed to be synchronized at large orbital periods even if their

cores are not synchronized. Note that since Ienv � I, the core of the star contains most

of the angular momentum, and its spin evolves in the same manner as discussed in Paper

II.

4.4 Tidal Heating and Unstable Nuclear Burning

In the two-zone model discussed in section 4.3, the total tidal heating rate Ėheat may be

calculated from equation (4.6) with Ωs = Ωcore, and the tidal heat is deposited entirely at

the base of the synchronized envelope where the exterior mass is ∆M = ∆Menv. In a real

WD, the heat deposition will occur over a range of depths that depends on the details

of wave breaking and viscous angular momentum transport. For simplicity, here we

choose to deposit the tidal heat uniformly per unit mass in the synchronized envelope.

The heating rate per unit mass, ε̇heat, is then

ε̇heat = 0 for ∆M > ∆Menv (4.10)

ε̇heat =
Ėheat

∆Menv
for ∆M < ∆Menv.

86



Although the radial dependence of this heating function is unlikely to be realistic, we

find that the results below are not strongly dependent on the form of ε̇heat.

To understand the effect of tidal heating on the WD properties, we evolve WD

models using the extra heating term calculated via equation (4.10). We use the one-

dimensional stellar evolution code MESA (Paxton et al. 2010) to evolve our WD mod-

els, starting from an initial orbital period of one hour. We present results for a 0.6M�

CO WD model with a ∼ 10−4M� hydrogen shell and a 0.3M� companion.

Figure 4.2 displays the surface temperature as a function of orbital period for our

tidally heated WD. For comparison, we also show the temperature of a non-tidally

heated WD and the “tidal heating temperature”, defined as

Teff,heat =

( Ėheat

4πR2σ

)1/4

. (4.11)

At long orbital periods (P & 45 minutes), the tidal heating has little effect on the surface

temperature of the WD. At shorter periods (P . 30 minutes), the temperature becomes

substantially larger due to tidal heating. Several of the curves end abruptly due to the

ignition of a thermonuclear runaway event, at which point we terminate our evolution

calculations.

For small values of tcoup, the tidal heat is deposited at shallow depths and quickly

diffuses to the surface such that the luminosity of the WD is L ' L0 + Ėheat, where L0

is the luminosity of a non-tidally heated WD. However, for larger values of tcoup, most

of the tidal heat is deposited deeper in the WD where it cannot quickly diffuse outward.

This leads to lower surface temperatures, although the internal temperature may increase

substantially.

Figure 4.3 shows the interior temperature profile of our WD at three different orbital

periods, using tcoup = 103 yr. At long orbital periods, the temperature profile is similar
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Figure 4.2: The surface temperature of the 0.6M� CO WD model with a 0.3M� com-
panion as a function of orbital period, for initial temperatures of 5000 K (top) and 104 K
(bottom). The solid black lines are calculated with tcoup = 1 yr while the dashed (red)
lines are calculated with tcoup = 103 yr. The dotted lines are calculated for a WD with no
tidal heating and the same initial temperature. The (blue) dot-dashed lines correspond
to equation (4.11). The (red) stars mark the points at which tidal novae occur. The as-
terisks mark the position of the secondary of the 12.75 minute binary WD system SDSS
J065133+284423 (Brown et al. 2011).
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Figure 4.3: Temperature profile of the WD (as a function of exterior mass ∆M) at orbital
periods of 45 minutes (black), 20 minutes (green), and 12 minutes (red). These temper-
atures are calculated for the 0.6M� WD model with an initial surface temperature of
Teff = 5000 K, a 0.3M� companion and tcoup = 103 yr. In this model, the H shell extends
down to ∆M ' 10−4M�.

to that of a non-tidally heated WD. As the orbital period decreases, the interior heats up,

with the local temperature maximum at ∆M ∼ ∆Menv. If the base of the hydrogen layer

reaches a temperature of ∼ 107 K, hydrogen burning will be ignited.

In the depicted model, the layer just above the He/H transition (at ∆M ≈ 10−4M�)

is composed of largely degenerate hydrogen gas. The ignition of fusion in this layer

can thus spark a thermonuclear runaway. In general, our calculations show that these

tidal novae occur only in initially cool WDs (Teff . 1.2 × 104 K in the absence of tidal

heating). They do not occur in hotter WDs because the hydrogen is not degenerate and

can burn stably. Also, tidal novae require that the waves deposit some of the heat near

the base of the hydrogen layer, i.e., 10−5M� . ∆Menv . 10−3M�. Overall, we find that

the tidal novae occur at orbital periods 5 min . Porb . 20 min, depending on the location

of heat deposition, initial temperature of the WD, and companion mass.
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4.5 Discussion

We do not attempt to predict the detailed observational signal of a tidal nova (TN),

but we speculate that it may be very similar to a classic nova. However, in contrast

to classical novae in CVs, a TN would occur in a compact system with no evidence

for mass transfer. Our results indicate that a TN would precede the beginning of mass

transfer or merger by about tGW/4 ∼ 105 − 106 yrs [see Eq. (3.76)].

In most classical novae, the initial outburst is followed by a period of stable hydrogen

burning at near the Eddington luminosity, in which the hydrogen shell of the WD inflates

to a radius of order R�. However, the ultracompact nature of the WD system involved in

a TN (where a ∼ R�/4) may preclude such a phase because the stably burning hydrogen

shell would inflate beyond the WD’s Roche lobe. This shell may then accrete on to

the companion star or be ejected from the system. Therefore, we expect most of the

hydrogen to be burned or ejected during in a TN. In the absence of mass transfer to

supply fresh hydrogen, recurrent novae would be unlikely. Thus, the occurrence rate of

these TN may be comparable to that of WD mergers involving a CO WD.

Our theory can be constrained by comparing the prediction of our tidal heat-

ing calculations to observed compact WD binaries. The 12.75 minute system SDSS

JJ065133+284423 provides the best opportunity (Brown et al. 2011). This system is

composed of a primary with Teff = 16400 K and mass 0.25M�, and a secondary with

Teff ≈ 9000 K and mass 0.55M�. Comparison with Figure 4.2 indicates that the lumi-

nosity of the secondary is likely dominated by tidal heating. Our result for a CO WD

with an initial temperature of 5000 K and a value of tcoup = 103 yr is most consistent

with the observed temperature of the secondary. These results indicate that a TN may

occur in this system in the future.
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In principle, tidal heating may change the structure of the WD enough to alter the

dynamics of gravity wave propagation. However, we find that this is not the case (i.e., no

interior convection zone forms), with the exception of a thermonuclear runaway event.

Our simple two-zone model for the WD obviously needs improvement, and we have ne-

glected the effects of mixing induced by the breaking gravity waves and viscous angular

momentum transport. If the mixing is strong enough to smooth out the WD composition

gradients, the dynamics of gravity wave excitation and tidal heat deposition may be al-

tered. Observations of the ejecta of classical novae indicate substantial enrichment with

core elements, although the mixing mechanism is not well understood (Truran 2002).

These and other aspects of TN in compact WD binaries warrant further study.
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CHAPTER 5

DYNAMICAL TIDES IN COMPACT WHITE DWARF BINARIES: HELIUM

CORE WHITE DWARFS, TIDAL HEATING, AND OBSERVATIONAL

SIGNATURES

5.1 Introduction1

In the last decade, compact white dwarf (WD) binaries (with orbital periods in the range

of minutes to hours) have become increasingly important for several topics in astro-

physics. The orbits of these systems decay via the emission of gravitational waves,

constituting the largest signals for next generation space-based gravitational wave de-

tectors. Systems of sufficiently short orbital period will merge within a Hubble time,

the result of which may create a variety of exotic astrophysical systems, e.g., isolated

sdB and sdO stars, R CrB stars, AM CVn binaries, or high-mass neutron stars. Of most

importance, merging WDs may trigger type Ia supernovae (e.g., Webbink 1984; Iben

& Tutukov 1984). Recent observations and numerical simulations have provided some

support for such “double degenerate” progenitors of SNe Ia. (e.g., Gilfanov & Bogdan

2010; Di Stefano 2010; Maoz et al. 2010; Li et al. 2011; Bloom et al. 2012; Schaefer &

Pagnotta 2012, Gonzalez Hernandez et al. 2012).

The outcome of a WD binary merger depends on the masses and compositions of

the WDs and their pre-merger conditions (e.g., Segretain et al. 1997; Yoon et al. 2007;

Loren-Aguilar et al. 2009; van Kerkwijk et al. 2010; Dan et al. 2012; Raskin et al. 2012).

Despite the broad significance of WD mergers in astrophysics, detailed studies of the

pre-merger conditions have been relatively scarce. Most studies have focused on equi-

librium (non-dynamical) tides (e.g., Iben et al. 1998, Willems et al. 2010) or have

1This chapter is based on Fuller & Lai (2013).

92



parameterized the tidal effects (e.g., Piro 2011). None of these studies have sought to

calculate both the magnitude and location of tidal heating, and none of them can be

used to predict observational signatures of tidal heating. Such predictions are becom-

ingly increasingly important as ongoing surveys continue to uncover new compact WD

binary systems (e.g. Mullally et al. 2009; Kulkarni & van Kerkwijk 2010; Steinfadt et

al. 2010a; Kilic et al. 2012; Brown et al. 2011; see Marsh 2011 for a review).

This paper is the fourth in a series (see Fuller & Lai 2011,2012a,2012b, hereafter Pa-

pers I, II, and III) where we systematically study dynamical tides and their observational

consequences in compact WD binaries. In Paper I, we calculated the tidal excitation of

discrete g-modes in carbon-oxygen (CO) WDs. We showed that the excited g-modes

reach very non-linear amplitudes near the surface of the star, even far from resonance.

Thus, rather than exciting discrete g-modes, the binary companion will excite a continu-

ous train of gravity waves that propagate towards the surface of the WD, where they are

likely dissipated through a combination of non-linear processes and radiative damping.

In Paper II, we calculated the gravity wave amplitude as a function of orbital fre-

quency using an outgoing wave boundary condition (i.e., assuming the waves damp

completely in the outer layers of the WD rather than reflecting at the surface). Our cal-

culations showed that the train of gravity waves is launched at the C-He composition

gradient in the CO WD models we used. We then computed the energy and angular

momentum flux carried by the waves in order to predict the orbital and spin evolution

of WDs in compact systems. We found that tidal effects are negligible at large separa-

tions (orbital periods larger than about an hour), but become increasingly important at

smaller periods, causing the WDs to be nearly synchronized upon merger. Furthermore,

we found that the heating rate can be quite large at short orbital periods (exceeding

100L� just before merger, depending on the system parameters), potentially leading to
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an observable tidal heating signature. In Paper III, we showed that localized tidal heating

in the semi-degenerate region of the hydrogen envelope can lead to thermonuclear run-

aways, “tidal novae”, potentially burning the hydrogen layer off the WD in an explosive

event similar to a classical nova.

In this paper, we extend our calculations to models of low mass (M ≈ 0.3M�) he-

lium (He) WDs, which are relatively common among observed short-period WD binary

systems (Kilic et al. 2012). Since these WDs do not have a C-He compositional gradient

(although they do contain a helium-hydrogen composition gradient), the wave excitation

mechanism and the resultant amplitude of the gravity waves may be quite different from

their higher-mass CO counterparts. We compute the energy and angular momentum

fluxes carried by the waves, and the consequent effect on the orbital and spin evolution

of He WDs in compact systems.

We also attempt to calculate the observational signatures of tidal heating in both CO

and He WDs. Although our calculations of the wave amplitudes are performed in the

linear theory, we use these amplitudes to estimate where the waves become non-linear

as they propagate toward the surface of the WD. If the waves become sufficiently non-

linear, they will overturn the stratification and break, depositing their energy and angular

momentum into the surface layers of the star. Also, the WD envelope can develop

differential rotation due to the deposition of angular momentum carried by the gravity

waves. This in turn produces a “critical layer” at which wave absorption takes place

due to corotation resonance. We examine the criteria for non-linear wave breaking and

for wave absorption at the critical layer, and estimate where the outgoing waves deposit

their energy in He and CO WDs. We then evolve WD models using the MESA stellar

evolution code (Paxton et al. 2011) including a tidal heating term (which is a function

of both radius and time) calculated according to various criteria. The evolution code
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allows us to monitor changes in the WD properties as a function of orbital period and

thus allows us to make predictions of observational signatures for WD binaries as a

function of their orbital period.

The paper is organized as follows. In Section 5.2, we calculate the amplitude of

gravity waves in a He WD model as a function of the tidal forcing frequency, and com-

pare these results to those previously obtained for CO WD models. In Section 5.3, we

compute the orbital and spin evolution of a He WD in a compact binary system and

estimate the magnitude of the tidal heating. In Section 5.4, we estimate where in the

WD the waves will undergo non-linear wave breaking or experience wave absorption

at a critical layer, and how the location depends on the orbital period and the internal

structure of the WD. In Section 5.5, we evolve WD models under the influence of tidal

heating and predict observational signatures of the tidal heating. Finally, in Section 5.6,

we compare our predictions to observed systems, and we discuss the uncertainties in our

results and how they may be remedied by future studies.

5.2 Tidal Dissipation in Helium WDs

5.2.1 Wave Dynamics

To calculate the amplitude of the tidally excited gravity waves in a He WD model, we

use the same method described in Paper II. Here we review only the basic concepts and

introduce our notation.

The Lagrangian displacement associated with the dominant (quadrupole) component
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of the tidal potential has the form

ξ(r, t) =
[
ξr(r)r̂ + ξ⊥(r)r∇⊥

]
Y22(θ, φ)e−iωt, (5.1)

where ξr is the radial component of the displacement and ξ⊥ is the perpendicular dis-

placement, r is the radius, Y22 is the l = m = 2 spherical harmonic, and ω is the tidal

forcing frequency. In this paper, we consider the orbit of the companion to be circular

and aligned such that ω = 2(Ω − Ωs), where Ω is the angular orbital frequency and

Ωs is the angular spin frequency. The displacement ξ can be further decomposed into

an equilibrium component ξeq that describes the quasi-static ellipsoidal distortion of the

star, and a dynamical component ξdyn which describes the non-equilibrium wavelike re-

sponse of the star to the tidal forcing. Appendix A describes the details (improving upon

the treatment of Paper II) of decomposing the equilibrium and dynamical components.

We calculate the waveform of the tidally excited gravity waves by solving the linear

inhomogeneous wave equations for stellar oscillations. At the center of the star, we

impose the regularity boundary condition. At the outer boundary near the stellar surface,

we use the (outgoing) radiative boundary condition:

d
dr
ξ

dyn
⊥ =

[
−
(
ρr2/kr)′

2
(
ρr2/kr

) − ikr

]
ξ

dyn
⊥ , (5.2)

where ρ is the density, kr is the radial wave number,

k2
r '

l(l + 1)(N2 − ω2)
ω2r2 , (5.3)

and N is the Brunt-Vaisala frequency. Equation 5.3 is valid as long as ω2 � L2
l , where

L2
l =

l(l + 1)c2
s

r2 (5.4)

is the square of the Lamb frequency, and cs is the sound speed.
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Upon solving the oscillation equations to calculate ξr(r) and ξ⊥(r) for a given value

of ω, the angular momentum flux carried by the wave is

J̇z(r) = 2mω2ρr3Re
[
iξdyn∗

r ξ
dyn
⊥

]
. (5.5)

When evaluated at the outer boundary r = rout, equation (5.5) represents the rate at which

the dynamical tide deposits angular momentum into the WD envelope. The outgoing

angular momentum and energy fluxes can be written as

Ttide = J̇z(rout) = T0F(ω), (5.6)

and

Ėtide = ΩT0F(ω), (5.7)

where

T0 =
GM′2

a

(R
a

)5

, (5.8)

M′ is the mass of the companion star, and a is the orbital semi-major axis. The dimen-

sionless function F(ω) describes the magnitude of wave excitation in the WD, and is

strongly dependent on the internal structure of the WD and the tidal frequency ω. In

terms of the commonly used parameterization of tidal dissipation (Goldreich & Soter

1966; Alexander 1973; Hut 1981), F(ω) is the related to the tidal phase lag and tidal Q

by F(ω) = 3k2δlag = 3k2/(2Q) (assuming Ω > Ωs), where k2 is the tidal Love number.

5.2.2 Wave Excitation in He WDs

We perform our calculations on an M = 0.3M� He WD with a ∼ 1.2×10−3M� hydrogen

envelope, generated using the MESA stellar evolution code (Paxton et al. 2011). We

evolve the same WD to surface temperatures of Teff = 18000K, Teff = 12000K, and

Teff = 6000K, with respective radii of R = 2.0 × 109cm, R = 1.6 × 109cm, and R =
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Figure 5.1: Propagation diagrams showing ρ (thick solid line), N2 (thin solid line), and
L2

2 (dashed line) as a function of radius in our M = 0.3M� He core WD model with
a ∼ 10−3M� hydrogen shell. The three panels are for WDs with Teff = 18000K (top),
Teff = 12000K (middle), and Teff = 6000K (bottom). All quantities are plotted in units
with G = M = R = 1.
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1.4 × 109cm. Figure 5.1 shows propagation diagrams for our stellar models. The spike

in N2 at r ' 0.8R is due to the He-H composition gradient.

We have calculated the fluid displacement ξ(r) as a function of r for tidally ex-

cited gravity waves at many values of ω. Figure 5.2 shows the wave function ξ⊥(r) and

dimensionless angular momentum flux F(ω, r) = J̇z(r)/T0 as a function of radius for

ω = 3 × 10−2, in units where G = M = R = 1. The location of wave excitation can be

determined by examining F(ω, r). Below the wave excitation region there exists both

an ingoing and outgoing wave such that F(ω, r) ≈ 0, while above the excitation region

there exists only an outgoing wave such that F(ω, r) ≈ constant. It is evident from Fig-

ure 5.2 that the wave is excited at the sudden increase in N2 associated with the He-H

composition gradient.

Figure 5.3 displays F(ω) as a function of ω, and reveals that F(ω) is an erratic,

non-monotonic function of ω. The reason is that the core of the WD behaves as a quasi-

cavity containing in-going and out-going waves. At some frequencies, these waves

constructively interfere at the cavity boundary (the He-H composition gradient) and

create a large outgoing wave in the WD envelope. At other frequencies, the waves

exhibit deconstructive interference, creating a small outgoing wave in the envelope (see

Paper II for more details). In Paper II we found that on average, F(ω) has the rough

scaling F(ω) ∝ ω5 for CO WDs, whereas we find here that in a rough sense F(ω) ∝ ω6

in our He WD models. Moreover, the magnitude of F(ω) of He WDs is smaller by

nearly five orders of magnitude over the frequency range of interest.

The smaller values of F(ω) in He WDs stem from the dynamics of gravity wave

excitation at a composition gradient. In Paper II, we showed that gravity wave excitation

due to a composition gradient in CO WDs has a rough scaling

F(ω) ≈ f̂ ω̂5, (5.9)
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Figure 5.2: Dynamical tide in our He WD model with Teff = 12000K driven by a
companion of mass M′ = M, with the tidal frequency ω = 3.0 × 10−2. Top: The value
of F(ω, r) = J̇z(r)/T0 (dark solid line) as a function of radius, with J̇z calculated from
equation (5.5). All values are plotted in units of G = M = R = 1. Bottom: The real
part of ξdyn

⊥ (dark solid line) and imaginary part of ξdyn
⊥ (dark dashed line) as a function

of stellar radius. The value of N2 has been plotted (dashed purple line) in each panel.
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Figure 5.3: The dimensionless tidal torque F(ω) = J̇z/To [see equation (5.6)] carried
by outgoing gravity waves as a function of the tidal frequency ω for our He WD model
with Teff = 18000K (top), Teff = 12000K (middle), and Teff = 6000K (bottom). The
dashed lines correspond to F(ω) = 3× 10−3ω6 (top), F(ω) = 1.5× 10−2ω6 (middle), and
F(ω) = 6 × 10−1ω6 (bottom). The frequency is in units of G = M = R = 1.
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where the notation x̂ indicates that the quantity x should be evaluated in dimensionless

units with G = M = R = 1, and f̂ is approximately given by

f̂ ≈
ρ̂ar̂7

aN̂a

N̂4
b ĝ2

a

( r̂a

Ĥa

)4

≈ 10−1
(
ρ̂a

10−2

)( r̂a

0.75

)11( N̂a

8

)( N̂b

3

)−4( ĝa

2

)−2( Ĥa

0.1

)−4

for He WDs,

≈ 103
(
ρ̂a

10−3

)( r̂a

0.8

)11( N̂a

1.5

)( N̂b

0.3

)−4( ĝa

1.5

)−2( Ĥa

0.05

)−4

for CO WDs, (5.10)

where H is the pressure scale height. The a and b subscripts indicate these quantities

are to be evaluated one wavelength above the base of the composition gradient, and at

the base of the composition gradient, respectively. The middle line of equation (5.10) is

more appropriate for our He WD models, while the last line is more appropriate for our

CO WD models. Waves are more easily excited at larger values of r̂a due to the longer

lever arm available to be torqued by the tidal potential. They are more easily excited at

smaller values of N̂b because smaller values in N̂b produce longer wavelengths which

couple better with the tidal potential.

In our He WD models, the value of r̂a tends to be smaller than in CO WDs because

the hydrogen layer is much thicker. Furthermore, the value of N̂2
b tends to be larger in

He WDs because they are less degenerate than CO WDs (i.e., they have a larger entropy

and a larger entropy gradient). The difference in stellar structure coupled with the strong

dependence on r̂a and N̂b causes the value of f̂ to be orders of magnitude smaller in our

He WD models than it is in our CO models. Furthermore, the slight dependence of r̂a

and N̂a on ω (due to the fact that these quantities are evaluated one wavelength above

the base of the composition gradient) creates a slightly steeper scaling F(ω) ≈ f̂ ω̂6 in

He WDs.
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5.3 Orbital and Rotational Evolution of He WDs

Having computed the dimensionless tidal torque F(ω), we can calculate the rate at which

energy and angular momentum are deposited in a He WD in a compact binary. In our

analysis, we assume the WD maintains solid body rotation. The spin frequency of the

WD evolves as

Ω̇s =
T0F(ω)

I
, (5.11)

where I is the moment of inertia of the WD. The orbital frequency of the WD evolves

due to both tidal dissipation and gravitational radiation:

Ω̇ =
3T0F(ω)
µa2 +

3Ω

2tGW
. (5.12)

Here, µ is the reduced mass of the binary, and tGW = |a/ȧ| is the gravitational wave

inspiral time given by

tGW =
5c5

64G3

a4

MM′Mt

= 3.2 × 1010s
( M2

�

MM′

)( Mt

2M�

)1/3( Ω

0.1 s−1

)−8/3

. (5.13)

At large orbital periods, the second term in equation (5.12) dominates the orbital and

spin evolution such that Ω̇ � Ω̇s, and tidal effects are negligible. However, because of

the strong dependence of F(ω) on ω, tidal spin up becomes important at short orbital

periods. The critical orbital frequency, Ωc, at which tidal spin up becomes important is

determined by equating Ω̇ ' 3Ω/(2tGW) and Ω̇s. For our He WD models, we find [cf.

equations (79) and (83) of Paper II]

Ωc =

 3κ

10 f̂

M5/3
t

M′M2/3

(GM
Rc2

)5/23/19 (GM
R3

)1/2

= (7.0 × 10−3s−1)

κ0.17M5/3
t1 M5

1

f̂ M′
1R12

4

3/19

, (5.14)
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Figure 5.4: Evolution of the spin frequency Ωs in units of the orbital frequency Ω as a
function of the orbital period. The solid lines correspond to our 0.3M� WD model with
Teff = 18000K (black), Teff = 12000K (red), and Teff = 6000K (blue). The dashed lines
correspond to evolutions using F = 3 × 10−3ω̂6 (black), F = 1.5 × 10−2ω̂6 (red), and
F = 6×10−1ω̂6 (blue) for the WD models of like color. The vertical dotted lines denotes
the critical orbital period, 2π/Ωc [see equation (5.14)], for WDs of like color. The black
and blue curves are indistinguishable from one another. In these evolutions, M′ = M
and the WDs initially have Ωs = 0.

where Mt = M + M′ and κ = I/(MR2). Here, Mt1 = (M + M′)/M�, M1 = M/M�,

R4 = R/(104km), and κ0.17 = κ/0.17. Our He WD models have κ = 0.094, κ = 0.13, and

κ = 0.16 for Teff = 18000K, Teff = 12000K, Teff = 6000K, respectively.

The scaling shown in equation (5.14) is an important result of our theory.2 The

dependence on M and R shows that lower mass, larger radius WDs (such as He WDs)

should have smaller critical frequencies. So, naively, one would expect tidal dissipation

to become important at longer orbital periods for low mass WDs. However, as described

2Equations (5.14) and (5.17) can be derived for the general case Ttide = T0 f̂ ω̂n, as detailed in Appendix
C.
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in Section 5.2.2, the value of f̂ is much smaller in He WDs. These two effects largely

offset one another, causing the value of Ωc to be similar in He and CO WDs. Thus,

an He WD in a compact binary will begin to evolve toward synchronization with the

orbital frequency at roughly the same orbital period as a CO WD, namely, at orbital

periods P ≈ 1 hour.

Figure 5.4 displays the spin frequency, Ωs, as a function of orbital period for an

He WD in a compact binary. At periods longer than about an hour, the spin frequency

increases slower than the orbital frequency, and thus the value of Ωs/Ω remains close

to zero. However, when the orbital frequency increases to Ω ≈ Ωc, the value of Ωs/Ω

begins to increase, i.e., the WD becomes more synchronized with the orbit. The WD

does not become completely synchronized, however, but retains a nearly constant degree

of asynchronization such that Ω−Ωs ' Ωc (see Section 8.1 of Paper II for more details).

We can also calculate the amount of heat dissipated in the WD. The heat dissipated

in the WD is not equal to the tidal energy transfer rate [Ėtide, see equation (5.7)] because

some of the tidal energy flux is stored as rotational kinetic energy. Instead,

Ėheat = Ėtide(1 −Ωs/Ω). (5.15)

At long orbital periods where Ωs/Ω � 1, Ėheat ' Ėtide, with Ėtide given by equation

(5.7). However, at shorter orbital periods where Ω > Ωc (see Paper II),

Ėtide '
3IΩ2

2tGW
for Ω > Ωc, (5.16)

and we find for our He WD model that

Ėheat ' Ėtide

(
Ωc

Ω

)19/18

' (1.2 × 1037 erg s−1)κ7/6
0.17 f̂ −1/6M17/6

1 (M′
1)5/6(Mt1)−1/18

(
Ω

0.1 s−1

)65/18

. (5.17)

Comparison with equation (91) of Paper II reveals that the amount of heat dissipated in

an He WD is the same order of magnitude as the heat dissipated in a CO WD. At short
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Figure 5.5: The tidal energy dissipation rate Ėtide (solid lines) and the tidal heating
rate Ėheat (dashed lines) as a function of orbital period for our 0.3M� WD model with
Teff = 18000K (black), Teff = 12000K (red), and Teff = 6000K (blue). Note that at long
orbital periods, Ėtide ' Ėheat and these curves overlap. The dotted back line is the energy
flux carried away by gravitational waves, ĖGW. In these evolutions, M′ = M and the
WDs initially have Ωs = 0.

orbital periods, this heating rate can be much larger than the WD’s intrinsic luminosity,

and it can thus have a substantial impact on the structure, luminosity, and temperature

of the WD (see Section 4).

Figure 5.5 shows the tidal energy flux and heating rate as a function of orbital period

for a He WD in a binary with M′ = M. It is clear that ĖGW � Ėtide at all orbital periods,

where ĖGW = GMM′/(2atGW) is the energy flux carried away by gravitational waves.

At long orbital periods where Ω < Ωc, the value of Ėheat ' Ėtide, but the magnitude of

the heating is small and has a negligible effect on the WD. At shorter orbital periods

where Ω > Ωc, the heating rate is well described by equation (5.17).
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5.4 Location of Tidal Heat Deposition

Until now, we have not examined the processes that convert the angular momentum

and energy carried by gravity waves into the rotational angular momentum and internal

energy of the stellar envelope. We have assumed that the gravity waves propagate into

the envelope of the WD where they somehow dissipate, depositing their energy and

angular momentum. Here, we investigate these processes so that we can estimate the

magnitude of tidal heating as a function of depth within the star.

5.4.1 Non-linear Wave Breaking

As the tidally excited gravity waves propagate outward in the WD envelope, their am-

plitudes increase. In the WKB limit, with ω � N and ω � Ll, the radial wave number

is given by kr ' −k⊥N/ω, where the horizontal wave number is k⊥ =
√

l(l + 1)/r. The

amplitudes of the radial and horizontal displacements scale as

ξ⊥ '
ikrr

l(l + 1)
ξr ∝

N
r2(ρ|kr|)1/2 . (5.18)

Obviously, |kr|/k⊥ = N/ω � 1 and |ξr/ξ⊥| =
√

l(l + 1)ω/N � 1.

As the gravity waves reach sufficiently large amplitudes, they are expected to break

and quickly damp, locally depositing their energy and angular momentum. The critical

amplitude for wave breaking may be estimated by comparing the Eulerian acceleration

∂v/∂t = −ω2ξ (where v = −iωξ is the fluid velocity) with the non-linear “advective”

term v ·∇v = −ω2ξ ·∇ξ. For gravity waves, most of the terms in the advective derivative

satisfy the non-linearity condition ξ · ∇ξ ' ξ when

|krξr| '
l(l + 1)

r
|ξ⊥| ∼ 1. (5.19)
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Thus, nonlinear effects become important when the radial (horizontal) displacement is

comparable to the radial (horizontal) wavelength. Alternatively, one may expect the

waves to begin breaking when the shear is large enough to overturn the stratification of

the star, i.e., when the Richardson stability criterion, N2/|dv⊥/dr|2 > 1/4, is violated.

This occurs when k⊥|ξ⊥| >∼ 1, a condition similar to equation (5.19) for l = 2. Equation

(5.19) is similar to the wave breaking criterion discussed in Ogilvie & Lin (2007) and

found in three-dimensional simulations of gravity waves approaching the center of a

solar-type star (Barker & Ogilvie 2011).

However, equation (5.19) corresponds to a physical displacement, |ξ| ' |ξ⊥| ∼

R/[l(l+1)] in the envelope of the star. It seems unlikely that fluid displacements of order

the radius of the star can be realized before non-linear wave breaking occurs. Moreover,

the r̂ component of the advective derivative contains the term −ξ⊥ · ξ⊥/r. This implies

that non-linear effects may become important when ξ2
⊥/r ∼ ξr, which corresponds to

krξ⊥ ∼ l(l + 1) in the WKB limit. Thus, we will also consider the non-linear breaking

criterion

|krξ⊥| ∼ β, (5.20)

where β >∼ 1 is a free parameter. Choosing different values of β will allow us to test how

the location of tidal energy deposition depends on different wave breaking criteria.

To implement the non-linear criterion (5.19) or (5.20) for different orbital frequen-

cies and companion masses, we can use our numerically computed wave function ξ(r)

and extend it to the near surface region via the WKB amplitude relation (5.18). Alterna-

tively, we can use equations (5.5), (5.6), and (5.18) to find

|ξ⊥(r)| ' R
(

M′

Mt

) [
F(ω)

2m
√

l(l + 1)
Ω4N(r)
Gρ(r)ω3

]1/2

, (5.21)

with l = m = 2. The radial displacement can be obtained from equation (5.18). The

above expression gives the wave amplitude in the outgoing wave region, i.e., the region
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above the composition gradient at which the waves are excited.

We denote the location of non-linear wave breaking by ∆MB, the mass above the

point at which the wave amplitude satisfies one of the non-linear criteria discussed

above. Figure 5.6 shows ∆MB as a function of orbital period for both CO and He WD

models, calculated according to equations (5.19) and (5.20). At large orbital periods

(P & 40 minutes), the waves do not become non-linear under criterion (5.19) below

the surface convection zone (whose depth is ∆Mconv ' 10−12M� for the CO WD and

∆Mconv ' 10−13M� for the He WD). In this case, the g-mode analysis of Paper I and

Burkart et al. (2012) may become applicable. At shorter orbital periods, the waves be-

come non-linear according to equation (5.19), but they break near the surface of the WD

where ∆MB . 10−8M�.

However, under the criterion of equation (5.20) with β = 1, the waves become non-

linear deeper in the star, and nearly always reach non-linear amplitudes before encoun-

tering the surface convection zone. In the CO WD model, the value of ∆MB jumps

upward to ∆MB ≈ 10−4M� at an orbital period of about 30 minutes, while ∆MB stays

below 10−5M� in the He WD. The reason is that the CO WD has two composition gradi-

ents whereas the He WD has only one. The He-H composition gradient in the CO WD

causes the outgoing waves excited at the C-He gradient to have larger values of both

|ξ⊥| and |kr| in this layer, promoting non-linearity via equation (5.20). No such com-

position gradient exists above the excitation region in an He WD, so the waves do not

reach non-linear amplitudes until they are close to the surface. For reference, Figure 5.6

also shows the value of ∆MB calculated with the intermediate non-linearity conditions

|krξ⊥| = 3 and |krξ⊥| = 10. Using these more conservative criteria yields results similar

to the criterion |krξ⊥| = 1, but with generally smaller values of ∆MB.

109



  
10-14

10-12

10-10

10-8

10-6

10-4

∆M
B
(M

O •
)

10 100
Orbital Period (minutes)

10-14

10-12

10-10

10-8

10-6

10-4

∆M
B
(M

O •
)

 krξ⊥  = 1 
 krξ⊥  = 3 
krξ⊥  = 10
 krξr = 1 

Figure 5.6: The envelope mass ∆MB above the point at which outgoing waves become
non-linear as a function of orbital period for an M = 0.6M� CO WD model with Teff =

10000K (top) orbiting an M = 0.3M� He WD model with Teff = 12000K (bottom). The
solid black lines are calculated from equation (5.19), while the three dashed lines are
from equation (5.20) with β = 1, 3, 10 (from top to bottom). This plot assumes the WD
spin and orbital frequencies evolve according to equations (5.11-5.12).
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5.4.2 Wave Absorption at a Critical Layer

Until now, we have considered the WD to be rotating as a rigid body. Our results have

indicated that in a rigidly rotating WD waves will break and deposit their angular mo-

mentum in the outer layers of the star where ∆MB . 10−4M�. Since a small fraction

of the stellar mass absorbs the entirety of the angular momentum flux carried by waves,

the outer layers of the star may spin up rapidly. If the outer layer spins up faster than

angular momentum can be transported to the core, it will attain synchronous rotation

with the orbit of the companion. The outgoing gravity waves will then encounter a

critical layer (corotation resonance), where the wave frequency in the rest frame of the

fluid, ω = 2[Ω − Ωs(r)], equals zero. At the critical layer, the gravity waves are di-

rectly absorbed by the fluid since their radial wavelength |kr|
−1 ' ω/(k⊥N) and group

velocity vg ' ω2/(k⊥N) both approach zero. As the continuous train of gravity waves

deposit their angular momenta in the stellar envelope, the critical layer will move to

larger depths. Such an “outside-in” scenario for tidal spin-up was first discussed by

Goldreich & Nicholson (1989) for massive (early-type) stellar binaries, and was applied

to WD binaries in Paper III.

In this section, we model the spin evolution of the WD using a simple two-zone

model. In this model, the envelope of the star forms a critical layer that rotates

synchronously with the orbit (Ωs,env = Ω), while the core of the star rotates sub-

synchronously (Ωs,core < Ω). The envelope and core are coupled, with angular mo-

mentum being transferred to the core according to a parameterized coupling time, tcoup.

The angular momentum of the system evolves according to

J̇env = J̇z(ωcore) −
Ienv

tcoup
(Ωs,env −Ωs,core) (5.22)

J̇core =
Ienv

tcoup
(Ωs,env −Ωs,core). (5.23)
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Here, J̇z is the angular momentum flux which can be calculated from equation (5.6).

We assume that the waves are excited in the core and dissipated in the envelope.

Consequently, the angular momentum source term J̇z is only present in the enve-

lope evolution equation, although it is dependent on the tidal frequency in the core,

ωcore = 2(Ω − Ωs,core). Using Ωs,env = Ω and the fact that the star’s total moment of

inertia is I = Ienv + Icore, equations (5.22) and (5.23) may be rewritten

İenv = −
Ω̇

Ω
Ienv +

J̇z(ωcore)
Ω

−
Ω −Ωs,core

Ωtcoup
Ienv (5.24)

Ω̇s,core =
İenv

I − Ienv
Ωs,core +

Ienv

I − Ienv

Ω −Ωs,core

tcoup
. (5.25)

Since the orbital decay is dominated by the emission of gravitational waves, Ω̇/Ω '

3Ω/(2tGW).

With appropriate initial conditions, we can integrate equations (5.24) and (5.25) to

calculate the values of Ienv and Ωs,core as a function of orbital period. We then obtain

the mass ∆Menv of the envelope corresponding to the value of Ienv. In this simple two-

zone model, the tidal heat is deposited entirely at the base of the envelope where ∆M =

∆Menv. The thickness of the envelope is dependent on the parameter tcoup. Unfortunately,

angular momentum transport in stars is not well understood. In stably stratified stars like

WDs, angular momentum is likely transported by magnetic torques, e.g., via the Tayler-

Spruit dynamo (Spruit 2002). In Appendix D we estimate value of tcoup, and find that

1yr . tcoup . 104yr for realistic WD parameters.

We can calculate approximate equilibrium solutions to equations (5.24) and (5.25).

Since tcoup � tGW, the first term on the right hand side of equation (5.24) is negligible.

Then at equilibrium,

Ienv '
J̇z(ωcore)tcoup

Ω −Ωs,core
. (5.26)

At large orbital periods where Ω . Ωc [see equation (5.14)] the system is not synchro-
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Figure 5.7: The envelope mass ∆Menv above the critical layer as a function of orbital
period for our M = 0.6M� CO WD model with Teff = 10000K (top) orbiting our M =

0.3M� He WD model with Teff = 12000K (bottom). The solid black lines have tcoup =

1yr, the dot-dot-dashed green lines have tcoup = 10yr, the dot-dashed orange lines have
tcoup = 102yr, and the dashed red lines have tcoup = 103yr.
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nized such that Ωs,core � Ω and

Ienv '
J̇z(2Ω)tcoup

Ω
for Ω < Ωc (5.27)

At short orbital periods (Ω > Ωc) where synchronization has begun, Ω−Ωs,core ' Ωc. In

this regime, J̇z = Ėtide/Ω ' 3IΩ/(2tGW), and we have

Ienv '
3Ωtcoup

2ΩctGW
I for Ω > Ωc. (5.28)

Comparison with our numerical integration of equations (5.24) and (5.25) shows that

the approximations of equations (5.27) and (5.28) are very accurate.

Figure 5.7 plots the value of ∆Menv as a function of orbital period for our two WD

models, using values of tcoup ranging from 1yr to 103yr. We begin our calculation at

Porb > 1hr and use Ienv,0 = 0 and Ωs,core = 0, as is appropriate at long orbital periods

where tidal effects are small. For the chosen values of tcoup, the value of ∆Menv remains

small at all orbital periods (∆Menv . 10−2M�). Thus, if a critical layer develops in a real

WD, we expect it to be restricted to the outer region of the star. However, the critical

layer extends to very large optical depths, suggesting that binary WDs may be observed

to be synchronized at large orbital periods even if their cores are not synchronized.

Our results indicate that, for our CO WD model, the critical layer most likely does not

penetrate as deeply as the C-He composition gradient where gravity waves are excited

(or the He-H gradient in our 0.3M� He WD model), so our assumption that J̇z is a

function of ωcore = 2(Ω − Ωs,core) is justified. Finally, we note that the values of ∆Menv

are similar in magnitude to the values of ∆MB calculated in Section 5.4.1.
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5.5 Thermal Evolution of Tidally Heated Binary White Dwarfs

In Section 5.2 (and in Paper II), we demonstrated that the tidal heating rate Ėheat of a

WD in a compact binary may be substantially larger than the intrinsic luminosity of the

WD. However, the consequence of this tidal heating is not clear a priori and depends

on the location of heat deposition (Section 5.4). The assumption that the WD reaches a

state of thermal equilibrium is not justified because the WD cooling time can be much

larger than the gravitational inspiral time. In this section, we calculate the effect of the

tidal heating on the WD structure and on its surface temperature and luminosity.

5.5.1 Details of Calculation

To calculate the effect of tidal heating, we first calculate the value of ∆MB according to

the wave breaking criteria of Sections 5.4.1 and 5.4.2 (for the purposes of this calcula-

tion, we refer to the value of ∆Menv as ∆MB, because it determines the depth at which

tidal heat is deposited). We deposit the tidal heat uniformly per unit mass in the outer

layers of the WD that have ∆M < ∆MB. Although the radial dependence of this heating

function is unlikely to be realistic, we find that the results are not strongly dependent on

the form of the radial heat deposition (although they are sensitive to the value of ∆MB).

The heating rate per gram of material, ε̇heat, is then

ε̇heat = 0 for ∆M > ∆MB (5.29)

ε̇heat =
Ėheat

∆MB
for ∆M < ∆MB, (5.30)

with the value of Ėheat calculated from equation (5.17) (and its counterpart in Paper II

for CO WDs).

To understand the effect of tidal heating on the WD properties, we evolve WD
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models using the extra heating term calculated via equation (5.30). We use the one-

dimensional stellar evolution code MESA (Paxton et al. 2011) to evolve our WD mod-

els. At the beginning of the evolutions, the WDs have the same profiles used to calculate

the magnitude of wave excitation (e.g., the models shown in Figure 5.1 for our He WD

models). The initial orbital period is one hour, with companion masses discussed below.

During the course of our evolutions, we do not calculate new values of F(ω) and

Ωc at each time step. In principle, these values change as the stellar structure adjusts to

tidal heating (and WD cooling). However, since waves are excited at a depth well below

where they deposit their energy as heat, the properties of the WD at the location of wave

excitation experience little change during the evolution. Hence, we expect the values

of F(ω) and Ωc to remain roughly constant. In contrast, the value of ∆MB is strongly

dependent on orbital period, and is updated at each time step.

In general, the amount of tidal heat depends on the masses of the two WDs. We

do not attempt to cover the whole spectrum of WD masses. Instead, we consider only

two cases: a 0.6M� CO WD paired with a 0.3M� He WD (in this case we examine the

heating of both WDs), and a 0.6M� CO WD paired with a 0.9M� companion star (in

this case we examine only the 0.6M� WD). We present results for the 0.6M� CO WDs

at initial temperatures of 5000K, 10000K, and 15000K, and for the 0.3M� He WDs at

initial temperatures of 6000K, 12000K, and 18000K. These temperatures roughly span

the observed temperatures in compact WD binaries (Kilic et al. 2012).

5.5.2 Effects of Tidal Heating

Figure 5.8 displays the surface temperature of the 0.3M� He WD as a function of orbital

period. For comparison, we also plot the temperature of a non-tidally heated WD (i.e.,
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Figure 5.8: The surface temperature of our 0.3M� He WD model with a 0.6M� com-
panion as a function of orbital period, for initial temperatures of 6000K (top), 12000K
(middle), and 18000K (bottom). On the left-hand side, the solid black lines are calcu-
lated with the wave breaking criterion of equation (5.19), while the dashed red lines are
calculated with equation (5.20). On the right-hand side, the solid black lines are calcu-
lated via the two-zone model with tcoup = 1yr, while the dashed red lines are calculated
with tcoup = 103yr. The dotted lines are calculated for a WD with no tidal heating and the
same initial temperature. The blue dot-dashed lines are the values of and Teff,tide from
equation (5.31). The black and red lines overlap at large orbital periods, while the black
and blue lines often overlap at small orbital periods. Discontinuities in temperature
are due to sudden changes in the location of heat deposition (see text). Stars indicate
the occurrence of a tidal nova. The plot extends to an orbital period of 5 minutes, the
approximate orbital period at which Roche lobe overflow occurs.
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Figure 5.9: Same as Figure 5.8, but for our 0.6M� CO WD model with a 0.3M� com-
panion.

we set Ėheat = 0 in our evolutions). At long orbital periods (P & 30 minutes), the

tidal heating has little effect on the luminosity or temperature of the WD, except to

slightly raise the temperature of the T0 = 5000K model. In this phase of its evolution,

the WD remains well described by the cooling track for a non-tidally heated WD. At

shorter periods (P . 20 minutes), the luminosity and temperature become substantially

larger due to tidal heating. At the smallest orbital periods (P . 8 minutes), the WD has a

temperature in excess of 18000K regardless of its initial temperature, and the luminosity

is dominated by escaping tidal heat. The case with tcoup = 103yr and initial temperature
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Figure 5.10: Same as Figure 5.8, but for our 0.6M� CO WD model with a 0.9M� com-
panion.

Teff = 6000K (top right panel) ends abruptly, indicating that the surface hydrogen layer

ignited to create a tidally induced nova, which we discuss in greater detail below (see

also Paper III).

The top left panel of Figures 5.8, 5.9 and 5.10 are calculated for cool WDs with

deep convection zones. In these WDs, the waves do not become non-linear below the

convection zone according to equation (5.19) at any orbital period, and they may become

non-linear according to equation (5.20) at orbital periods below one hour. When the
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waves do not become non-linear, we distribute tidal heat evenly throughout the WD,

but a more accurate calculation should use the discrete g-mode formalism discussed in

Paper I (c.f. Burkart et al. 2012, Valsecchi et al. 2012).

Figures 5.8-5.10 also show the tidal heating temperature, defined as

Teff,tide =

( Ėheat

4πR2σ

)1/4

, (5.31)

where σ is the Stefan-Boltzmann constant. In the 0.3M� WD, the tidal heat diffuses to

the surface very quickly (see Section 5.5.3 for more discussion), regardless of the non-

linear breaking criterion. In this case, the observed luminosity is roughly L ' Lint + Ėheat,

where Lint is the intrinsic luminosity of the cooling, non-tidally heated WD.

Figures 5.9-5.10 display the temperature of a 0.6M� WD as a function of orbital

period, for companion masses of 0.3M� and 0.9M�. For the cases using the non-linear

breaking criterion of equation (5.19) and critical layer absorption with tcoup = 1yr, the

results are very similar to those of the 0.3M� He WD models. When the luminosity is

dominated by tidal heating, the 0.6M� WD models have slightly larger surface temper-

atures than the 0.3M� models. Although the value of Ėheat is comparable between the

0.3M� and 0.6M� models, the smaller radius of the 0.6M� WD models requires a larger

surface temperature to radiate the same amount of energy. Finally, the luminosities and

temperatures are usually larger for the 0.9M� companion, as expected from the scaling

of equation (5.17).

However, for the non-linear breaking criterion of equation (5.20) and the critical

layer absorption with tcoup = 103yr, the results are markedly different. For these criteria,

most of the tidal heat is deposited deeper in the WD where it cannot quickly diffuse

outward to be radiated away. These criteria thus lead to generally lower WD surface

temperatures. However, because the tidal heat is not quickly radiated away, the layers

in which the heat is deposited may heat up substantially.
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The layers just above the He-H composition gradient are primarily composed of

degenerate hydrogen. If these layers are able to trap enough heat, their temperature

will increase until hydrogen fusion begins. Due to the degeneracy of the hydrogen,

the ignition of fusion starts a thermonuclear runaway similar to a classical nova. Our

evolutions show that these tidally induced novae occur in our two cooler 0.6M� CO WD

models and in our coolest 0.3M� He WD model. The novae occur only if the gravity

waves deposit their heat near the base of the hydrogen layer, i.e., only for the heat

deposition criteria which yield 10−5M� . ∆MB . 10−3M� for our CO WD model and

10−4M� . ∆MB . 10−2M� for our He WD model. Novae do not occur for the warmer

models because the hydrogen is not degenerate, so these models are able to burn the

hydrogen stably.

In a thermonuclear runaway event, most of the hydrogen will be burned to helium or

will be ejected from the system (Truran 2002). We do not attempt to predict a detailed

observational signal of such an event, other than to speculate that it will be very similar

to a classical nova. The thermonuclear runaway may dramatically change the dynamics

of subsequent tidal heat deposition. Assuming the hydrogen shell is much thinner after

the nova event, tidal heat may be deposited closer to the surface where it can quickly

diffuse outwards, similar to the results for our warm He WDs.

5.5.3 Heating and Cooling Time Scales

The effect of tidal heating can be better understood by examining the relative time scales

of the WD inspiral, heating, and cooling processes. The WD inspiral time due to gravi-

tational radiation, tGW, is given by equation (3.76). The inspiral time scale ranges from

more than a Hubble time at large orbital periods (several hours), to less than a million
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years at short orbital periods (less than about fifteen minutes). Any process that acts on a

time scale longer than the inspiral time is irrelevant, because the WDs will have merged

(or begun stable mass transfer) by the time the process makes a substantial change.

The temperature evolution of the WD is determined not only by the amount of tidal

heat deposited, but also by the rate at which that heat is able to diffuse to the surface.

The time scale on which a shell of material heats up (in the absence of cooling) is

theat(r,Ω) =
cpT
ε̇heat

, (5.32)

where cp is the specific heat at constant pressure. The radial profile of the heating time

depends primarily on the magnitude and radial dependence of the tidal heating. As tidal

heat is deposited in a shell of the WD, it will diffuse on a thermal time scale,

ttherm(r,Ω) =
PcpT
gF

, (5.33)

where P is the pressure and F is the heat flux through the shell. The thermal time scale

has a very sensitive dependence on the depth of the shell in question (see Figure 5.11).

In the core of the WD, ttherm ≈ 109years, whereas near the surface, ttherm � 1 year.

Figure 5.11 shows a plot of tGW, theat, and ttherm as a function of ∆M for our 0.6M�

WD with a 0.3M� companion at orbital periods of 45 and 15 minutes. At long orbital

periods, ttherm � theat at all radii. The tidal heat is able to quickly diffuse to the surface

and be radiated away. The temperature of the WD reaches a thermal equilibrium such

that tidal heat is radiated at the same rate it is deposited. We find this is also the case for

our 0.3M� He WD model at most orbital periods.

At short orbital periods, ttherm ≈ theat near the base of the heat deposition zone.

The temperature profile will adjust so as to re-establish thermal equilibrium such that

ttherm < theat, thereby changing the internal structure of the star. When ∆MB is calcu-

lated with equation (5.19), the star is able to adjust to the heating by steepening its
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Figure 5.11: The thermal time [solid lines, equation (5.33)], heating time [dashed lines,
equation (5.32)], and inspiral time [dotted lines, equation (3.76)] as a function of exterior
mass, ∆M, in our 0.6M� CO WD model with initial temperature Teff = 10000K. The
black lines are calculated using the breaking criterion of equation (5.19), while the red
lines are calculated using the breaking criterion of equation (5.20). The top panel is
calculated for an orbital period of 45 minutes, while the bottom is for an orbital period
of 15 minutes. Both panels are calculated for a 0.3M� companion.
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temperature gradient (thus increasing its luminosity) such that ttherm . theat at all radii.3

However, when ∆MB is calculated with equation (5.20), the star is unable to reach ther-

mal equilibrium and ttherm > theat at the base of the heat deposition zone. The shell at

∆M ≈ 10−4M� heats up, and eventually it reaches temperatures high enough to trigger

run-away hydrogen fusion.

In principle, tidal heating may change the structure of the WD enough to alter the

dynamics of wave excitation and wave breaking. However, we find that this is not the

case, with the exception of the instance of a run-away hydrogen fusion event. At and

below the location of wave excitation (∆M & 6 × 10−3), tGW � theat, so these layers

are not affected by tidal heating. At shallower depths (∆M . 6 × 10−5M�), significant

heating may occur, creating large temperature gradients. However, in our evolutions

no interior convection zone forms, despite the large temperature gradients. We thus

conclude that the locations of wave excitation and breaking will not be significantly

altered by the tidal heating, except in the case of a run-away hydrogen fusion event.

5.6 Discussion

We have calculated the amplitude of tidally excited gravity waves in a 0.3M� He WD

in a compact binary system, using an outgoing radiative boundary condition. This am-

plitude translates directly into the rate at which tidal energy and angular momentum are

transferred into the WD as a function of the tidal forcing frequency. As in the case of

CO WDs (see Paper II), we find that the tidal torque and energy flux depends on the

3In Figure 5.11, the value of ttherm goes to infinity at some values of ∆M because the heat flux goes to
zero at these locations. This can occur when the amount of tidal heat diffusing inwards from the surface is
equal to the amount of intrinsic WD heat diffusing outwards from the core (i.e., there is a local temperature
minimum). It can also occur where the tidal heat diffuses equally in both directions (i.e., there is a local
temperature maximum).

124



Figure 5.12: Same as the top right panel of Figure 5.9, except that we have also included
the temperature calculated using tcoup = 102yr (orange dot-dashed line) and tcoup = 10yr
(green dot-dot-dashed line). The asterisk marks the position of the secondary in SDSS
J0651+2844.

tidal forcing frequency in an erratic way. On average, the dimensionless tidal dissipa-

tion rate F(ω) [related to the inverse of the tidal quality factor, see equation (5.6)], is

several orders of magnitude smaller for He WDs than for the 0.6M� CO WDs studied

in Paper II. This difference arises from the larger entropy gradients in low-mass WDs,

causing decreased coupling between gravity waves and the tidal potential [see equation

(5.10)]. Nevertheless, since low-mass He WDs have larger radii, we find that the critical

orbital frequency above which spin-orbit synchronization starts is similar in He and CO

WDs, both occurring at an orbital period of about an hour. Furthermore, the amount of

tidal heat deposited is similar in He and CO WDs, exceeding the intrinsic luminosity at

short orbital periods (P . 30 minutes).

We have also estimated the location of tidal heating due to the non-linear breaking
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of outgoing gravity waves or resonant absorption at a critical layer in the WD envelope.

The tidal heat is likely deposited in the outer layers of the WD with ∆M . 10−2M�,

although the precise location depends on the details of non-linear wave breaking and

the efficiency of rotational coupling between the WD core and surface layers. We have

evolved WD models to evaluate the effect of tidal heating as function of orbital period.

Tidal heating is unimportant at long orbital periods (Porb & 1 hour), but can dominate the

luminosity of the WD at small orbital periods (Porb . 15 minutes). We have also found

that if the tidal heat is deposited deep enough in a WD (near the He-H composition

gradient), it may build up enough to trigger a nova-like hydrogen burning event (a “tidal

nova”).

Our theory can be constrained by comparing the predictions of our tidal heating

calculations to observed compact WD binaries. The two 39 minute systems J0106-1000

(Kilic et al. 2011a) and J1630+4233 (Kilic et al. 2011b), and the 12.75 minute system

J0651+2844 (Brown et al. 2011) provide the best opportunities. We find that the warm

temperatures of the He WD primaries in the two 39 minute systems (Teff = 16490K

in J0106 and Teff = 14670K in J1630) can not be explained by tidal heating. These

WDs are likely young or kept warm by residual hydrogen shell burning (Steinfadt et al.

2010b). The unseen companions in these two systems do not have measured effective

temperatures, but they are unlikely to be substantially increased by tidal heating.

The 12.75 minute system J0651 likely exhibits strong tidal heating signatures. This

system is composed of a primary He WD with Teff = 16530K and M = 0.26M�, and a

secondary CO WD with Teff ≈ 8700K and M = 0.50M� (Hermes et al. 2012). Com-

parison with Figure 5.8 indicates that the luminosity of the primary is mostly due to

intrinsic heat, but that tidal heat may slightly increase its temperature and luminosity. In

contrast, comparison with Figure 5.12 indicates the luminosity of the secondary is likely
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dominated by tidal heat. In fact, Figure 5.12 predicts that Teff is typically larger than the

observed surface temperature, except for relatively deep tidal heat deposition.

Our results indicate that the secondary in J0651 is fairly old (it takes a WD several

109yr to cool to Teff = 5000K), and that tidal heat deposition occurs relatively deep in

the star, at ∆MB & 10−4M�. Such deep tidal heat deposition could arise due to a thick

critical layer created by inefficient rotational coupling between the surface layer and the

core, or it could be due to non-linear wave breaking at the He-H composition gradient.

Furthermore, Figure 5.12 indicates that a tidal nova may occur in the future of J0651.

However, there are other possible explanations for the cool observed surface tem-

perature of the secondary in J0651. One possibility is that the value of Ėheat used in our

calculations is too large. This would require the value of Ωc to be smaller than suggested

by our calculations, i.e., tidal effects become important at longer orbital periods than we

have predicted. Stronger tidal effects may be possible if some other tidal dissipation

mechanism (e.g., inertial waves, non-linear wave excitation, or spin-up via resonance

locking, see Burkart et al. 2012 and discussion below) plays an important role in tidal

synchronization. This would cause the tidal heating rate at shorter periods to become

smaller, which could explain the low observed value of Teff .

We find that the ignition of run-away hydrogen fusion is a general characteristic of

the tidal heating process for CO WDs with hydrogen envelopes, provided that a signifi-

cant fraction of the tidal heat is deposited near the base of the hydrogen shell. Thermonu-

clear runaway only occurs in WDs with initial surface temperatures Teff . 1.2 × 104K,

otherwise tidal heating promotes steady hydrogen burning. The thermonuclear runway

usually occurs at orbital periods 5min . Porb . 20min, depending on the location of heat

deposition, initial temperature of the WD, and companion mass. We speculate that the

thermonuclear runaway will create an event very similar to a classical nova. Since most
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of the hydrogen would likely be burned or ejected in such an event, recurrent novae are

unlikely. Thus, the occurrence rate of these tidally induced novae may be comparable to

that of WD mergers involving a CO WD.

Finally, we note that we have ignored the effect of mixing in our WD evolutions.

Substantial mixing may be caused by the turbulence of breaking gravity waves or by

shear instabilities due to differential rotation. If mixing occurs faster than the gravi-

tational settling time, the composition gradients inside the WD may be smoothed out.

Since the composition gradients play important roles in the excitation and breaking of

gravity waves, substantial mixing may change the dynamics of the tidal synchronization

and heating process. We have also ignored the effect of crystallization on the wave dy-

namics. Although this issue is unlikely to affect He WDs because of their long cooling

times, it may be important for cool CO WDs.

Soon after our paper was submitted, Burkart et al. (2012) posted an article on arXiv

studying tides in WD binaries. In addition to examining gravity waves that break [using

the criterion of equation (5.19)] in systems with short orbital periods, they discussed

resonance locking with WD g-modes at larger orbital periods (P & 1hr). This may

cause substantial tidal spin-up of the WD in the orbital period range 1hr . P . 4hr

if the associated gravity waves do not break. At shorter orbital periods (P . 45min),

Burkart et al. (2012) found that gravity waves indeed break, producing tidal torques

and spin evolution similar to ours. Note that if gravity waves break via the non-linearity

criterion of equation (5.20), then the resonance locking regime will be limited to long

orbital periods. This will reduce the effectiveness of tidal spin-up prior to the onset

of continual gravity wave breaking, bringing their results more in line with ours for

P ∼ hrs. In another recent paper on WD binaries, Valsecchi et al. (2012) discussed

possible “anti-resonance locking” of g-modes in the linear theory. The nature of this
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“anti-resonance” locking is not clear, nor is the parameter regime where such locking is

effective. Overall, it appears that there is a general agreement that at short orbital periods

(P . 1hr), the WD spins up on the orbital decay timescale, with Ωs/Ω approaching unity

as Ω increases, but maintaining an approximately constant (Ω−Ωs) until binary merger

or the onset of mass transfer [see Figure 4 or equation (C.3); see also Section 8.1 of

Paper II].

Future observations and simulations can further constrain these theories. We are

hopeful that more compact WD systems with Porb . 30 minutes will be discovered in

the near future. Measurements of the masses, luminosities, temperatures, and spins of

these systems will provide more data points for comparison with our theory. Finally,

simulations of gravity waves propagating through a WD envelope could be used to un-

derstand the non-linear criterion that governs wave breaking in WDs and could more

conclusively determine where tidal heat is deposited in a WD.
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CHAPTER 6

DYNAMICAL TIDES IN ECCENTRIC BINARIES AND TIDALLY-EXCITED

STELLAR PULSATIONS IN KEPLER KOI-54

6.1 Introduction1

Tides play an important role in binary star systems and in star-planet systems. While

numerous studies of tidal effects have been based on the so-called equilibrium tide the-

ory, which parameterizes tidal dissipation by an effective tidal lag angle/time or tidal

quality factor (e.g., Darwin 1880; Goldreich & Soter 1966; Alexander 1973; Hut 1981),

the underlying physics of tides in fluid stars and planets involves dynamical excitations

of waves and oscillations by the tidal force (see Ogilvie & Lin 2007 and Zahn 2008

for recent reviews). Tides in highly eccentric systems are particularly rich in their dy-

namical behavior, since wave modes with a wide range of frequencies can be excited

and participate in the tidal interaction. Various aspects of dynamical tides in eccen-

tric binaries have been studied by Lai (1996,1997), Kumar & Quataert (1998), Witte

& Savonije (1999,2001), Willems et al. (2003), Ivanov & Papaloizou (2004) and Pa-

paloizou & Ivanov (2010).

Recent observations of the binary star system HD 187091 (KOI-54) by the Ke-

pler satellite provide a unique opportunity for studying dynamical tides in eccentric

binaries. KOI-54 consists of two A stars (mass M1,2 = 2.32, 2.38 M� and radius

R1,2 = 2.19, 2.33 R�) in an eccentric (e = 0.8342) orbit with period P = 41.805 days

(Welsh et al. 2011). The binary is nearly face-on with orbital inclination iorb = 5.52◦.

In addition to periodic brightening events caused by tidal distortion and irradiation of

the two stars during their close periastron passages, the power spectrum of the Kepler

1This chapter is based on Fuller & Lai (2012A).
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light curve revealed 30 significant (with a signal-to-noise ratio >∼ 7) stellar pulsation

modes. The observed mode periods range from 45 hours to 11 hours, corresponding to

the mode frequency fα ranging from 22.42 forb to 91 forb (where forb = P−1 is the or-

bital frequency). Most interestingly, twenty-one of these mode frequencies are integer

multiples of forb (with the ratio fα/ forb differing from an integer by 0.01 or less). The

two dominant modes have frequencies that are exactly 90 and 91 times forb, with the

corresponding flux amplitudes of 297.7 µmag and 229.4 µmag, respectively.

While dynamical tides in massive-star binaries have been studied before (e.g., Zahn

1977, Goldreich & Nicholson 1989 for circular binaries; Lai 1996,1997, Kumar &

Quataert 1998 and Witte & Savonije 1999,2011 for eccentric binaries), KOI-54 rep-

resents the first example where tidally excited oscillations are directly observed and

therefore serves as an explicit demonstration of dynamical tides at work in the system.

As discussed in Welsh et al. (2011), the observed oscillation modes are puzzling: over

20 of the observed modes are nearly exact integer multiples of the orbital frequency,

yet several others are not. It is not clear why the dominant modes are so prominent,

e.g., why modes with frequencies 90, 91, 44, and 40 times forb are clearly visible, and

yet modes with frequencies greater than 91 forb and those less than 20 forb appear to be

absent.

The goal of this paper is to explain some of the observational puzzles related to

KOI-54 and to develop the general theoretical framework for studying tidally-excited

oscillations in eccentric binary systems.

Our paper is organized as follows. In Section 6.2, we derive the general equations

for calculating the energies of tidally excited oscillation modes in an eccentric binary.

Our theory improves upon previous (and less rigorous) works, and provides a clear rela-

tionship between the resonant mode energy and non-resonant mode energy. In Section
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6.3 we study the properties of non-radial g-modes relevant to the stars in the KOI-54

system and calculate the non-resonant mode energies – these serve as a benchmark for

examining the effect of resonances. In Section 6.4 we present our calculations of the flux

variation due to tidally-forced oscillations. We show that the observed flux variation in

KOI-54 can be largely explained when a high-frequency mode is locked into resonance

(with the mode frequency equal to 90 forb). In Section 6.5 we study the possibility of res-

onance locking. We show that the combination of the secular tidal orbital/spin evolution

and the intrinsic spindown of the star (e.g., due to stellar evolution) may naturally lead to

resonance locking of a particular mode. Our analysis demonstrates that (in the KOI-54

system) a mode with frequency around 90 forb can be resonantly locked, while modes

with higher frequencies cannot. In Section 6.6 we discuss the origin of the observed

modes in KOI-54 with frequencies that are not an integer multiple of forb, including the

evidence of nonlinear mode coupling. We conclude in Section 6.7 with a discussion of

future prospects and remaining puzzles.

6.2 Dynamical Tides in Eccentric Binary Stars: General Theory

We consider the tidally-excited oscillations of the primary star of mass M and radius

R by the companion of mass M′. The gravitational potential produced by M′ can be

written as

U(ri, t) = −GM′
∑
lm

Wlmrl

Dl+1 e−imΦ(t)Ylm(θ, φi), (6.1)

where ri = (r, θ, φi = φ+ Ωst) is the position vector (in spherical coordinates) relative to

the center of star M (the azimuthal angle φ is measured in the rotating frame of the star,

with the rotation rate Ωs and the spin axis aligned with the orbital angular momentum),

D(t) is the binary separation and Φ is the orbital true anomaly. The dominant terms have

l = |m| = 2 and l = 2, m = 0, and for these terms W2±2 = (3π/10)1/2 and W20 = (π/5)1/2.

132



The linear response of star M is specified by the Lagrangian displacement ξ(r, t), which

satisfies the equation of motion (in the rotating frame of the star)

∂2ξ

∂t2 + 2Ωs ×
∂ξ

∂t
+ C · ξ = −∇U, (6.2)

where C is a self-adjoint operator (a function of the pressure and gravity perturbations)

acting on ξ (see, e.g., Friedman & Schutz 1978). A free mode of frequency ωα (in the

rotating frame) with ξα(r, t) = ξα(r) e−iωαt ∝ eimφ−iωαt satisfies

−ω2
αξα − 2iωαΩs × ξα + C · ξα = 0, (6.3)

where {α} denotes the mode index, which includes the radial mode number n, the polar

mode number L (which reduces to l for spherical stars) and the azimuthal mode number

m. We carry out phase space mode expansion (Schenk et al. 2002) ξ

∂ξ/∂t

 =
∑
α

cα(t)

 ξα(r)

−iωαξα(r)

 , (6.4)

where the sum includes not only mode indices, but also both positive and negative ωα.

Note that the usual mode decomposition, ξ =
∑
α′ cαξα (with the sum including only

mode indices), adopted in many previous studies (e.g., Lai 1997, Kumar & Quataert

1998; Witte & Savonije 1999), are rigorously valid only for non-rotating stars. Using

the orthogonality relation 〈ξα, 2iΩs × ξα′〉 + (ωα + ωα′)〈ξα, ξα′〉 = 0 (for α , α′), where

〈A, B〉 ≡
∫

d3x ρ (A∗ · B), we find (Lai & Wu 2006)2

ċα + (iωα + γα)cα =
i

2εα
〈ξα(r),−∇U〉

=
iGM′WlmQα

2εαDl+1 eimΩst−imΦ, (6.5)

where γα is the mode (amplitude) damping rate, and

Qα ≡
〈
ξα,∇(rlYlm)

〉
, (6.6)

εα ≡ ωα + 〈ξα, iΩs × ξα〉, (6.7)

2As noted before, in this paper we restrict to aligned spin-orbit configurations for simplicity. General-
ization to misaligned systems is straightforward (Lai & Wu 2006; see also Ho & Lai 1999).
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and we have used the normalization 〈ξα, ξα〉 = 1. The quantity Qα (called the “tidal

overlap integral” or “tidal coupling coefficient”) directly relates to the tidally excited

mode amplitude. We shall focus on l = 2, m = 0 and |m| = 2 modes in the following

(although we will continue to use the notations l and m so that it would be easy to

generalize to high-order tides).

The general solution equation (6.5) is

cα(t) = e−iωαt−γαt
∫ t

t0

iGM′WlmQα

2εαDl+1 eiσαt+γαt−imΦ dt, (6.8)

assuming cα(t0) = 0, where

σα = ωα + mΩs (6.9)

is the mode frequency in the inertial frame. Let t j = (2 j − 1)P/2 (with j = 0, 1, 2, · · · )

be the times at apastron. After the kth periastron passage, the mode amplitude becomes

cα(tk) =(∆cα) eimΩstk−(iσα+γα)P/2

×

[
1 − e−(iσα+γα)kP

1 − e−(iσα+γα)P

]
, (6.10)

with

∆cα =

∫ P/2

−P/2
dt

iGM′WlmQα

2εαDl+1 eiσα+γαt−imΦ. (6.11)

For γαkP � 1, the steady-state mode energy in the inertial frame

Eα = 2σαεα|cα|2 (6.12)

becomes (Lai 1997) 3

Eα =
∆Eα

2(cosh γαP − cosσαP)

'
∆Eα

4 sin2(σαP/2) + (γαP)2
, (6.13)

3Equation (6.13) was derived in Lai (1997) in an approximate manner (since mode decomposition was
not done rigorously), and physical arguments were used to get rid of a fictitious term.
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where the second equality assumes γαP � 1. Here ∆Eα is the energy transfer to the

mode in the “first” periastron passage:

∆Eα =
GM′2

R

(
R

Dp

)2(l+1) 2π2σα

εα
|QαKlm(σα)|2 , (6.14)

where Dp = a(1 − e) is the periastron distance (a is the orbital semi-major axis) and

Klm(σα) =
Wlm

2π

∫ P/2

−P/2
dt

( R
D

)l+1

eiσαt−imΦ. (6.15)

Note that in equation (6.14), both Qα and Klm are dimensionless (in units such that

G = M = R = 1).

Equation (6.13) shows that when σαP is not close to 2πN (where N is an integer), the

steady-state mode energy is approximately ∆Eα. Thus ∆Eα serves as a benchmark for

the non-resonant mode energy. Equation (6.13) provides a simple relationship between

the actual mode energy Eα and the non-resonant mode energy ∆Eα.

6.3 Stellar Oscillation Modes and Non-Resonant Mode Energies

We construct an M = 2.35 M� stellar model using the MESA code (Paxton et al. 2010).

We assume solar metallicity and evolve the star until its radius reaches R = 2.34 R�.

These parameters are close to star M2 in KOI-54. Figure 6.1 displays a propagation

diagram for our stellar model. The star has a small convective core inside radius r =

0.09R. We make sure that the stellar model has thermodynamically consistent pressure,

density, sound speed and Brunt-Väsälä frequency profiles. We have computed the l = 2

adiabatic g-modes for this non-rotating stellar model, including ωα, Qα, and the mode

mass Mα ≡ 〈ξα ·ξα〉/|ξα(R)|2. Here, the magnitude of the surface displacement is defined
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Figure 6.1: Propagation diagram for our M = 2.35M�, R = 2.34R� stellar model, show-
ing the value of N (solid black line) and the Lamb frequency, L2 (dashed black line),
in units of (GM/R3)1/2. The horizontal red lines denote important angular frequen-
cies for the KOI-54 system, including (from top) the dynamical frequency of the star,
(GM/R3)1/2; the highest frequency mode observed in KOI-54 (σα = 91Ω); the lowest
frequency mode observed (σα = 22.42Ω); and the orbital angular frequency, Ω. The
y−axis on the right-hand side displays the corresponding periods, in units of hours.

by

|ξα(R)|2 =

∫
dΩ ξα(R) · ξ∗α(R)

= ξr
2
α(R) + l(l + 1)ξ⊥2

α(R), (6.16)

where the r and ⊥ subscripts denote the radial and horizontal components of the dis-

placement vector, respectively.

We use equation (6.14) to compute the non-resonant mode energy Eα ∼ ∆Eα. The
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corresponding surface displacement ξα(R) is then obtained from

|ξα(R)| ≡
(

Eα

Mασ2
α

)1/2

. (6.17)

Figure 6.2 shows the energy ∆Eα and surface amplitude of the radial component of

the displacement, ξrα(R), of tidally excited modes away from resonances for KOI-54

parameters. The radial displacement is directly related to the flux variation due to the

oscillation mode (see Section 4). The most energetic modes have frequencies 80Ω <∼

σα <∼ 140Ω, where Ω is the orbital angular frequency, depending on the stellar spin rate

and the value of m. Low-order (high frequency) modes have larger values of Qα but have

smaller values of Klm(σα), so medium-order (n ≈ 15) modes have the largest values of

∆Eα.4

Figure 6.2 also shows the magnitude of the displacement |ξα(R)| for m = 2 modes in

the zero spin limit. The total displacement is much larger than the radial displacement

for low-frequency modes because these modes are characterized by large horizontal

displacements and are concentrated near the surface. Consequently, these modes have

lower mode mass and the maximum of |ξα(R)| shifts to lower frequencies compared to

the maximum of ∆Eα.

The rotation rates of the KOI-54 stars are unknown. Spectroscopic observations con-

strain Vrot sin is <∼ 10 km s−1, corresponding to Vrot <∼ 100 km s−1, if the spin inclination

angle is is equal to that of the orbital inclination angle iorb = 5.5◦ (Welsh et al. 2011).

This implies that the spin period Ps >∼ 1.2 days and that Ωs <∼ 30Ω. Although the clas-

sical equilibrium tide theory (e.g., Hut 1981) is not expected to be valid for our system

(Lai 1997), we can adopt the pseudosynchronous rotation frequency Ωs = Ωps = 16.5Ω

[corresponding to fps = 1/(2.53 days)] as a fiducial value.
4The orbital frequency at periastron is fp = forb(1 + e)1/2/(1 − e)3/2 = 20.06 forb = 1/(2.084 d), thus

m = 2 modes with σα/Ω ∼ 40 have the largest values of Klm. For m = 0, modes with σα/Ω ∼ 1 have the
largest values of Klm.
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Figure 6.2: Non-resonant mode energy ∆Eα (top), amplitude of the radial surface dis-
placement ξrα(R) (middle), and mode damping rates γαP (bottom) as a function of mode
frequency σα (in units of the orbital frequency Ω). The l = m = 2 modes are plotted as
open circles for Ωs = 0 and filled circles for Ωs = 16.5Ω, while m = 0 modes are plotted
as triangles. The middle panel also displays the magnitude of the surface displacement,
|ξα(R)|, for the l = m = 2 modes with Ωs = 0 (open circles connected by lines). The
highest frequency modes shown are the g9 mode for the m = 0 and non-spinning m = 2
cases, and the g12 mode for the spinning m = 2 case. The mode energy is in units of
GM2/R and the displacement is in units of R.

138



To account for the effect of stellar rotation on the tidally excited modes, we adopt

the perturbative approximation, valid when Ωs is less than ω(0)
α (the mode frequency in

the zero-rotation limit). The mode wave functions and Qα are unchanged by the stellar

rotation, while the mode frequencies are modified according to ωα = ω(0)
α −mCnlΩs and

σα = ω(0)
α + m(1 − Cnl)Ωs, where Cnl > 0 is a constant (e.g. Unno et al. 1989) — our

calculation gives Cnl ' 0.16 for all relevant modes. Note that in this approximation,

εα = ω(0)
α . More accurate results can be obtained using the method of Lai (1997).

Stellar rotation increases the inertial-frame frequency σα of the m > 0 modes, caus-

ing the dominant modes to have higher observed frequencies. However, rotation also

shifts the tidal response to higher order g-modes with smaller values of Qα, so we expect

rotation to lower the mode energies. Figure 6.2 confirms that finite (prograde) stellar ro-

tation indeed shifts the dominant mode energy and surface amplitude to higher-order

g-modes, giving rise to smaller ∆Eα and ξrα(R).

The somewhat erratic features of ∆Eα and ξα as seen in Figure 6.2 for high-order

(low frequency) modes are due to mode trapping effects created by the thin sub-surface

convection zone in our stellar model. For these high-order modes, the tidal overlap

integrals (Qα) depend on the precise shape of the mode wave function, and they can be

easily affected by the detailed properties of the stellar envelope. Care must be taken in

order to obtain reliable tidal overlap integrals for these high-order modes (see Fuller &

Lai 2010).

The damping rate of a mode, γα, can be estimated in the quasi-adiabatic limit via

γα ≈

∫ r+

r−
k2

rχ(ξ2
r + l(l + 1)ξ2

⊥)ρr2dr, (6.18)

where χ is the thermal diffusivity, k2
r ' l(l+1)N2/(r2ω2) is the local radial wave number,

and r+ and r− are the boundaries of the mode’s propagation cavity. Equation (6.18) can

be derived in the WKB limit from the quasi-adiabatic work function of a mode (Unno
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et al. 1989). 5 The bottom panel of Figure 6.2 shows the values of γα calculated via

equation (6.18) for the modes of our stellar model. Lower frequency g-modes have

larger damping rates due to their larger wavenumbers and because they propagate closer

to the surface of the star where the diffusivity is larger. Equation (6.18) provides an

estimate for mode damping rates via radiative diffusion in the quasi-adiabatic limit;

however, fully adiabatic oscillation equations must be solved for low-frequency modes

for which γα is comparable to the mode frequency. Furthermore, modes may also damp

via nonlinear processes (see Section 6.6).

6.4 Flux Variation due to Tidally-Forced Oscillations

In section 6.2, we considered the tidal response to be composed of the sum of the star’s

natural oscillation modes, each having its own steady-state energy Eα. This provides a

simple relation between the resonant mode energy and non-resonant energy. The ob-

served magnitude variation of KOI-54 has over 20 components with frequencies that

are almost exact multiples of the orbital frequency, i.e., they have σα = (N + ε)Ω with

|ε | ≤ 0.01. In this section, we examine the tidal response as a sum of oscillations at

exact multiples of the orbital frequency. Each component Ulm of the tidal potential can

be decomposed as

Ulm = −
GM′Wlmrl

al+1 Ylm(θ, φi)
∞∑

N=−∞

FNm e−iNΩt, (6.19)

where FNm is defined by the expansion( a
D

)l+1
e−imΦ =

∞∑
N=−∞

FNme−iNΩt (6.20)

5While our paper was under review, we became aware of the paper by Burkart et al. (2011), who also
used equation (6.18) to estimate the mode damping rate. The bottom panel of Figure 6.2 was added after
we saw the Burkart et al. paper.
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and is given by

FNm =
1
π

∫ π

0
dΨ

cos
[
N
(
Ψ − e sin Ψ

)
− mΦ(t)

](
1 − e cos Ψ

)l . (6.21)

Here, a is the semi-major axis of the orbit, and Ψ is the eccentric anomaly. Note that

FNm is related to Klm [see equation (6.15)] by Klm(σα = NΩ) = Wlm(1 − e)l+1Ω−1FNm.

Inserting equation (6.19) into equation (6.5) yields

ċα + (iωα + γα)cα =
iGM′WlmQα

2εαal+1

×

∞∑
N=−∞

FNmei(mΩs−NΩ)t, (6.22)

whose non-homogeneous solution is

cα(t) =
GM′WlmQα

2εαal+1

∞∑
N=−∞

FNme−i(NΩ−mΩs)t

(σα − NΩ) − iγα
. (6.23)

The total tidal response is ξ(r, t) =
∑
α cα(t)ξα(r), where ξα(r) ∝ eimφ. When the dis-

placements are expressed in terms of ri = (r, θ, φi) (the position vector in the inertial

frame, with φi = φ + mΩst), we have

ξ(ri, t) =

∞∑
N=−∞

∑
α

GM′WlmQα

2εαal+1

FNmξα(ri)
(σα − NΩ) − iγα

e−iNΩt

=

∞∑
N=1

∑
α′

GM′WlmQα

2εαal+1 ξα(ri)

×

[ FNme−iNΩt

(σα − NΩ) − iγα
+

F−NmeiNΩt

(σα + NΩ) − iγα

]
+ c.c. (6.24)

where c.c. denotes the complex conjugate, and
∑
α′ implies that the sum is restricted to

modes with ωα > 0 (including both m > 0 and m < 0 modes) (by contrast,
∑
α includes

both ωα > 0 and ωα < 0 terms, as well as both m > 0 and m < 0). We have omitted

the N = 0 term for simplicity because it is not part of the dynamical response. Each ξN

(oscillating at frequency NΩ) is then a sum over the star’s oscillation modes, with large

contributions coming from nearly-resonant modes with σα ≈ NΩ.

We use the results of Buta & Smith (1979) (see also Robinson et al. 1982) to estimate

the magnitude variation (∆mag) associated with each component of the tidal response.
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The magnitude variation of the star has two primary components: a geometrical compo-

nent, (∆mag)G, due to distortions in the shape of the star, and a temperature component,

(∆mag)T , due to perturbations in the surface temperature of the star’s photosphere.

For an l = m = 2 mode with surface radial displacement ξrα(R), the amplitudes of

the bolometric magnitude variations are

(∆mag)(m=2)
αT ' −1.7 γl sin2 is

Γ2 − 1
Γ2

×

[ l(l + 1)
ω̂2
α

− 4 − ω̂2
α

]ξrα(R)
R

(6.25)

and

(∆mag)(m=2)
αG ' −0.42 (αl + βl) sin2 is

ξrα(R)
R

. (6.26)

Here, Γ2 ' 5/3 is the adiabatic index of gas at the surface of the star, ω̂ = ωα/
√

GM/R3

is the dimensionless mode frequency, and γl ≈ 0.3 and αl + βl ≈ −1.2 are bolometric

limb darkening coefficients appropriate for A stars. For KOI-54, the value of the spin

inclination angle is (the angle between the spin axis and the line of sight) is unknown,

but we may use the system’s orbital inclination of iorb = 5.5◦ as a first guess, although it

is possible that the star’s spin axis is inclined relative to the orbital angular momentum

axis. Similarly, for l = 2, m = 0 modes, the amplitudes of the magnitude variations are

(∆mag)(m=0)
αT ' −1.4γl

(
3 cos2 is − 1

) Γ2 − 1
Γ2

×

[ l(l + 1)
ω̂2
α

− 4 − ω̂2
α

]ξrα(R)
R

(6.27)

and

(∆mag)(m=0)
αG ' −0.34 (αl + βl)

(
3 cos2 is − 1

)ξrα(R)
R

. (6.28)

In equations (6.25) and (6.27), the factor of [l(l+1)/ω̂2
α−4−ω̂2

α] arises from the outer

boundary condition formulated by Baker & Kippenhahn (1965) (see also Dziembowski

1971), in which the radial derivative of the Lagrangian pressure perturbation vanishes
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at the outer boundary (in our case, the stellar photosphere), such that the mode energy

vanishes at infinity in an isothermal atmosphere. It is not clear how well this boundary

condition applies for a real star, nor how it should be modified when non-adiabatic

effects are taken into account. For the g-modes considered here, the factor l(l+1)/ω̂2
α �

1, causing the temperature effect to overwhelm the geometrical effect for magnitude

variations.

The magnitude variation for each frequency NΩ is a sum of the variations due to

individual modes:

(∆mag)N =
∑
α′

GM′WlmQαaα
2εαal+1

ξrα(R)
R

×

[ FNme−iNΩt

(σα − NΩ) − iγα
+

F−NmeiNΩt

(σα + NΩ) − iγα

]
+ c.c., (6.29)

where aα is the constant in front of ξrα(R)/R in equations (6.25)-(6.28), and N > 0.

Using the values of εα, Qα, ξα(r), and γα calculated in Section 6.2, we compute each

term (∆mag)N in equation (6.29). Figure 6.3 shows a plot of the magnitude variation as

a function of N, along with the observed magnitude variations in KOI-54 as determined

by Welsh et al. (2011). To make this plot, we have subtracted out the contribution

from the “equilibrium tide”, because the equilibrium tide is responsible for the periodic

brightening of KOI-54 near periastron and was subtracted out by Welsh et al. (2011)

in order to obtain the magnitude variations due to tidally-induced stellar oscillations.

The equilibrium tide can be computed by taking the limit σα � NΩ, i.e., by setting

NΩ = 0 for each term inside the sum in equation (6.29). We adopt a spin inclination

angle is = 10◦.

Figure 6.3 includes the magnitude variations due to the temperature effect and those

due to geometrical effects. For the adopted spin inclination (10◦), the m = 0 modes

dominate the observed magnitude variations, although a nearly-resonant m = 2 mode
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Figure 6.3: Magnitude variation ∆magN as a function of N due to the temperature effect
(top) and geometrical effect (bottom) for l = m = 2 modes (filled circles) and l = 2,
m = 0 modes (triangles). We also plot the observed magnitude variations that are an
integer multiple of the orbital frequency (red plus symbols), and those that are not an
integer multiple of the orbital frequency (red x symbols). The plot uses is = 10◦ and
Ωs ' 15Ω.

144



can be visible. However, it is obvious from Figure 6.3 that our computed variations due

to the temperature effect of m = 0 modes are appreciably larger than those observed. In

fact, the magnitude variations due to geometrical effects reproduce the observed varia-

tions much more accurately. The over-prediction of the magnitude variations from the

temperature effect is mostly likely due to non-adiabatic effects in the stellar atmosphere,

which renders equations (6.25) and (6.27) inaccurate for low-frequency modes. Indeed,

Buta & Smith (1979) also found that for main sequence B stars, the predicted magnitude

variations due to the temperature effect for low-frequency modes were much larger than

what was observed, and they speculated that the mismatch was due to non-adiabatic

effects in the outer layers of the star.

Our results depicted in Figure 6.3 suggest that most of the observed magnitude varia-

tions (with the exception the highest-frequency modes) in KOI-54 are due the geometri-

cal surface distortions produced by m = 0 modes that happen to be nearly resonant with

a harmonic of the orbital frequency. The actual magnitude variations due to the temper-

ature effect (when non-adiabatic effects are properly taken into account near the stellar

photosphere) should not be much larger than the geometric effect. Note that in Figure

6.3, we have plotted the absolute values of the magnitude variations for the temperature

and geometrical effects, but the temperature and geometrical effects have opposite sign.

To produce the highest-frequency modes (90 forb and 91 forb) observed in KIO-54, in

Figure 6.3 we have fine-tuned the spin of the star to Ωs ' 15Ω such that the N = 90

oscillation is nearly resonant with one of the star’s oscillation modes. In section 5 we

argue that the N = 90 and N = 91 oscillations are likely due to an m = 2 mode in each

star that is locked in resonance. The fine-tuning produces a magnitude variation due to

the temperature effect that is comparable to one of the observed oscillations, although

the predicted geometrical magnitude variation is somewhat less than what is observed.
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If the N = 90 and N = 91 oscillations are indeed due to resonant m = 2 modes,

then it is likely that the predicted magnitude variation due to the temperature effect

(based on the adiabatic approximation) is more accurate for these modes due to their

higher frequencies. This is not unreasonable since non-adiabatic effects in the stellar

photosphere are expected to be less important for low-order (high frequency) modes, a

point also emphasized by Buta & Smith (1979). In any case, a more in-depth analysis

of the non-adiabatic oscillation modes (particularly their flux variations) for the stars of

the KOI-54 system is needed.

6.5 Secular Spin-Orbit Evolution and Resonance Locking

In the previous sections we proposed that a resonance with σα ∼ 90Ω creates the largest

observed magnitude variations in KOI-54. Here we study the secular evolution of the

stellar spin and binary orbit, and how resonances may naturally arise during the evolu-

tion. Several aspects of tidal resonance locking in massive-star binaries were previously

explored by Witte & Savonije (1999, 2001).

Dynamical tides lead to spin and orbital evolution, with the orbital energy and angu-

lar momentum evolving according to

Ėorb = −
∑
α

2γαEα, J̇orb = −
∑
α

2γαEα

m
σα

, (6.30)

where we have used the fact that the mode angular momentum (in the inertial frame)

is related to the mode energy by Jα = (m/σα)Eα. The orbital frequency Ω therefore

evolves as
Ω̇

Ω
=

∑
α

fα
tdα
, (6.31)

where

fα =
[
4 sin2(πσα/Ω) + (γαP)2

]−1
, (6.32)
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and t−1
dα specifies the orbital decay rate due to a single non-resonant mode α:

t−1
dα =

3γα∆Eα

|Eorb|

=
12π2γα
(1 − e)6

(
M′

M

) (R
a

)5 (
σα

εα

)
|QαKlm|

2. (6.33)

Using the KOI-54 parameters and assuming σα ∼ εα, we have

t−1
dα ' 8.9 × 10−10γα

(QαKlm

10−4

)2

. (6.34)

Resonance occurs when a mode has frequency σα = NΩ for an integer value of N.

6.5.1 Need for Resonance Locking

We first consider how likely it is to observe a mode near resonance when σα is held

constant (i.e., it does not change during the period of resonance-crossing).

As can be seen from Figure 6.2, the m = 2 modes dominate tidal energy transfer

in the KOI-54 system, yet (as evidenced from Figure 6.3), most of the visible modes

(except N = 90, 91) are m = 0 modes. Consider a particular m = 0 mode near resonance,

with σα = (N + ε)Ω and |ε | � 1. Since the mode contributes little to the tidal energy

transfer, the probability of being close to resonance (|ε | < ε0) is simply Pres ' 2ε0. Figure

6.3 indicates that an m = 0 mode with 25 <∼ N <∼ 80 requires |ε0| <∼ 0.1 to be visible [mode

visibility scales as |(∆mag)| ∝ 1/|ε|]. In each star there are about forty m = 0 modes in

this frequency range, thus we should expect about 8 of these modes from each star to be

visible, in rough agreement with Figure 6.3 and the observations.

Now let us consider modes that significantly influence the tidal energy transfer (these

include m = 2 modes such as the N = 90, 91 modes, but may also include m = 0 modes

very near resonance – if they occur). For the KOI-54 system, the modes that contribute
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significantly to the tidal energy transfer have σα >∼ 2Ωp ' 40Ω, thus N = σα/Ω >∼ 40.

Consider a particular mode near resonance, and suppose that the tidal energy transfer

is dominated by the resonant mode (α). The orbital decay rate during the resonance

is given by Ṗ/P = −t−1
dα

[
(2πε)2 + (γαP)2

]−1
. Thus the time that the system spends “in

resonance” (|ε | < ε0) is (∆t)ε0 = tdα(2ε0/N)
[
(2πε0)2/3 + (γαP)2

]
∼ 8π2tdα|ε0|

3/(3N). By

contrast, the time it takes the orbit to evolve between resonances (for the same mode) is

(∆t)nr ∼ td/N, where td is the orbital decay timescale due to all non-resonant modes (td

may be a factor of ∼ 10 smaller than tdα). The probability of seeing a mode very near

resonance is thus

Pres =
(∆t)ε0

(∆t)nr
'

8π2

3
tdα

td
|ε0|

3. (6.35)

Figure 6.3 indicates that (for in inclination of is = 10◦) we require |ε0| <∼ 10−2 for an

m = 2 mode to be visible, for which the probability is Pres <∼ 3 × 10−4. Thus, at first

glance, the chances of observing even a single tidally-excited m = 2 mode in the KOI-54

system are slim. The N = 90, 91 modes require |ε0| <∼ 10−2, even if they are produced by

m = 0 modes. It is therefore extremely unlikely to observe the system with such large

amplitude modes, unless (by some mechanism) they are locked into resonance. In the

sections that follow, we outline such a resonance locking mechanism and how it applies

to the KOI-54 system.

6.5.2 Critical Resonance-Locking Mode

We now consider the possibility of resonance locking for the m = 2 modes. Tidal

angular momentum transfer to the star increases the stellar spin Ωs, thereby changing

the mode frequency σα. There exists a particular resonance, σα = NcΩ, for which σα
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and Ω change at the same rate, i.e.,

σ̇α

σα

=
Ω̇

Ω
, (6.36)

so that the resonance can be maintained once it is reached. With J̇s = −J̇orb and the mean

stellar rotation rate Ω̄s = Js/I (where I is the moment of inertia), we have σ̇α = mBα J̇s/I,

where Bα ≡ (dσα/dΩ̄s)/m. Assuming that a single resonant mode dominates the tidal

energy and angular momentum transfer, we find σ̇α/σα = −m2BαĖorb/(IN2Ω2). Thus(
σ̇α

σα

)
tide

=

(Nc

N

)2 (
Ω̇

Ω

)
tide
, (6.37)

where

Nc = m
(

Bαµa2

3I

)1/2

(6.38)

(with µ = MM′/Mt the reduced mass of the binary) corresponds to the critical

resonance-locking mode. The subscript “tide” in equation (6.37) serves as a reminder

that the changes of σα and Ω are due to the tidal interaction.

For KOI-54 parameters (with a ' 39R and m = 2), we have

Nc ' 131
( Bα

0.84

)1/2 (
κ

0.05

)−1/2
, (6.39)

where κ = I/(MR2). If we assume that the star maintains rigid-body rotation during tidal

spin up, then Bα = 1 −Cnl. Numerical calculation for our stellar model gives Bα ' 0.84

(with very weak dependence on modes) and κ ' 0.040, giving Nc ' 146; a less evolved

star would have κ ' 0.047, giving Nc ' 135. Note that in the above we consider only

tides in one star (M) – when tides in the other star are considered, Ω̇ would be larger

and the effective value of Nc would be reduced. If identical resonances occur in the two

stars, the effective value of Nc would be reduced by a factor of
√

2 to Nc ' 92 (for

κ = 0.05). See section 5.3.3 and equations (6.70)-(6.71) below.

The above consideration assumes that the spin evolution of the star is entirely driven

by tides. In reality, the star can experience intrinsic spindown, either due to a magnetic
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wind or due to radius expansion associated with stellar evolution. We may write Ω̇s =

(Ω̇s)tide − |Ω̇s|sd, where the second term denotes the contribution due to the intrinsic

spindown. The corresponding rate of change for σα is then

σ̇α

σα

=

(
σ̇α

σα

)
tide
−

∣∣∣∣∣σ̇α

σα

∣∣∣∣∣
sd
. (6.40)

On the other hand, the orbital evolution remains solely driven by tides:

Ω̇

Ω
=

(
Ω̇

Ω

)
tide

=

(
N
Nc

)2 (
σ̇α

σα

)
tide
. (6.41)

Comparing equations (6.40) and (6.41), we see that Nc represents the upper boundary

for resonance locking: for N > Nc, resonance locking (σ̇α/σα = Ω̇/Ω) is not possible.

For N < Nc, resonance locking can be achieved: the value of (σ̇α/σα)tide depends on the

closeness to the resonance, which in turn depends on the intrinsic spindown timescale

of the star [see equations (6.54) and (6.55) below].

The fact that Nc naturally falls in the range close to N = 90 and N = 91, the most

prominent modes observed in KOI-54, is encouraging. In the next subsection, we con-

sider how the system may naturally evolve into a resonance-locking state with N < Nc.

6.5.3 Evolution Toward Resonance

As noted above, even in the absence of tides, the star can experience spin-down, either

due to magnetic winds or due to radius expansion associated with stellar evolution.

Furthermore, the intrinsic mode frequencies will change as the internal structure of the

star evolves. We now show that these effects can naturally lead to evolution of the system

toward resonance locking.

The evolution equation for the stellar spin reads Ω̇s = −(J̇orb/I) − (Ωs/tsd), where tsd

is the “intrinsic” stellar spin-down time scale associated with radius expansion and/or
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magnetic braking. Using equation (6.30), we have

Ω̇s

Ωs
=

∑
α

(
mµa2

3I

) (
Ω2

Ωsσα

)
fα

tdα
−

1
tsd
. (6.42)

From equation (6.30), we find that the orbital frequency and eccentricity evolve accord-

ing to
Ω̇

Ω
=

∑
α

fα
tdα
, (6.43)

e ė
1 − e2 = −

1
3

∑
α

fα
tdα

[
1 −

mΩ

σα(1 − e2)1/2

]
. (6.44)

To leading order in Ωs, the mode frequency depends on Ωs via

σα = ω(0)
α + mBαΩs. (6.45)

For simplicity, we assume that the secular change of σα is only caused by the Ωs-

evolution (e.g., we neglect the variation of ω(0)
α due to stellar evolution – this effect

can be absorbed into the spindown effect on the mode; see Witte & Savonije 1999).

Single Mode Analysis

To gain some insight into the evolutionary behavior of the system, we first consider the

case where one of the modes is very close to resonance, i.e.,

σα = (N + ε)Ω, (6.46)

while all the other modes are non-resonant. We then write the orbital and spin frequency

evolution equations as
Ω̇

Ω
=

fα
tdα

+
1
td
, (6.47)

Ω̇s

Ωs
=

N2
c

mBα

Ω2

Ωsσα

fα
tdα
−

1
tsd

+
1
tsu
. (6.48)
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Here t−1
d and t−1

su are the orbital decay rate and spin up rate due to all the non-resonant

modes.6 They are approximately given by

t−1
d '

∑
α

3γα
∆Eα

|Eorb|
∼

3γ∆E
|Eorb|

, (6.49)

t−1
su '

1
IΩs

∑
α

2γα
m
σα

∆Eα ∼
2γ∆J
IΩs

, (6.50)

where ∆E =
∑
α ∆Eα and ∆J =

∑
α(m/σα)∆Eα are the energy and angular momentum

transferred from the orbit to the star in the “first” periastron passage (see Section 6.2),

and γ is the characteristic mode damping rate of the most important modes in the energy

transfer. Since ∆J ∼ ∆E/Ωp (where Ωp is the orbital frequency at periastron), we find

t−1
su

t−1
d

∼
µa2

3I
Ω2

ΩsΩp
. (6.51)

Note that t−1
d can be a factor of a few (∼ 10) larger than t−1

dα, and t−1
su is a factor of a few

larger than t−1
d .

Equations (6.46)-(6.48) can be combined to yield the evolution equation for ε =

σα/Ω − N:
ε̇

N
=

[(Nc

N

)2

− 1
]

fα
tdα
−

1
tD
, (6.52)

where
1
tD

=
mBαΩs

NΩ

(
1
tsd
−

1
tsu

)
+

1
td
. (6.53)

Equation (6.52) provides the key for understanding the condition of achieving mode

locking:

(i) For N > Nc: The RHS of Equation (6.52) is always negative, and the system will

pass through the resonance (ε = 0) without locking. Physically, the reason is that for

N > Nc, the orbit decays faster (during resonance) than the mode frequency can catch

up, so the system sweeps through the resonance.
6For simplicity, here we do not consider the possibility where the star rotates so fast that dynamical

tides spindown the star – such possibility occurs when the star rotates at a rate somewhat beyond Ωp (see
Lai 1997).
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(ii) For N < Nc and t−1
D � t−1

dα: Starting from a non-resonance initial condition

(εin ∼ 0.5, or fα ∼ 1), the system will evolve toward a resonance-locking state (ε̇ = 0),

at which

fα =
tdα

δNtD
� 1 (6.54)

where δN ≡ (Nc/N)2 − 1. The “equilibrium” value of ε is given by

εeq '
1

2π

[
tDδN

tdα
− (γαP)2

]1/2

� 1. (6.55)

This resonance-locking state can be achieved when

tDδN/tdα > (γαP)2, (6.56)

as otherwise resonance “saturation” [ fα ≤ (γαP)−2] occurs, and the system will sweep

through the resonance. Note that during the resonance-locking phase, the stellar spin

increases as
Ω̇s

Ωs
=

1
δN

(
t−1
sd − t−1

su

)
+

N2
c Ω

NδNmBαΩs
t−1
d , (6.57)

and the orbital frequency increases as

Ω̇

Ω
=

mBα

NδN

Ωs

Ω

(
t−1
sd − t−1

su

)
+

N2
c

N2δN
t−1
d . (6.58)

The above analysis assumes t−1
D > 0. In the absence of the intrinsic stellar spin-down

(i.e., t−1
sd = 0), we have

t−1
D ∼ −

N2
c

mN

(
20Ω

Ωp

)
t−1
d + t−1

d . (6.59)

Thus tD can be negative for N <∼ N2
c /40. In this case, one may expect mode-locking

for N > Nc. Nevertheless, t−1
D is only moderately larger (a factor of 10 or so) than t−1

dα

without intrinsic spin-down, so a close resonance with fα � 1 (or |ε | � 1) is unlikely.
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Resonance Locking for m = 0 Modes

Above (and in other sections of this paper), we considered the frequency of a mode in the

inertial frame to first order in Ωs: σα = εα+mBαΩs. In this approximation, m = 0 modes

have constant frequency and thus cannot lock into resonance. However, Lai (1997) find

that to second order in Ωs, the frequency of m = 0 modes can be approximated by

σα,m=0

εα
' 1 +

6
7

(
Ωs

εα

)2

. (6.60)

Recall that εα is the mode frequency in the absence of rotation. Thus, to second order,

the frequency of m = 0 modes can change and resonance locking is possible.

Let us examine the scenario in which an mα = 2 mode with Nm=2 ' 90 is locked

in resonance, as we suspect is the case for KOI-54. Assuming this mode dominates the

tidal interaction, the system evolves such that

Nm=2Ω̇ = σ̇α,m=2

= mαBαΩ̇s, (6.61)

Then there will be a value of Nm=0 for an m = 0 mode such that

Nm=0Ω̇ = σ̇α,m=0. (6.62)

Using equation (6.61) for the LHS of equation (6.62), equation (6.60) for the RHS of

equation (6.62), and the condition σα,m=0 = Nm=0Ω, we find

Nm=0 =

[ 12Nm=2

7mαBα

[
Ω/Ωs − mαBα/(2Nm=2)

]]1/2

. (6.63)

Using Nm=2 = 90, mα = 2, Bα = 0.84, and Ωs = Ωps = 16.5Ω, we find that Nm=0 ' 42.

Thus, an m = 0 mode with σα ' 42Ω may be able to stay close to resonance for

an extended period of time. KOI-54 has two very visible modes at σ3 = 44Ω and

σ4 = 40Ω. We speculate that these modes may correspond to an m = 0 mode in each
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star that is nearly locked in resonance due to the orbital evolution produced by a locked

m = 2 mode with Nm=2 ' 90. However, because the value of Nm=0 depends on Ωs

(which is currently unknown for KOI-54), we will not consider m = 0 mode locking in

the remainder of this paper.

Resonance Locking in Both Stars

In Section 5.3.1, we considered resonant locking of an m = 2 mode in the primary star

M. Since the two stars in the KOI-54 system are quite similar, resonant locking may be

achieved in both stars simultaneously. We now consider the situation in which an m = 2

mode σα in star M and an m′ = 2 mode σα′ in star M′ are both very close to orbital

resonance, i.e.,

σα = (N + ε)Ω, σα′ = (N′ + ε′)Ω, (6.64)

while all other modes (in both stars) are non-resonant. Here, all primed quantities refer

to star M′, and unprimed quantities refer to star M. The orbital evolution equation then

reads
Ω̇

Ω
=

fα
tdα

+
fα′

tdα′
+

1
td
, (6.65)

while the spin evolution is governed by equation (6.57) for star M and a similar equation

for M′. We then find

ε̇

N
=

[(Nc

N

)2

− 1 − x
]

fα
tdα
−

1
tD
, (6.66)

ε̇′

N′
=

(N′c
N′

)2

− 1 −
1
x

 fα′
tdα′
−

1
t′D
, (6.67)

where

x ≡
fα′/tdα′

fα/tdα
=

Ėα′

Ėα

, (6.68)

with Ėα and Ėα′ the energy dissipation rates (including resonances) due to the resonant

modes in star M and M′, respectively. Thus, analogous to Section 5.3.1, for tD > 0 and
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t′D > 0, the necessary conditions for resonant mode locking in both stars are

N < Nc,eff , and N′ < N′c,eff , (6.69)

with

Nc,eff =
Nc
√

1 + x
= m

[
Bαµa2

3I(1 + x)

]1/2

, (6.70)

N′c,eff =
N′c

√
1 + x−1

= m′
[

Bα′µa2

3I′(1 + x−1)

]1/2

. (6.71)

Obviously, if the two stars have identical resonances (x = 1), then Nc,eff would be smaller

than Nc by a factor of
√

2. If the energy dissipation rates in the two stars differ by at

least a factor of a few (e.g., x ∼ 0.2), then Nc,eff is only slightly modified from Nc, while

N′c,eff
will be a factor of a few smaller than N′c.

6.5.4 Numerical Examples of Evolution Toward Resonance

For a given set of modes, the solution of the system of equations (6.42)-(6.44) depends

on the dimensionless parameters tdα/tsd, Nc and γαP, as well as the initial conditions. In

general, these parameters change as the system evolves.

A Simple Example

To illustrate the essential behavior of the secular evolution toward resonance locking,

we first consider the simple case where tdα/td and γαP are assumed to be constant and

identical for all modes considered. Figure 6.4 depicts an example: we include two

m = 2 modes (σ1 and σ2), both have tdα/tsd = 102, γαP = 10−2 and Bα = 0.8. The

parameter Nc has an initial value of 110, but we allow Nc to evolve via Nc ∝ Ω−2/3. At

t = 0, the spin frequency is Ωs = 15Ω, and the two modes have σ1/Ω = 100.5 and
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Figure 6.4: Secular evolution of the stellar spin and binary orbit driven by dynamical
tides and “intrinsic” stellar spin-down. Two modes are included, both having m = 2,
tdα/tsd = 100 and γαP = 0.01. The initial spin frequency is Ωs = 15Ω. The top panel
shows the orbital frequency (solid line) and the spin frequency (dashed line), both in
units of their initial values. The second panel shows Nc as defined by equation (6.38).
The bottom two panels show the mode frequencies in units of Ω. The two light dotted
lines on the third panel also show σ1/Ω and σ2/Ω. The time (on the horizontal axis)
is expressed in units of tsd, the intrinsic spindown time of the star. The system first
evolves into resonance locking at σ1 = 100Ω and then a different resonance locking at
σ2 = 90Ω. Note that resonance locking cannot occur when σα/Ω > Nc.
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σ2/Ω = 89.5 (i.e., both are initially “off-resonance”). We see that the stellar spindown

first causes σ1 to lock into resonance at σ1/Ω = 100. The star then spins up, driven

by the resonant tidal torque. The second mode passes through the N = 90 resonance,

but it produces a negligible effect on the σ1/Ω = 100 resonance. In the meantime,

the orbit decays, reducing Nc. When Nc becomes less than 100, the resonance locking

can no longer be maintained, and σ1 breaks away from the N = 100 resonance. The

stellar spin then decreases (due to the 1/tsd term), which leads to σ2 to capture into the

N = 90 resonance. Eventually, as Nc decreases (due the resonant tidal torque) below 90,

the second mode breaks away from the N = 90 resonance. This example corroborates

our analytic results in section 5.3, and demonstrates that resonance locking can indeed

be achieved and maintained for an extended period during the evolution of the binary

system.

More Realistic Examples

Having demonstrated how resonance locking can occur in a simplified system consisting

of only two oscillation modes, we now investigate how resonance locking is likely to

occur in the actual KOI-54 system. We solve the orbital evolution equations (6.42)-

(6.45) using the actual values of εα, Qα, and γα found in section 6.3 to calculate each

tdα. We include eighteen modes in our equations: they are the l = 2, m = 0, m = ±2

modes for six values of εα such that the initial frequencies of the m = 2 modes range

from 40Ω to 170Ω. We allow the value of Klm to evolve as the values of σα, Ω, and e

change with time.

Figures 6.5 and 6.6 display the evolution of Ω, Ωs, Nc, and the values of σα and

Eα for a selected sample of modes over a time span of tens of millions years. We use

initial values of Ωo = 0.95Ωobs (here Ωobs is the observed orbital frequency of KOI-54),

158



eo = 0.84, Ωs,o = Ωps ' 16.5Ωo, and a spindown time of tsd = 3 × 108 years. In Figure

6.6, we have doubled the orbital decay rate to account for an equal amount of energy

dissipation in the companion star.

Let us start by examining Figure 6.5. The system quickly enters a resonance locking

state with the σ3,2 mode, where the notation σk,m identifies the mode with the kth largest

frequency in our simulation with azimuthal number m. The resonance locking lasts for

over 100 million years, until the σ2,2 mode reaches resonance. The σ2,2 mode then locks

in resonance for over 100 million years. During resonance locking, the orbital frequency

and spin frequency increase rapidly. The energies Eα of the resonant locked modes

can exceed 700 times their non-resonant values ∆Eα, corresponding to an increase in

visibility of over 25 times the visibility during a non-resonant state. When no mode is

locked in resonance, the orbital evolution is relatively slow, with the dominant effect

being the spindown of the star due to the tsd term.

For the initial conditions and orbital evolution depicted in Figure 6.5, only two of

our 18 modes pass through resonant locking phases: two m = 2 modes with initial

frequencies of σ2,2,o ' 103 and σ3,2,o ' 90. The highest frequency m = 2 mode included

in our evolution does not lock in resonance because it has N > Nc at all times. The

lowest frequency modes do not lock in resonance because they do not satisfy equation

(6.56), i.e., they become saturated before they can begin to resonantly lock. This occurs

because the value of Qα for these high-order modes is small, resulting in a small orbital

decay rate t−1
dα for these modes.

Which mode locks into resonance is dependent on the initial conditions. However,

as can be seen in Figure 6.5, the resonance with the σ2,2 mode ends the resonance with

the σ3,2 mode because the σ2,2 mode has a larger value of Eα and will thus dominate the

orbital decay. Therefore, we can expect the system to evolve into a state in which the
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Figure 6.5: Secular evolution of the KOI-54 system driven by a sample of 18 oscillation
modes and intrinsic stellar spindown. Top: orbital frequency Ω (solid line) and spin
frequency Ωs (dashed line) in units of their initial values. Top middle: the value of Nc

(solid line) and the mode frequencies σ2,2/Ω + 15, σ3,2/Ω + 20, and σ4,2/Ω + 35 (dotted
lines) of the modes depicted in the bottom three panels. Middle: the mode energy Eα in
units of ∆Eα for the σ2,2 mode (solid line) and the σ4,0 mode (red dashed line). Bottom
middle: same as middle except the solid line is for the σ3,2 mode. Bottom: same as
bottom middle except the solid line is for the σ4,2 mode. The initial spin frequency is
Ωs ' 16.5Ω, and the spindown time is tsd = 3 × 108 years.
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mode with the largest value of Eα (and with N < Nc) is locked in resonance.

In Figure 6.5, the resonance locking with the σ2,2 mode is ended by a resonance with

the σ4,0 mode. The σ4,0 mode does not lock into resonance because an m = 0 mode can-

not change the stellar spin frequency. However, its resonance causes the value of Ω̇/Ω

to exceed the value of σ̇α/σα for the locked mode, so that the system sweeps through

the resonance. In other words, the non-locked resonant mode temporarily decreases the

value of td, decreasing the value of tD such that resonant saturation occurs for the locked

mode, causing it to pass through resonance. Also note that even though the σ4,0 mode

does not lock into resonance, it maintains a relatively large energy (Eα > 10∆Eα) for a

period of over 50 million years. This is indicative of the pseudo-resonance locking for

m = 0 modes described in Section 6.5.3.

Let us now examine Figure 6.6, in which the orbital decay rate has been doubled

(i.e., we multiply Ω̇ by 2) to account for an equal tidal response in the companion star.

The results are significantly different: due to the increased orbital decay rate, the initial

effective value of Nc,eff has dropped to ∼ 100 (see section 5.3.3) so that the σ2,2 mode can

no longer lock into resonance. Also, the maximum energy Eα/∆Eα of the modes is larger

in this scenario (because the modes must enter deeper into resonance to become locked),

so the modes can create larger magnitude variations while being locked in resonance.

However, the resonance locking events are shorter because the modes are nearly

saturated during resonance locking, allowing resonances with m = 0 modes or higher

frequency m = 2 modes to easily disrupt the resonance locking state. In the bottom three

panels of Figure 6.6, we have plotted the energy Eα of the σ2,0 mode. In Figure 6.6, three

of the resonant locking events for the σ3,2 mode are ended due to a resonance with the

σ2,0 mode. We have examined the results carefully and found that all of the resonance

locking events were ended due a resonance with an m = 0 mode or an m = 2 mode

161



Figure 6.6: Same as Figure 6.5, except this evolution doubles the orbital decay rate due
to each mode, and the red dashed line corresponds to the σ2,0 mode.
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for which N > Nc. Although the resonance locking events are brief at the end of the

simulation, the locking event with the σ3,2/Ω = 90 mode lasts for about 20 million years

at the beginning of the simulation when the system’s parameters most closely resemble

those of KOI-54. We thus conclude it is likely to observe a system such as KOI-54 in a

resonance locking state.

We note the secular evolution analysis presented above does not take into account

the fluctuation of mode amplitudes due to the changing strength of the tidal potential in

an elliptical orbit. Therefore, in addition to the results displayed above, we have also

performed calculations of the full dynamic evolution of the stellar oscillations and binary

orbit, including the back-reaction of the modes on the orbit. We find that resonance

locking can indeed be maintained for extended periods of time, and that non-secular

effects have little impact on the results discussed above.

6.6 Oscillations at Non-Orbital Harmonics

As discussed in section 4, in the linear theory, tidally-forced stellar oscillations give rise

to flux variations at integer multiples of the orbital frequency. Many of these oscillations

have been observed in the KOI-54 system. However, Welsh et al. (2011) also reported

the detection of nine modes that do not have frequencies that are integer multiples of the

orbital period, and their observation requires an explanation.

One possibility is that one (or both) of the stars in KOI-54 are δ-Scuti variable stars.

The masses, ages, and metallicities of the KOI-54 stars put them directly in the insta-

bility strip and so δ-Scuti-type pulsations are not unexpected. However, as pointed out

by Welsh et al. (2011), the complete absence of any modes detected with periods less

than 11 hours is troublesome for the δ-Scuti interpretation, as most observed δ-Scuti
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pulsations have periods on the order of a few hours. One would then have to explain

why only long period (P > 11 hours) δ-Scuti-type oscillations are visible in this system.

Another possibility is that some (or all) of the non-harmonic modes are excited via

nonlinear couplings with resonant modes. In particular, it is thought that three-mode res-

onant coupling (parametric resonance) plays an important role in limiting the saturation

amplitudes of overstable g-modes in ZZ-Ceti stars (Wu & Goldreich 2001) and δ-Scuti

stars (Dziembowski & Krolikowska 1985). In the KOI-54 system, when a resonantly

excited mode reaches sufficiently large amplitude, it will couple to two non-resonant,

lower-frequency daughter modes (see Kumar & Goodman 1996), thereby explaining

the observed non-harmonic oscillations.

Parametric resonance can occur when ωγ ' ωα + ωβ, where ωγ is the frequency of

the parent mode and ωα and ωβ are the frequencies of the two daughter modes. The

additional requirement that mγ = mα + mβ, where m is the azimuthal number of the

mode, implies that σγ ' σα + σβ. Examination of the KOI-54 data given in Welsh et

al. (2011) reveals that f2 = f5 + f6 (25.195 µHz = 6.207 µHz + 18.988 µHz) exactly to

the precision of the measurements, where fp is the frequency of the oscillation with the

pth largest magnitude variation. This provides strong evidence that the p = 5 and p = 6

oscillations are due to modes excited via parametric resonance and not via direct tidal

forcing.

However, no other pair of observed non-harmonic magnitude oscillations have fre-

quencies which add up to that of an observed oscillation. Some of these non-resonant

oscillations may be due to modes excited via parametric resonance that have undetected

sister modes. This possibility is especially appealing if one considers the scenario in

which one of the two daughter modes has m = 0 (and could thus be easily detected

for small values of is), while its sibling has m = 2 (and is thus very difficult to detect
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for small is). We therefore suggest that all non-harmonic flux oscillations are produced

by nonlinear mode coupling. Deeper observations may reveal additional evidence for

nonlinear mode couplings in the KOI-54 system

6.7 Discussion

We have shown that many properties of brightness oscillations detected in the KOI-

54 binary system by KEPLER can be understood using the theory of dynamical tidal

excitation of g-modes developed in this paper. In particular, our analysis and calculation

of the resonance mode locking process, which is driven by dynamical tides and intrinsic

stellar spindown, provides a natural explanation for the fact that only those modes with

frequencies (σα) less than about 90-100 times the orbital frequency (Ω) are observed.

Our result suggests that the KOI-54 system is currently in a resonance-locking state in

which one of the stars has a rotation rate such that it possesses a m = 2 mode with

frequency σα = 90Ω and the other star has a similar mode with σα′ = 91Ω — these

modes produce the largest flux variations detected in KOI-54. Our analysis shows that

the system can evolve into and stay in such a resonance locking state for relatively

long time periods, and it is reasonable to observe the system in such a state. Other

less prominent flux variations at lower frequencies can be explained by m = 0 tidally

forced oscillations, many of which are enhanced by resonance effects. We have also

found evidence of nonlinear three-mode coupling from the published KEPLER data and

suggested that the nonlinear effect may explain the flux variabilities at non-harmonic

frequencies.

In our study, we have used approximate quasi-adiabatic mode damping rates. Ob-

viously, it would be useful to repeat our analysis using more realistic mode damping
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rates, calculated with the full non-adiabatic oscillation equations. Our calculations of

the flux variations of tidally induced oscillations have also highlighted the importance

of accurate treatment of non-adiabatic effects in the stellar photosphere. We have only

considered g-modes (modified by stellar rotation) in this paper. Our general theory

allows for other rotation-driven modes, such as inertial/Rossby modes. It would be in-

teresting to study tidal excitation of these modes and non-linear 3-mode coupling effects

in the future.

More detailed modeling of the observed oscillations may provide useful constraints

on the parameters of the KOI-54 system, particularly the stellar rotation rates and spin

inclinations. On a more general level, KOI-54 may serve as a “laboratory” for cali-

brating theory of dynamical tides, which has wide applications in stellar and planetary

astrophysics (see references in Section 1).

While we believe that our current theory provides the basis for understanding many

aspects of the KOI-54 observations, some puzzles remain. In our current interpretation,

the most prominent oscillations (at 90Ω and 91Ω) occur in the two different stars, each

having a m = 2 mode resonantly locked with the orbit. While one can certainly appeal

to coincidence, it is intriguing that the strongest observed oscillations are at the two

consecutive harmonics (N = 90, 91) of the orbital frequency. More importantly, as dis-

cussed in Section 5.3.3, when both stars are involved in resonance locking, the effective

Nc (above which resonance locking cannot happen) is reduced. For example, using our

canonical stellar parameters (κ = 0.05), we find Nc ' 131 [see equation (6.39)], but the

effective Nc would be reduced to 92 if the two stars have identical modes in resonance

locking. In the case where the resonant energy dissipation rates in the two stars differ

by a factor of more than a few, the effective Nc of one star would remain close to 131,

while the effective Nc for the other star would likely be reduced to a value below 90. In
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this case, it would be unlikely to find the binary system in the resonance-locking state

involving both stars with N,N′ close to 90, because it is most likely for modes with N

just less than Nc to be locked in resonance (see Section 5.4.2.). Thus, we find it likely

that the energy dissipation rates are nearly equal (to within a factor of 2) in each star in

the KOI-54 system.

Finally, we may use our results to speculate on the evolutionary history (and future)

of the KOI-54 system. The star with M2 = 2.38M� and radius R2 = 2.33R� has an age

of about 3 × 108 years, according to our stellar model generated by the MESA code.

During the resonance locking phase, the orbital eccentricity decreases on a relatively

short time scale (of order ∼ 108 years). The current large eccentricity of KOI-54 then

suggests that resonance locking has not operated for a large fraction of the system’s

history. When resonance locking is in effect, the orbital evolution time scale is set by

primarily by the spindown time scale, tsd, and the value of δN for the resonant mode

[see equation (6.58)]. In the future, the stars will continue to expand into red giants and

the spindown time scale will decrease. This will cause the orbital evolution time scale

to correspondingly decrease, leading to rapid orbital decay and circularization of the

system.

While our paper was under review, a paper by Burkart et al. (2011) appeared on

arXiv. Burkart et al. carried out non-adiabatic mode calculations and also attribute most

of the oscillations to m = 0 modes, although they do not reach a definite conclusion

on the source of the N = 90, 91 oscillations. They did not consider resonance locking

(instead they consider the qualitatively different phenomenon of “pseudosynchronous

locks”), and appeared to attribute all resonances to random chance. They also showed

that 3-mode coupling (see Section 6) is possible.
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CHAPTER 7

TIDALLY INDUCED OSCILLATIONS AND ORBITAL DECAY IN COMPACT

TRIPLE-STAR SYSTEMS

7.1 Introduction1

Tidal interactions are known to profoundly impact the orbital evolution of close binary

star systems, exoplanetary systems, and moon systems. In binary systems, tides drive

the components of the systems toward a synchronized state in which the orbit is cir-

cular, and the components have spins that are synchronized and aligned with the orbit.

In a compact triple system, no equilibrium state exists, and the endpoint of the orbital

evolution is not immediately obvious. Furthermore, the dynamics of tidal interactions

coupled with multi-body orbital effects can be quite complex and can lead to the forma-

tion of astrophysically interesting systems (e.g., the Jupiter moon system, short-period

exoplanetary systems, and compact binary star systems).

Although there have been many studies of three-body orbital dynamics including

tidal dissipation (e.g., Mazeh & Shaham 1979, Ford et al. 2000, Eggleton & Kisleva-

Eggleton 2001, Fabrycky & Tremaine 2007, Correia et al. 2011), these studies have

primarily treated tides in a parameterized fashion. Some of these studies take resonant

orbital effects into account, but their parameterization of tidal interactions ignores res-

onant tidal effects which may significantly impact the orbital evolution. Furthermore,

these studies only consider tidal interactions between two components of the system

(i.e., they incorporate tidal interactions between objects 1 and 2, but ignore interactions

with object 3). This approximation is justified in most systems because the third body

is relatively distant. However, in sufficiently compact triple systems, a more thorough

1This chapter is based on Fuller et al. (2013).
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study of three-body tidal effects is necessary.

Observing tidal effects is very difficult because of the long time scales associated

with tidal evolution, and tidal orbital decay has only been observed in a few rare cir-

cumstances (such as the orbital decay of a pulsar-MS binary, see Lai 1996,1997; Kumar

& Quataert 1998). Until recently, the direct observation of tidally induced oscillations

was difficult because of the extreme precision required (∼ one part in a thousand) over

base lines of several days. Fortunately, the continuous observation and high accuracy of

the Kepler satellite is allowing for the direct observation of tidal effects (e.g., Welsh et

al. 2011, Thompson et al. 2012) and detailed analyses of tidally excited stellar oscil-

lations (Fuller & Lai 2012, Burkart et al. 2012). Recently, observations of luminosity

variations in the compact triple system HD 181068 (also known as KIC 5952403 or the

Trinity system, see Derekas et al. 2011) have provided evidence for three-body tidal

effects. To our knowledge, no detailed study of dynamical tides exists for compact triple

systems.

We present the first detailed investigation of the tidal excitation of stellar oscillation

modes in stars in compact triple systems. Hierarchical three-body systems can expe-

rience tidal forcing at frequencies unattainable for two-body systems, allowing for the

tidal excitation of high frequency p-modes in the convective envelopes of the stellar

components. We investigate the observational signatures of three-body tides, calculate

the amplitudes to which stellar oscillation modes are tidally excited, and study the or-

bital evolution induced by three-body tides.

We also compare our theory to the observations of luminosity fluctuations in

HD 181068, accurately characterized by Derekas et al. 2011 and Borkovits et al. 2012.

HD 181068 is a triply eclipsing hierarchical star system, with a red giant primary orbited

by two dwarf stars. The dwarf stars orbit each other every 0.906 days, and their cen-
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ter of mass orbits the primary every 45.47 days. In addition to eclipses, the lightcurve

shows oscillations at combinations of the orbital frequencies. We demonstrate that these

oscillations are tidally excited oscillations in the red giant primary excited by the orbital

motion of the dwarf stars.

Our paper is organized as follows. In Section 7.2 we derive the strength and fre-

quencies of tidal forcing unique to three-body systems. In Section 7.3 we calculate

the amplitudes to which modes are tidally excited, and estimate the resulting stellar lu-

minosity variations. In Section 7.4 we calculate the orbital evolution induced by the

tidally excited modes. In Section 7.5, we describe observations of tidally excited modes

in HD 181068, and in Section 7.6 we compare these observations to our theory. In

Section 7.7 we calculate the possible past and future orbital evolution of systems like

HD 181068. Finally, in Section 7.8, we discuss our results.

7.2 Three-body Tidal Forcing

Let us consider a triple-star system composed of a central primary star (Star 1), orbited

by a pair of companion stars (Stars 2 and 3) at frequency Ω1. Stars 2 and 3 orbit one

another at a much higher frequency Ω23 � Ω1. Figure 7.1 shows a diagram of the

orbital configuration. We adopt a coordinate system centered on Star 1 with z−axis in

the direction of its spin angular momentum vector. We consider the case in which all

three stars have circular coplanar orbits that are aligned with the stellar spins. We choose

a direction of reference such that the observer is located at the azimuthal angle φ = 0.

We wish to calculate the form of the time-varying gravitational potential of the short-

period binary (Stars 2 and 3) as seen by Star 1. The tidal potential due to Stars 2 and 3
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Figure 7.1: This diagram (not to scale) depicts the geometry of a triple-star system at
arbitrary orbital phase. a1 is the semimajor axis between the center of Star 1 and the
center of mass of Stars 2 and 3. a23 is the semimajor axis between Stars 2 and 3. D2

is the distance between Stars 1 and 2. φ1 is the orbital phase (relative to a direction of
reference) of the center of mass of Stars 2 and 3, while φ2 is the orbital phase of Star
2 about Star 1. φ23 is the orbital phase of Stars 2 and 3 about each other relative to the
same direction of reference.

can be decomposed into spherical harmonics as

Ul,m =
4π

2l + 1

[
−GM2

Dl+1
2

rlY∗lm(θ2, φ2) +
−GM3

Dl+1
3

rlY∗lm(θ3, φ3)
]
Yl,m(θ, φ). (7.1)

Here, M2, D2, θ2, and φ2 are the mass, distance, polar angle, and azimuthal angle of Star

2 (M3, D3, θ3, and φ3 are the same quantities for Star 3), while G is the gravitational

constant. The dominant terms have l = |m| = 2 and l = 2, m = 0, so we will consider

only these terms in our analysis. Since we restrict our analysis to coplanar orbits aligned

with the primary spin, θ2 = θ3 = π/2.

171



We wish to express the potential in terms of the angular orbital frequencies Ω1 and

Ω23. Some trigonometry reveals that the distance from Star 1 to Star 2 is

D2
2 = a2

1 +

(
M3

M2 + M3
a23

)2

+ 2
M3

M2 + M3
a1a23 cos(φ23 − φ1), (7.2)

where φ1 is the phase of the orbit of Stars 2 and 3 about Star 1, φ23 is the phase of the

orbit of Star 2 around Star 3, a1 is the semi-major axis between Star 1 and the center of

mass of Stars 2 and 3, and a23 is the semi-major axis between Stars 2 and 3. Also, the

law of sines reveals

sin(φ2 − φ1) =
M3

M2 + M3

a23

D2
sin(φ23 − φ1). (7.3)

In a hierarchical triple system, a23 � a1, so we expand distances and angles in powers

of the small parameter

ε ≡ a23/a1. (7.4)

We find

D−3
2 ' a−3

1

[
1−3ε

M3

M2 + M3
cos(φ23−φ1)+

3
4
ε2

( M3

M2 + M3

)2(
3+5 cos

[
2(φ23−φ1)

])]
(7.5)

and

e−imφ2 ' e−imφ1

[
1 − imε

M3

M2 + M3
sin(φ23 − φ1)

+ ε2
( M3

M2 + M3

)2( im
2

sin
[
2(φ23 − φ1)

]
−

m2

4
+

m2

4
cos

[
2(φ23 − φ1)

])]
. (7.6)

The values of D−3
3 and e−imφ3 are the same as equations (7.5) and (7.6), but with the 2

and 3 subscripts reversed, and with φ23 → φ23 + π.

Inserting equations (7.5) and (7.6) and their counterparts for Star 3 into equation

(7.1), we find that the zeroth order contribution (the term proportional to ε0) for l = 2 to

the tidal potential is

U (0)
2m =

−G(M2 + M3)Wl,mr2

a3
1

e−imφ1Y2,m(θ, φ), (7.7)
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where W2,0 = −
√
π/5 and W2,±2 =

√
3π/10. To zeroth order, the tidal potential due to

stars 2 and 3 is simply that of a single star of mass M2 + M3 at a semi-major axis a1.

Upon summing the contributions from both stars, the first-order terms (proportional

to ε) in equation (7.1) vanish. However, the second-order terms produce an additional

component of the tidal potential. Dropping terms with no φ1 or φ23 dependence because

they have no time dependence, we find that the second-order component of the tidal

potential is

U (2)
2,m = −A2,mr2Y2,m(θ, φ)

[
Fme2i(φ23−φ1)−imφ1 + F−me−2i(φ23−φ1)−imφ1

]
, (7.8)

where

A2,m = ε2 Gµ23W2,m

a3
1

, (7.9)

µ23 = M2M3/(M2 + M3), and

Fm =
15 + 8m + m2

8
. (7.10)

Then the m = 0 component yields

U (2)
2,0 = −

15
4

A2,0r2P2,0(cos θ) cos
[
2(φ23 − φ1)

]
. (7.11)

We further illuminate the nature of the tidal forcing by adding the U (2)
2,2 and U (2)

2,−2 com-

ponents to find

U (2)
2,2 +U (2)

2,−2 = −A2,2r2P2,2(cos θ)
[35

4
cos

(
2φ + 2φ23 − 4φ1

)
+

3
4

cos
(
2φ − 2φ23

)]
. (7.12)

The first term in brackets produces retrograde forcing, i.e., it will excite modes with

negative angular momentum that rotate in the opposite direction to the orbital motion of

Stars 2 and 3 about one another. The second term in brackets produces prograde forcing,

exciting modes with positive angular momentum.

We define φ1 = Ω1t and φ23 = φ2,0 + Ω23t, where φ2,0 is the phase φ23 of the short-

period orbit t = 0, when their center of mass is closest to the line of sight. The second-

order m = 0 component of the tidal potential produces forcing at a frequency σ0 =
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2(Ω23 − Ω1). The m = ±2 components produce forcing at two frequencies, σ−2 =

2Ω23 and σ2 = 2(Ω23 − 2Ω1). These frequencies arise because they are the conjunction

frequency in a frame corotating with the long-period orbit, but are Doppler shifted by

mΩ1 when viewed in the inertial frame. Due to the hierarchical structure of the system,

these frequencies can be larger than the dynamical frequency of Star 1, causing tidal

forcing at high frequencies seldom occurring in binary systems.

Equation (7.8) describes the tidal potential in the inertial frame, but we also wish to

calculate the forcing frequencies in the rotating reference frame of Star 1. To do so, we

make the transformation φ = φr + Ωst, where φr is the azimuthal angle in the rotating

frame and Ωs is the angular spin frequency of Star 1. Then in the rotating frame,

U (2)
2,m,r = −A2,mr2Y2,m(θ, φr)

[
F2e2i(φ23−φ1)−imφ1+imΩst

+ F−2e−2i(φ23−φ1)−imφ1+imΩst
]
. (7.13)

Thus,

U (2)
2,0,r = −A2,0r2P2,0(cos θ)F0 cos

[
2(φ23 − φ1)

]
, (7.14)

and

U (2)
2,2,r + U (2)

2,−2,r = −A2,2r2P2,2(cos θ)
[
F2 cos

(
2φr + 2φ23 − 4φ1 + 2Ωst

)
+ F−2 cos

(
2φr − 2φ23 + 2Ωst

)]
. (7.15)

Equations (7.13)-(7.15) are general for circular coplanar orbits aligned with the stel-

lar spin. If Star 1 is synchronized with the orbit of Stars 2 and 3 such that Ωs,1 = Ω1,2

U (2)
2,2,r + U (2)

2,−2,r ' −A2,2r2P2,2(cos θ)
[
F2 cos

(
2φr + 2φ23 − 2φ1

)
+ F−2 cos

(
2φr − 2φ23 + 2φ1

)]
. (7.16)

2In compact triple systems in which three-body tides operate, it is very likely that Ωs,1 ' Ω1 because
the tidal synchronization time due to the zeroth order tidal potential of equation 7.7 will be much shorter
than tidal time scales due to the three-body tides of equation (7.8).

174



Thus, when the spin of Star 1 is aligned with the orbit of Stars 2 and 3, the absolute

values of the forcing frequencies of all three modes (the axisymmetric m = 0 mode,

and the prograde and retrograde m = ±2 azimuthal modes) in the corotating frame are

identical, namely, |ν| = 2(Ω23 −Ω1).

7.3 Mode Excitation and Observation

7.3.1 Mode Amplitudes

With the tidal potential known, we may calculate the amplitude of the tidally forced

modes. In this section we consider only tidal forcing by the l = 2 second-order compo-

nent of the tidal potential. We use the subscript α to refer to a mode of angular degree l

and m, with a frequency in the rotating frame of ωα. In this frame, the mode amplitude

cα satisfies (Schenk et al. 2001)

ċα + (iωα + γα)cα =
i

2εα
〈ξα(r),−∇U〉

=
iAαQα

2εα
eim(Ωs−Ω1)t

[
Fme2i(Ω23−Ω1)t+2iφ2,0 + F−me−2i(Ω23−Ω1)t−2iφ2,0

]
.

(7.17)

Here, ωα = εα − mCαΩssgn(εα) is the mode frequency in the rotating frame, εα is the

unperturbed frequency for a non-rotating star, Cα is the rotational kernel (see Fuller &

Lai 2012), and γα is the mode damping rate. In this formalism, both m and εα can have

positive or negative values. The dimensionless coefficient Qα is the overlap integral of

the mode with the tidal potential, defined as

Qα =
1

M1Rl
1

〈ξα|∇(rlYlm)〉

=
1

M1Rl
1

∫
d3x ρξ∗α · ∇(rlYlm), (7.18)
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where ξα is the mode eigenvector normalized via the condition

〈ξα|ξα〉 = M1Rl
1, (7.19)

and R1 is the radius of Star 1.

The non-homogeneous solution of equation (7.17) is

cα =
AαQα

2εα

[ Fmeiνmt+2iφ2,0

ωα + νm − iγα
+

F−me−iν−mt−2iφ2,0

ωα − ν−m − iγα

]
(7.20)

where

νm = 2(Ω23 −Ω1) + m(Ωs −Ω1). (7.21)

The total tidal response of the star is ξ(r, t) =
∑
α cα(t)ξα(r). We assume that the star

is slowly rotating (Ωs � ωα) such that ξα(r) and Qα are independent of m or Ωs, and

ωα ' εα. Summing over both signs of ωα yields

ξ(r, t) =
∑
α,ω>0

AαQαξα(r)
[ Fmeiνmt+2iφ2,0

ω2
α − ν

2
m + 2iνmγα + γ2

α

+
F−me−iν−mt−2iφ2,0

ω2
α − ν

2
−m − 2iν−mγα + γ2

α

]
. (7.22)

Summing over both signs of m then yields

ξ(r, t,m = 0) =
∑

α,ω>0,m=0

2AαQαP2,m(cos θ)ξα(r)FmDα,m cos
(
νmt + 2φ2,0 + ψα,m

)
, (7.23)

ξ(r, t,m = ±2) =
∑

α,ω>0,m=2

2AαQαP2,m(cos θ)ξα(r)
[
FmDα,m cos

(
νmt + 2φr + 2φ2,0 + ψα,m

)
+ F−mDα,−m cos

(
ν−mt − 2φr + 2φ2,0 + ψα,−m

)]
, (7.24)

with

Dα,m =
[(
ω2
α − ν

2
m
)2

+ 4ν2
mγ

2
α + γ4

α

]−1/2
(7.25)

and

ψα,m =
π

2
+ tan−1

(ω2
α − ν

2
m + γ2

α

2νmγα

)
. (7.26)
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The m = 0 modes produce a radial displacement

ξr(r, t,m = 0) =
∑

α,ω>0,m=0

2AαQαFmDα,mξr,α(r)P2,0(cos θ) cos(νmt + 2φ2,0 +ψα,m). (7.27)

The m = ±2 modes produce a radial displacement

ξr(r, t,m = ±2) '
∑

α,ω>0,m=2

2AαQαFmDα,mξr,α(r)P2,2(cos θ) cos(νmt + 2φr + 2φ2,0 + ψα,m)

+ 2AαQαF−mDα−,mξr,α(r)P2,2(cos θ) cos(ν−mt − 2φr + 2φ2,0 + ψα,−m).

(7.28)

The first term is the radial displacement due to the retrograde mode, and the second is

due to the prograde mode.

7.3.2 Luminosity Variations

The luminosity variation produced by a mode, ∆Lα/L, is not trivial to calculate, because

the temperature fluctuation produced by the mode is sensitive to non-adiabatic effects

and subtleties in the outer boundary condition. We refer the reader to other studies

(e.g., Buta & Smith 1979, Robinson et al. 1982) which have attempted to quantify the

visibility of a mode given its amplitude and eigenfunction. If the mode is adiabatic, its

luminosity fluctuation is

∆Lα
L

= 2AαQαFmDα,mξr,α(R)VαYl,m(θo, φo) cos(σmt + 2φ2,0 + ψα,m) (7.29)

with

σm = 2(Ω23 −Ω1) − mΩ1, (7.30)

and here m = 2 corresponds to the retrograde mode and m = −2 corresponds to the

prograde mode. The angular coordinates θo and φo indicate the direction of the observer

relative to the symmetry axis of the mode, here assumed to be the spin axis of Star 1.
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We define Vα to be the visibility function of the mode, which is dependent on geomet-

rical, opacity, and non-adiabatic effects. In high-inclination systems like HD 181068,

θo ' 90◦, and we have chosen our coordinate system such that φo = 0. In this case,

Yl,m(θo, φo) ' −
√

5/(16π) for m = 0 modes and Yl,m(θo, φo) '
√

15/(32π) for m = ±2

modes.

The value of Vα is uncertain. If non-adiabatic effects are significant, Vα will be

complex and the luminosity variation will be phase-shifted from equation (7.29). Here

we consider adiabatic modes, but we remember that an observation of a phase shift is

indicative of non-adiabatic effects. In the adiabatic limit, Buta & Smith (1979) find

Vα = αl + βl + 4∇adγlHα, (7.31)

where αl, βl, and γl are coefficients of order unity that depend on the spherical harmonic

l of the mode and the stellar limb-darkening function (we use the values given in Buta

& Smith 1979), and ∇ad is the adiabatic temperature gradient at the surface. The first

term in equation (7.31) is due to surface area distortions, the second is due to surface

normal distortions, and the third term is due to temperature effects. The function Hα

describes the magnitude of the pressure perturbation compared to the radial surface

displacement, i.e., ∆Tα/T = Hαξr,α/R. According to Dziembowski (1971), the value of

Hα for adiabatic oscillations is

Hα =

[ l(l + 1)
ω̄2
α

− 4 − ω̄2
α

]
, (7.32)

where

ω̄α =
ωα

ωdyn
, (7.33)

and ωdyn =

√
GM1/R3

1 is the dynamical frequency of Star 1. In this description, Hα is

large for high-order g-modes (low values of ω̄α) or high-order p-modes (high values of

ω̄α).
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Gouttebroze & Toutain (1994) have attempted to estimate the value of Vα for p-

modes modes in a solar model. They calculated non-adiabatic mode eigenfunctions,

and then calculated luminosity variations by adding up the perturbed flux from a grid of

emitting surface elements. They found that Vα is of order unity for low-order p-modes,

but has substantially larger values for the high-order p-modes that typically produce

solar-like oscillations. In the analysis of Section 7.6, we calculate Vα from equation

(7.31), considering a lower limit of Hα ≈ 1 and an upper limit of equation (7.32).

7.4 Effect of Modes on Orbital Evolution

7.4.1 Hamiltonian Formalism

The tidally excited modes draw energy and angular momentum from the orbit and de-

posit them in Star 1. The effect of the modes on the orbits can be calculated from

the Hamiltonian of the gravitational interaction between the modes and the stars. This

Hamiltonian is

H =

∫
d3rU(r, t)

∑
α

c∗α(t)δρ∗α(r), (7.34)

where δρ is the Eulerian density perturbation associated with each mode. Performing

the integration over the volume of Star 1, and considering only l = 2 terms yields

H = −M1R2
1

∑
α,ω>0

AαQα

[
Fme2i(φ23−φ1)−imφ1+imΩst + F−me−2i(φ23−φ1)−imφ1+imΩst

]
c∗α(t). (7.35)

Inserting equation (7.20) into equation (7.35), we find

H = −M1R2
1

∑
α,ω>0

(AαQα)2ωα

εα

[
Fme2i(φ23−φ1)−imφ1 + F−me−2i(φ23−φ1)−imφ1

]
×

[ Fme−iσ f 1t

ω2
α − ν

2
m − 2iνmγα + γ2

α

+
F−me−iσ f 2t

ω2
α − ν

2
−m + 2iν−mγα + γ2

α

]
, (7.36)
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with σ f 1 = 2(Ω23 −Ω1) − mΩ1, and σ f 2 = −2(Ω23 −Ω1) − mΩ1.

The orbital evolution equations are L̇1 = −dH/dφ1, L̇23 = −dH/dφ23, where L1 =

µ1a2
1Ω1 and L23 = µ23a2

23Ω23 are the angular momenta of the outer and inner orbit,

respectively, and µ1 = M1(M2 + M3)/(M1 + M2 + M3). In the limit Ωs � ωα we find

L̇1 = M1R2
1

∑
α,ω>0

(AαQα)2i
[

−(2 + m)F2
m

ω2
α − ν

2
m − 2iγανm + γ2

α

+
(2 − m)F2

−m

ω2
α − ν

2
−m + 2iγαν−m + γ2

α

]
(7.37)

and

L̇23 = M1R2
1

∑
α,ω>0

(AαQα)2i
[ 2F2

m

ω2
α − ν

2
m − 2iγανm + γ2

α

+
−2F2

−m

ω2
α − ν

2
−m + 2iγαν−m + γ2

α

]
. (7.38)

We have discarded rapidly oscillating terms because they produce no secular variations.

The torque due to the m = 0 modes is

L̇1(m = 0) = 8M1R2
1

∑
α,ω>0,m=0

(AαQα)2F2
mΓα,m, (7.39)

where

Γα,m =
νmγα

(ω2
α − ν

2
m)2 + 4(νmγα)2 + γ4

α

, (7.40)

and L̇23(m = 0) = −L̇1(m = 0). The torque due to m = ±2 modes is

L̇1(m = ±2) = 16M1R2
1

∑
α,ω>0,m=2

(AαQα)2F2
mΓα,m (7.41)

and

L̇23(m = ±2) = −8M1R2
1

∑
α,ω>0,m=2

(AαQα)2
[
F2

mΓα,m + F2
−mΓα,−m

]
. (7.42)

Equations (7.39-7.42) may be written in terms of a dimensionless damping rate

Γ̄α,m = Γα,mω
2
dyn, such that we obtain the more familiar scaling for tidal dissipation:

L̇1(m = 0) = 8
GM2

1

R1
ε2

(
µ23

M1

)2(R1

a1

)6 ∑
α,ω>0

(WαQαF0)2Γ̄α,0, for

for m = 0 modes, (7.43)
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L̇1(m = ±2) = 16
GM2

1

R1
ε2

(
µ23

M1

)2(R1

a1

)6 ∑
α,ω>0

(WαQαF2)2Γ̄α,2

for m = ±2 modes, (7.44)

L̇23(m = 0) = −8
GM2

1

R1
ε2

(
µ23

M1

)2(R1

a1

)6 ∑
α,ω>0

(WαQαF0)2Γ̄α,0

for m = 0 modes. (7.45)

L̇23(m = ±2) = −8
GM2

1

R1
ε2

(
µ23

M1

)2(R1

a1

)6 ∑
α,ω>0

(WαQα)2
[
F2

2Γ̄α,2 + F2
−2Γ̄α,−2

]
for m = ±2 modes. (7.46)

Conservation of angular momentum requires that the torque on Star 1 is L̇∗ = −L̇1 − L̇23,

or

L̇∗ = −8
GM2

1

R1
ε2

(
µ23

M1

)2(R1

a1

)6 ∑
α,ω>0

(WαQα)2
[
F2

2Γ̄α,2 − F2
−2Γ̄α,−2

]
. (7.47)

We can see that m = 0 modes draw angular momentum from the inner orbit and

transfer it to the outer orbit. The m = 2 (retrograde) modes take angular momentum

from the inner orbit and the spin of Star 1, depositing it in the outer orbit. The m = −2

(prograde) modes draw angular momentum from the inner orbit and transfer it to the

spin of Star 1. Thus, in all cases, three-body tides cause the inner orbit to decay and the

outer orbit to expand, although the outer orbit expands by a much smaller factor because

of its larger moment of inertia. Star 1 can be either spun up or spun down, depending on

which mode (prograde or retrograde) contains more energy. Under most circumstances,

Star 1 will usually be spun down because F2 > F−2. In the limit of zero eccentricity, the

orbital energies change as Ė1 = Ω1L̇1 and Ė23 = Ω23L̇23. Consequently, ė1 = ė23 = 0,

and the orbits remain circular. Finally, we note that three-body tides tend to increase the

stability of hierarchical triples because they cause the period ratio P1/P23 to increase.
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Table 7.1: Properties of the HD 181068 system as measured by Borkovits et al. 2012.
M(M�) R(R�) Teff(K)

Star 1 3.0 ± 0.1 12.46 ± 0.15 5100 ± 100
Star 2 0.915 ± 0.034 0.865 ± 0.010 5100 ± 100
Star 3 0.870 ± 0.043 0.800 ± 0.020 4675 ± 100

7.5 Observations of HD 181068

We now apply our theory to the compact triple-star system HD 181068, also known

as the Trinity system, whose properties are listed in Table 1 (see Derekas et al. 2011,

Borkovits et al. 2012). Stars 2 and 3 orbit about Star 1 at an angular frequency Ω1 =

0.138 d−1, while Stars 2 and 3 orbit about each other at Ω23 = 6.94 d−1. All three stars

are nearly exactly coplanar, with orbital inclinations of i ' 90◦. The red giant primary

has a radius and surface temperature typical of red clump stars, with R1 = 12.46±0.15R�

and Teff = 5100 ± 100K, but has a fairly large mass of M1 = 3.0 ± 0.1M�.

In the discovery paper of HD181068 (Derekas et al. 2011), 218 days of Kepler data

were analyzed. One of the most surprising results was that the main component of the

system, which is a red giant star, did not show solar-like oscillations. Instead, other

pulsations were detected with frequencies close to double the orbital frequency of the

short-period binary. Derekas et al. 2011 suggested that these pulsations might be tidally

forced oscillations and that there might be a mechanism which suppresses the solar-like

oscillations.

7.5.1 Fourier Analysis

As of writing, 11 quarters of data from Kepler have been made available to us, represent-

ing almost three years of essentially uninterrupted observations. The first six quarters of
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Table 7.2: The significant peaks of the period analysis for HD 181068. A number of
peaks located < 0.1d−1 were left out of the analysis.

No. Frequency Orbital Relation Amplitude Phase S/N
(d−1) (mmag)

f1 2.1203 2(Ω23 − 2Ω1)/(2π) 0.44 0.0403 58
f2 2.1643 2(Ω23 −Ω1)/(2π) 0.25 0.2889 35
f3 1.1065 Ω23/(2π) 0.08 0.2843 3.4
f4 2.2084 2Ω23/(2π) 0.048 0.8719 6.8

data were obtained in long-cadence mode (one point every 29.4 minutes), while Q7 to

Q11 were taken in short-cadence mode (one point every 58.9 seconds). Here we present

a period analysis of the combined long-cadence and short-cadence data, the latter cov-

ering 450 days.

As a first step, we subtracted the eclipses and rotational variations by using the

light curve fit of Borkovits et al. 2012, which resulted in a nearly continuous data set

containing the pulsations. For the period analysis, we used Period04 by Lenz & Breger

2005. In the Fourier-spectra, a number of the peaks were located < 0.1d−1 indicating

long term variability, remnants of the light curve fit, or instrumental effects that are

negligible in the present analysis. Peaks with significance are listed in Table 7.2 and the

Fourier-spectrum is shown in Figure 7.2.

The most intriguing result of the period analysis is that f1 and f2 are linear combina-

tions of the two orbital frequencies, suggesting a tidal origin. Their angular frequencies

are separated by 2Ω1, creating a beat pattern in which they are in phase near the primary

eclipses and occultations (see Figure 7.3). The frequencies f3 and f4 correspond to one

and two times the orbital frequency of Stars 2 and 3, and may be caused by the imperfect

subtraction of the eclipses or spots on the components. However, they could have a tidal

component as well.
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Figure 7.2: Fourier spectrum of 11 quarters of long-cadence data.
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Figure 7.3: Red curve: Sample of light curve of HD 181068 between long duration
eclipses. The x−axis is the phase of the long-period orbit, measured from the primary
minimum at BJD 55545.466. Green curve: The simulated light curve of the oscillations.
Note the beating pattern due to two close frequency oscillations.

7.5.2 Lack of solar-like oscillations

Red giant stars are well known to show solar-like oscillations (De Ridder et al. 2009,

Chaplin et al. 2011a) which are excited by near-surface convection (see, e.g., Houdek et

al. 1999, Samadi et al. 2007). Nearly all red giants observed by Kepler show detectable

oscillations (Huber et al. 1010, Kallinger et al. 2010, Hekker et al. 2011), which can

be used to probe the internal properties of the star (e.g., Bedding et al. 2011, Beck et

al. 2012, Mosser et al. 2012). The frequency of maximum power (νmax) of solar-like
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oscillations can be estimated using the scaling relation (Brown et al. 1991)

νmax =
M/M�(Teff/Teff,�)3.5

L/L�
νmax,�, (7.48)

with νmax,� = 3090µHz. Using the fundamental properties given by Borkovits et al.

2012, we calculate νmax = 64 ± 7µHz (5.5 ± 0.6 c/d) for the red giant component. To

search for solar-like oscillations in HD181068, we first remove all primary and sec-

ondary eclipses from the data using the ephemeris given by Borkovits et al. 2012. To

further remove long-periodic variability we then apply a Savitzky-Golay filter (Savitzky

& Golay 1964) with a width of 5 days. Finally, we pre-whiten the most significant low

frequency variations due to tidal oscillations, as discussed in the previous section.

The upper panel of Figure 7.4 shows a power spectrum of the residual Q1-Q11 long-

cadence light curve. For comparison the middle panel shows the power spectrum of

KIC4662939, a Helium-core burning red giant with similar fundamental properties as

red giant component in HD181068 (Bedding et al. 2011). Despite an increase of the

data set length by a factor of three compared to Derekas et al. 2011, the lack of solar-

like oscillations in HD181068 A is clearly confirmed. On the other hand, we observe

that both stars exhibit a similar decrease of power from low to high frequencies, which

is the typical signature of granulation (see Mathur et al. 2011). This confirms that

both stars indeed have similar fundamental properties, but that solar-like oscillations are

suppressed in HD181068 A.

We speculate that the lack of solar-like oscillations of the main component is re-

lated to the close multiplicity of the components of HD 181068. Derekas et al. 2011

measured a rotational velocity of Star 1 of v sin i = 14 ± 1 km s−1, corresponding to

Ωs,1 = 0.14± 0.01 d−1. This spin frequency is consistent with Star 1 being synchronized

with the long-period orbit, indicating that it has been tidally synchronized. It is also

an abnormally large spin frequency for red giants (de Medeiros et al. 1996), and the
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rapid rotation may generate a strong magnetic dynamo. Indeed, the light curve of HD

181068 exhibits flaring events (some events occur during occultations of Stars 2 and 3,

indicating the flares originate from Star 1, see Borkovits et al. 2012) that indicate high

levels of magnetic activity. Chaplin et al. 2011b has shown that solar-like oscillations

are suppressed in abnormally active stars, presumably due to their rapid rotation or due

to the effects of strong magnetic fields. We therefore speculate that the tidal synchro-

nization of the primary in HD 181068 creates rapid rotation and high magnetic activity

that suppress the excitation of solar-like oscillations.

The available short-cadence data also allow us to search for solar-like oscillations

in the dwarf components. Using equation (7.48), we expect the dwarf components to

oscillate at frequencies between 3500−5000µHz. The bottom panel of Figure 7.4 shows

the power spectrum of the short-cadence data after performing the same corrections as

described above. We do not detect any significant power excess in the data. Given the

much lower luminosities of the dwarf companions and the amplitude dilution by the

brighter giant component, this implies that the amplitudes are too small to be detected

with the data at hand. Solar-like oscillations in the dwarfs may be also suppressed by

the same mechanisms described above.

7.6 Comparison With Observations

7.6.1 Stellar Model

We generate a M = 3.0M�, R = 12.4R�, Teff = 5100K, z = 0.015 helium burning

red giant stellar model using the MESA stellar evolution code (Paxton et al. 2011).

Figure 7.5 shows a propagation diagram for the stellar model. The high Brunt-Vaisala
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Figure 7.4: Top panel: Power spectrum of the Q1-Q11 long-cadence data of HD 181068
after removing eclipses and low frequency variability. The red line shows the power
spectrum smoothed with a Gaussian filter with a full-width at half maximum of 5µHz.
Middle panel: Same as top panel but for KIC 4662939. Bottom panel: Power spec-
trum of the Q7-11 short-cadence data of HD 181068 after removing eclipses and low
frequency variability.
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Figure 7.5: Top: the Brunt Vaisala frequency N (solid line) and Lamb frequency L2

(dashed line) as function of radius r. The red horizontal (overlapping) lines mark the
eigenfrquencies ω̄α of the modes shown in the bottom panel. Bottom: mode eigenfunc-
tions ξr,α for an envelope mode with ω̄α = 6.66 (long dashed line), a neighboring mixed
mode with ω̄α = 6.71 (dotted line), and a core mode with ω̄α = 7.17. All quantities are
calculated for our M = 3.0M�, R = 12.4R� helium burning red giant model, and are
plotted in units of G = M = R = 1. The modes are normalized via equation (7.19).

188



   
 

10-4

10-2

100

102

104

|ξ
r,

α(
R

)|

0.1 1.0 10.0
ωα (day-1)

10-8

10-6

10-4

10-2

100

|Q
α|
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Qα (bottom) for stellar oscillation modes as a function of mode eigenfrequency ωα. The
modes are calculated from our M = 3.0M�, R = 12.4R� red giant model. The modes
at the tips of the spikes are envelope dominated mixed modes, while the surrounding
modes are mixed modes whose inertia is split between the core and envelope. The
vertical lines mark the values of 2Ω1 and 2Ω23 in the HD 181068 system.

and Lamb frequencies in the radiative interior of the star allow high-order g-modes to

propagate in the stellar interior, while the small Brunt-Vaisala and Lamb frequencies in

the convective envelope of the star allow for p-mode propagation.
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Using the model described above, we calculate the adiabatic stellar oscillation modes

using the usual boundary conditions (see e.g., Unno et al. 1989), and normalized accord-

ing to equation (7.19). Figure 7.6 shows the values of ξr,α(R) and Qα as a function of ωα

for our stellar model. Low frequency modes g-modes (lower than ωα ≈ 1) are trapped

in the core. Higher frequency modes still have g-mode character in the core, but have

p-mode character in the convective envelope of the star. Modes whose inertia lies pri-

marily in the convective envelope are the envelope dominated mixed modes, while the

inertia of the neighboring mixed modes is split between the core and envelope. Figures

7.5 and 7.6 demonstrate that the envelope modes have large values of ξr,α(R) and Qα

compared to neighboring mixed modes. Consequently, the envelope modes are easily

excited to large amplitudes (because of the larger values of Qα) and produce large lu-

minosity fluctuations [because of the larger values of ξr,α(R)]. The envelope modes thus

dominate the visible and energetic response of the star to high frequency tidal forcing.

7.6.2 Comparison with Observed Luminosity Fluctuations

Here, we compare our theory to observations of HD 181068. Unfortunately, it is difficult

to predict the amplitude of a tidally excited mode, even if the system parameters are

relatively well constrained. Part of the reason is that the value of the frequency detuning

Dα,m (see equation 7.25) can vary by orders of magnitude over small changes in ωα.

Since the values of ωα depend on the precise mass, radius, and internal structure of the

star, accurately calculating Dα,m for each mode is very difficult.

Instead, we choose to calculate the amplitude of the luminosity fluctuations as a

function of the stellar radius R1, which is constrained to be R1 = 12.46 ± 0.15R�. We

compute the dimensionless values of ω̄α for the stellar model described in Section 7.6.1,
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and then scale them to dimensional frequencies ωα using equation (7.33). The range of

radii R1 is meant to encompass uncertainties in ω̄α, M1, R1, Ωs,1, non-adiabatic effects,

etc., that affect the precise values of ωα in HD 181068.

Figure 7.7 displays the theoretical and observed luminosity variations produced at

the tidal forcing frequencies 2(Ω23 − 2Ω1), 2(Ω23 − Ω1), and 2Ω23. Recall that the

observed variation at 2Ω23 may be contaminated by imperfect eclipse subtraction and/or

spotting effects. The luminosity variations are calculated using equation (7.29), using

Ω23 and Ω1 observed in HD 181068, and using M2 = M3 = 0.9M� and θo = 87.5◦ (as

measured by Borkovits et al. 2012). The top panel uses Hα = 1, while the bottom panel

uses Hα = [l(l+1)/ω̄2−4− ω̄2
α]. The luminosity variations have peaks and dips at values

of R1 for which the frequency of a mode is nearly resonant with the forcing frequency.

For Hα = 1, the theoretical luminosity variations are well below the observed variations,

except very near a resonance with an envelope p-mode (i.e., at R1 ' 12.8R�). Unless the

HD 181068 is in a resonance locking state (see Section 7.7), it is unlikely to observe it

so close to resonance.

In contrast, the theoretical luminosity variations are closer to the observed variations

for Hα = [l(l + 1)/ω̄2 − 4 − ω̄2
α]. The best agreement is obtained for R1 ' 12.6R�,

and matches the luminosity variation for each theoretical and observed frequency to

within a factor of 2. We conclude that the luminosity variations in HD 181068 are likely

dominated by temperature effects, characterized by large values of Hα. The ordering of

the amplitudes of the oscillations is naturally explained by our theory, i.e., ∆L/L(m =

2) > ∆L/L(m = 0) > ∆L/L(m = −2), because F2 > F0 > F−2. However, the measured

amplitude ratios are slightly different than what we expect away from exact resonances,

and the cause of the discrepancy is unclear.

For non-adiabatic modes, our theory also predicts the phases of the observed oscil-
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Figure 7.7: Luminosity variations ∆L/L as a function of stellar radius, using Hα = 1 (top
panel) and Hα = ωα (bottom panel), for our stellar model. The actual stellar model has
R1 = 12.4R�, but to make this plot we consider identical models scaled to different radii.
The black lines are the luminosity variations of the mode at frequencies 2(Ω23 − 2Ω1)
(dashed line), 2(Ω23 − Ω1) (solid line), and 2Ω23 (dotted line). The horizontal red lines
are the observed luminosity variations in HD 181068 at the same frequencies.
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lations. In particular, equation (7.29) shows that for non-resonant adiabatic modes (i.e.,

Vα is real and ψα ' 0 or ψα ' π), the phase difference between two oscillation frequen-

cies is ∆φ ' mφ1. This implies that the prominent frequencies f1 and f2 (which have

m = 2 and m = 0, respectively) should be in phase at φ1 ' 0 and φ1 ' π, i.e., they

should be in phase during the eclipses and occultations of Star 1. Indeed, the measured

oscillations are in phase at these times, as can be seen from the simulated light curve in

Figure 7.3. This suggests that the observed luminosity fluctuations are being produced

by non-resonant modes, consistent with our findings above.

7.7 Orbital Evolution of HD 181068

We now wish to calculate the orbital evolution induced by the tidally excited modes in

realistic systems such as HD 181068. The quantity in the orbital evolution equations

(7.43)-(7.46) with the most uncertainty is the damping rate γα. An accurate calculation

of γα requires a fully non-adiabatic calculation of mode eigenfrequencies, and must

also include the turbulent damping of modes in the convection zone, which is not well

understood. We choose to estimate γα using a quasiadiabatic WKB damping rate (see

Burkart et al. 2012). We check that the damping rate calculated in this manner is

the same order of magnitude as the damping rate inferred from observations of mode

lifetimes of solar-like oscillations in red giants (see Belkacem 2012) for modes with

ωα ≈ νmax.

To understand the effects of tidally excited modes on the orbital evolution of a real-

istic triple system, we calculate the orbital evolution of a system resembling HD 181068

using equations (7.43)-(7.46). We consider coplanar, circular orbits, as observed in HD
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181068. The orbital frequencies change as

Ω̇1 = −
3L̇1

µ1a2
1

(7.49)

and

Ω̇23 = −
3L̇23

µ23a2
23

, (7.50)

and the orbital semi-major axes change as ȧ/a = −2Ω̇/(3Ω). We define the tidal dissi-

pation time scale as

ttide =
a23

ȧ23
=
µ23a2

23Ω23

2L̇23
. (7.51)

The orbital evolution timescales due to tidally excited modes can be comparable to

the stellar evolution time scales of the stars in the system. Hence, it is important to

evolve the properties of the stars in the system simultaneously with the orbital elements.

In our evolutions, we compute the radius of Star 1 as a function of time using the MESA

stellar evolution code (Paxton 2011). The changing value of R1 affects not only the

values of L̇ in equations (7.43)-(7.46), but it also affects the eigenfrequencies ωα be-

cause the stellar oscillation frequencies scale as ωα ∝

√
GM1/R3

1. Accounting for the

changing eigenfrequencies is important because it can lead to resonance locking (Witte

& Savonije 1999, Fuller & Lai 2012), allowing for tidal evolution on stellar evolutionary

timescales rather than the longer non-resonant tidal evolution time scales.

In our calculations, we do not calculate new eigenfreqencies ω̄α and associated

eigenfunctions at each time step. We find that in the red giant phase of stellar evolution,

the variations in Qα as a function of time are relatively small, and that the variations

in ωα are dominated by variations in ωdyn due to the changing value of R1. We use the

values of ω̄α and Qα shown in Figure 7.6, and calculate ωα from equation (7.33).

In addition to the tidally excited modes discussed in this paper, our evolutionary

calculations should account for “two-body” tidal effects, i.e., the tidal effects due to the
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zeroth order component of the tidal potential in equation (7.7). These tidal forces have

no dependence on the small parameter ε, and hence they act on much shorter time scales.

Furthermore, tidal forces between Stars 2 and 3 will act on even shorter time scales due

to their close separation. Therefore, two-body tidal forces cause Stars 2 and 3 to have a

circular orbit around each other, rotating synchronously with that orbit. They also cause

the center of mass of Stars 2 and 3 to have a circular orbit around Star 1, with Star 1

rotating synchronously with that orbit. Thus, in our evolution, we enforce Ωs,1 = Ω1

and Ωs,2 = Ωs,3 = Ω23 at all times. We account for the angular momentum redistribution

associated with these processes, although the stellar spins contain only a small fraction

of the total angular momentum of the system.

Because the moment of inertia of Star 1 is much less than that of the orbit of Stars

2 and 3 about Star 1, a small amount of orbital angular momentum deposited in Star

1 by three-body tidal effects can drastically change its spin frequency. This angular

momentum will then be transferred back to the orbit of Stars 2 and 3 about Star 1 by

two-body tidal effects until synchronism is restored. Therefore, after each time step in

our evolution, we calculate ∆L1, ∆L23 and ∆L∗ from equations (7.43)-(7.47). We then

adjust the values of Ωs,1 and Ω1 such that Ωs,1 = Ω1 and the total angular momentum is

conserved. Since L∗,1 � L1 for realistic parameters for a hierarchical triple system, the

coupled tidal evolutions ensure that L̇1 ' −L̇23.

We also include orbital evolution due to induced eccentricity, magnetic braking, and

gravitational radiation, as described in Appendix A. However, we find that the timescales

associated with these processes are generally longer than the lifetime of a system such

as HD 181068, so we do not discuss these effects in detail below.
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7.7.1 Results of Orbital Evolution

Figure 7.8 shows an example of our evolutionary calculations. We plot the stellar radius,

R1, orbital frequencies Ω1 and Ω23, and orbital decay time scales (ttide, tecc, tmag, and tGW)

as a function of time. We begin our orbital calculations as Star 1 is moving off the main

sequence. The properties of the oscillation modes (calculated for helium burning red-

giant model described in Section 7.6.1) are not appropriate for the initial model main

sequence model, but become realistic as Star 1 moves up the red giant branch. We begin

our calculation with orbital frequencies of Ω23,i = 0.2Ω23,o and Ω1,i = 1.15Ω1,o, where

Ω23,o and Ω1,o are the observed orbital frequencies in HD 181068.

Let us start by examining the top panel of Figure 7.8. The spike in radius at t =

1 × 107yr corresponds to the largest radius obtained during the red giant phase, while

the long flat period between 2 × 107yr < t < 108yr is the core helium burning phase.

Figure 7.8 indicates that Star 1 in HD 181068 could be ascending the red giant branch,

but is most likely a horizontal branch star. The measured temperature of Star 1 is also

consistent with these possibilities.

The middle panel of Figure 7.8 shows that the orbits evolve substantially due to tidal

dissipation. The outer orbital frequency, Ω1 becomes slightly smaller as angular mo-

mentum is transferred from the inner to the outer orbit. The inner orbital frequency Ω23

changes substantially, increasing by a factor of roughly five. The tidal dissipation begins

as Star 1 moves up the red giant branch, increasing the value of R1 and hence L̇23. Tidal

dissipation also becomes much stronger during this stage because the frequencies of

envelope p-modes (which couple strongly with the tidal potential) become comparable

to the tidal forcing frequencies. The tidal dissipation remains strong as Star 1 shrinks

and descends the red giant branch because the system enters into a resonance locking

configuration (see Section 7.7.2). Once Star 1 settles onto the horizontal branch, the
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Figure 7.8: Top: Radius R1 as a function of time since leaving the main sequence for
an M1 = 3.0M� stellar model. The horizontal blue strip is the measured radius of HD
181068, within the measurement uncertainty. Middle: Angular orbital frequencies Ω23

(solid black line) and 10Ω1 (solid red line) as a function of time, including tidal dissi-
pation. The horizontal lines are the values of Ω23 (dashed black) and 10Ω1 (dashed red)
for the HD 181068 system. Bottom: tidal dissipation timescale ttide (solid black line),
induced eccentricity orbital decay time scale tecc (triple dot dashed green line), gravita-
tional wave decay timescale tGW (dotted blue line), magnetic braking orbital decay time
scale tmag (dot dashed red line), and stellar evolution time scale tR (dashed purple line)
as a function of time.
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resonance locking ends and tidal dissipation is drastically reduced.

The bottom panel of Figure 7.8 displays the relevant time scales of the evolution,

including the stellar evolution time scale defined as

tR =
R1

|Ṙ1|
. (7.52)

When Star 1 is on the main sequence, all the orbital time scales are longer than a Hubble

time and can be ignored. As Star 1 moves up the red giant branch, the tidal dissipation

time scale ttide decreases by several orders of magnitude, as discussed above. When Star

1 is descending the red giant branch (at t ≈ 1.5 × 107yr), we see that ttide ' tR. This is a

natural consequence of resonance locking, which we discuss in Section 7.7.2.

In contrast, the value of ttide is generally much larger during the core helium burning

phase, due to the decreased values of R1 and a23. While in the core helium burning

phase, the value of ttide has sharp dips due to resonance crossings with mixed modes.

There are also deeper, broader dips due to resonance crossings with envelope p-modes,

such as the resonance crossing that occurs at t ' 9 × 107yr. However, these resonance

crossing events are fairly brief and produce only small amounts of tidal dissipation. We

are thus unlikely to observe any orbital decay in HD 181068, unless the system is in a

resonance-locking state.

The initial orbital frequencies were chosen such that the final values of Ω23 and Ω1

would be roughly equal to the observed orbital frequencies in HD 181068. This does

not entail that our chosen values of Ω23,i and Ω1,i were the actual orbital frequencies of

HD 181068 while Star 1 was on the main sequence. In reality, the initial orbital con-

figuration of HD 181068 may have contained inclined or eccentric orbits for which the

tidal dissipation rates may be substantially different. Nonetheless, the fact that a small

value of Ω23,i is required to match observations of HD 181068 indicates that the system

may have experienced substantial orbital decay due to three-body tidal dissipation.
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In the future, HD 181068 will likely enter a common envelope phase as Star 1

evolves up the asymptotic giant branch and envelops Stars 2 and 3. Additionally, it

is possible that HD 181068 reached its compact configuration through a mass transfer

phase while Star 1 was on the red giant branch. Our MESA-generated stellar models

indicate that our 3M� stellar model would not have overflown its Roche lobe (assuming

a1 was equal to its current value) while Star 1 was on the red giant branch. However, a

4M� star probably would have overflowed its Roche lobe while on the red giant branch,

and it may be possible that this occurred in HD 181068. However, the outcome of stable

mass transfer or common envelope evolution in triple systems is highly uncertain, and it

warrants further study.

7.7.2 Resonance Locking

The orbital evolution discussed above contains periods of resonance locking in which

a tidally excited mode is held near resonance for long periods of time, causing large

amounts of tidal dissipation. Resonance locking involving tidally driven stellar oscil-

lation modes was first investigated by Witte & Savonije (1999) and recently proposed

by Fuller & Lai (2012) to explain the observed tidally driven oscillations in KOI-54.

Resonance locking can occur when the frequency ωα of a mode changes due to a stellar

evolutionary process. As the mode approaches resonance with a tidal forcing frequency,

enhanced tidal dissipation occurs. The dissipation feeds back on the process, changing

the value of the forcing frequency ν f by spinning up the star or causing orbital decay.

Under the right circumstances, the system maintains the nearly resonant configuration

such that ω̇α ' ν̇ f , i.e., the orbital evolution timescale is roughly equal to the stellar

evolution time scale.
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The resonance locking shown in Section 7.7 is qualitatively different from the lock-

ing investigated by Witte & Savonije (1999) and Fuller & Lai (2012), although the gen-

eral principles described above are still true. In the case of a system like HD 181068,

when Star 1 is descending the red giant branch, the frequencies of the stellar oscillation

modes are increasing because the dynamical frequency of the star is increasing. When

the value of ωα of an envelope mode is nearly resonant with a forcing frequency ν f ,

enhanced tidal dissipation occurs, causing the orbit of Stars 2 and 3 about one another

to decay. Hence, the values of Ω23 and ν f correspondingly increase, causing resonance

locking.

When the system is resonantly locked, ω̇α ' ν̇ f . Assuming the star’s oscillation

frequencies change primarily due to the change in stellar radius, we have

ω̇α

ωα

' −
3
2

Ṙ1

R1
. (7.53)

Furthermore, the tidal forcing frequency changes primarily due to the increasing value

of Ω23, so that
ν̇ f

ν f
' −

3
2

ȧ23

a23
. (7.54)

Therefore, during resonance locking,

Ṙ1

R1
'

ȧ23

a23
, (7.55)

and thus ttide ' tR. This explains the near equality of ttide and tR during the descent of

Star 1 from the red giant branch in Figure 7.8. It also suggests that compact triples may

endure a period of rapid tidal dissipation, caused by resonance locking, as the primary

descends from the red giant branch toward the horizontal branch. Such tidal dissipation

may lie in the near future for other observed compact hierarchical triples, such as KOI-

126 (see Carter et al. 2011) and KOI-928 (see Steffen et al. 2011).
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7.8 Discussion

We have demonstrated that a new tidal dissipation mechanism exists for stars in compact

hierarchical triple systems, even after the system has reached the quasi-equilibrium state

of aligned and circular orbits with aligned and synchronous stellar spins. The three-

body tidal forces produce forcing at frequencies of σ = 2(Ω23 − 2Ω1), σ = 2(Ω23 −Ω1),

and σ = 2Ω23 (although more forcing frequencies will exist for non-coplanar and non-

circular orbits). If the primary star is a red giant with a large radius and thick convective

envelope, the three-body tidal potential can couple strongly with the envelope p-modes

of the star, exciting modes to large amplitudes.

We compare our results to Kepler observations of HD 181068. The presence of

oscillations in the lightcurve of HD 181068 at frequencies σ = 2(Ω23 − 2Ω1), σ =

2(Ω23 − Ω1), and σ = 2Ω23 indicates that the primary exhibits stellar oscillation modes

excited by the three-body tidal forcing described in this paper. The large amplitude of

the oscillations in HD 181068 are either due to large temperature variations produced by

small amplitude, non-resonant modes, or they are due to geometric distortions produced

by large amplitude, nearly resonant modes. In the latter case, the tidal dissipation rate

is rapid, and the modes may be locked in resonance (see Section 7.7.2). However, the

amplitudes and phases of the modes are best explained by the non-resonant scenario.

Furthermore, since the lifetime of the resonance locking phase is brief compared to the

lifetime of the star on the horizontal branch, we find the non-resonant scenario to be

much more likely.

Because we have assumed adiabaticity when calculating stellar oscillation modes,

there remains some uncertainty in the precise mode visibilities and damping rates. Fully

non-adiabatic mode calculations can constrain the values of Hα and γα in future studies.
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Furthermore, our calculations have been limited to the linear regime. As mentioned in

Section 7.2, the three-body tidal forcing frequencies are nearly identical in the rotating

frame of Star 1 if it is synchronized with the outer binary. This may allow for greatly

enhanced non-linear mode coupling, affecting the mode amplitudes, damping rates, and

visibilities.

The three-body tidal effects can also produce substantial orbital evolution among

the stellar components, the main effect of which is the decay of the inner orbit of the

compact binary. Our orbital evolution calculations for a system resembling HD 181068

reveal that, at most times, three-body tidal dissipation acts on long time scales and can be

ignored. However, when the primary star is high on the red giant branch, three-body tidal

dissipation may cause substantial orbital decay. Furthermore, stellar oscillation modes

can become locked in resonance as the primary descends the red giant branch, resulting

in greatly enhanced tidal dissipation. During resonance locking, tidal dissipation occurs

on the same timescale as the stellar evolution, such that the orbital semi-major axis of

Stars 2 and 3 decays as ȧ23/a23 ' Ṙ1/R1.

Future observations can detect and characterize tidally excited modes in compact

triples. In non-eclipsing systems, the three-body nature of compact triples may not

initially be detected from photometric and spectroscopic observations, especially if one

star is much more luminous than its companions. The Kepler public red giant sample,

consisting of more than 15,000 stars (Hekker et al. 2011), provides a unique resource

that may contain several hidden clones of the Trinity system, which could be used to test

our theory in a broader parameter space. The signature of three-body tidal forcing is a

triplet of evenly spaced modes with frequencies σ = 2(Ω23−2Ω1), σ = 2(Ω23−Ω1), and

σ = 2Ω23, although the highest oscillation frequency may have a very small amplitude.

The triplet could be mistaken for a rotationally split triplet of solar-like oscillations, but
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the tidally excited modes can be distinguished by their indefinitely long lifetimes (and

thus narrow Fourier peaks). In low inclination systems, the σ = 2(Ω23 − Ω1) oscillation

will produce the largest luminosity fluctuations, while the σ = 2(Ω23 − 2Ω1) oscillation

will be dominant in high-inclination systems like HD 181068.
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CHAPTER 8

NON-RADIAL OSCILLATIONS IN ROTATING GIANT PLANETS WITH

SOLID CORES: APPLICATION TO SATURN AND ITS RINGS

8.1 Introduction1

Despite the abundance of planets in our galaxy, the internal structure of giant gaseous

planets is largely unconstrained. Within our own solar system, the structures of Jupiter

and Saturn remain enigmatic after centuries of observation. Most of the uncertainty

stems from the lack of observational constraints on interior structure. Although it is

possible to measure numerous global surface properties of gaseous giants (e.g., mass,

radius, gravitational moments, magnetic field, spin rate, oblateness, luminosity, and sur-

face composition), inferring the internal structure from these quantities is hampered by

remaining uncertainties. In particular, the size of the planetary core and the stability of

the surrounding envelope (i.e., an adiabatic and fully convective envelope or an enve-

lope that contains regions of stable stratification as in Leconte & Chabrier 2012) remain

unknown. Nevertheless, there is an abundance of theoretical work that has attempted

to describe the formation and evolution of giant planet interiors (see reviews in Guillot

2005, Fortney et. al. 2011).

Global planetary seismology is a promising technique for probing the internal struc-

tures of planets. Indeed, the internal structure of the Earth, Moon, Sun, and numerous

types of stars has been constrained primarily via measurements of seismic waves and

global oscillations (see Dahlen & Tromp 1998, hereafter DT98, for a comprehensive

description of the techniques of Earth seismology, and Chaplin & Miglio 2013 for a

review of recent developments in asteroseismology). Unfortunately, direct detection of

1This chapter is based on Fuller, Shabaltas, & Lai (2013), in press.
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global oscillations in giant planets is extremely difficult because the oscillations produce

negligible luminosity perturbations and have small surface displacements (radial surface

displacements are likely on the order of centimeters). Recently, Gaulme et al. (2011)

reported the detection of acoustic pressure modes (p-modes) in radial velocity data on

Jupiter, although the quality of the data was insufficient to provide new constraints on

Jupiter’s interior structure.

Saturn’s ring system offers a unique opportunity to perform planetary seismology,

because even mild gravitational perturbations associated with the planet’s oscillation

modes can generate density waves that propagate through the rings. Marley & Porco

(1993) investigated this idea in detail, arguing that some of the unexplained wave fea-

tures in Saturn’s C and D-rings were produced at Lindblad resonances with the grav-

itational perturbations associated with Saturn’s oscillation modes. However, existing

Voyager data was insufficient to measure the properties of the waves, and so their seis-

mic utility was limited.

Recently, Hedman & Nicholson (2013) (HN13 from here on) used Cassini occulta-

tion data to measure the radial location of Lindblad resonance (rL), azimuthal pattern

number (m), and angular pattern frequency (Ωp) of several waves in Saturn’s C-ring.

We retabulate the results of HN13 in Table 1. HN13 demonstrated that these waves

were compatible with being excited by low degree prograde sectoral (l = |m| = 2, 3, 4)

fundamental oscillation modes (f-modes) of Saturn (as predicted by Marley 1991 and

Marley & Porco 1993), and incompatible with being excited by resonances with any of

Saturn’s satellites. Moreover, HN13 found what appeared to be a “fine splitting” in the

mode frequencies. Instead of one m = −2 wave excited by Saturn’s l = 2, m = −2

(prograde) f-mode, there were two discrete waves with a frequency difference of a few

percent. Also, instead of one m = −3 wave excited by the l = 3, m = −3 f-mode, there
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Table 8.1: Properties of the waves in Saturn’s rings measured by HN13. Resonant loca-
tions are measured from Saturn’s center, and are taken from Baillie et al. (2011). The
value of |δτ| is the approximate maximum semi-amplitude of the optical depth variation
associated with each wave.

Wave Resonant location m Ωp (deg/day) |δτ|

W80.98 80988 km -4 1660.3 0.09
W82.00 82010 km -3 1736.6 0.07
W82.06 82061 km -3 1735.0 0.21
W82.21 82209 km -3 1730.3 0.15
W84.64 84644 km -2 1860.8 0.09
W87.19 87189 km -2 1779.5 0.14

were three waves with a frequency difference of less than a percent. Curiously, no fine

splitting was observed for the m = −4 wave, and no waves with m < −4 have yet been

observed.2

In this paper, we explore the properties of oscillation modes in giant planet interiors

with the goal of explaining the observations of HN13. There have been many previ-

ous calculations of mode frequencies and eigenfunctions in giant planet models (e.g.,

Vorontsov & Zharkov 1981, Vorontsov 1981, Marley 1991, Wu 2005, Le Bihan & Bur-

rows 2012), and several authors have investigated the effect of elasticity in the solid

cores/crusts of white dwarfs/neutron stars (e.g., Hansen & Van Horn 1979, McDermott

et al. 1988, Montgomery & Winget 1999). However, to our knowledge, no previous

works have investigated the elastic response of a solid core in giant planets. The elastic-

ity of a solid core adds entire new classes of modes that have previously been ignored,

and which may have observable signatures. In particular, we examine the possibility of

rotational mixing between elastic core modes and envelope f-modes, and whether such

mixing can produce the observed fine splitting of the waves in Saturn’s rings.

Our paper is organized as follows. In Section 8.2, we generate toy giant planet

2Note that there are several other unidentified waves in the C-ring, mostly with shorter wavelengths,
which may indicate they have larger |m| values.
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models that will serve as the basis of our oscillation mode calculations. Section 8.3

describes the characteristics of oscillations in non-rotating planets, while Section 8.4

investigates the process of mode mixing in rotating planets. In Section 8.5, we calculate

the effects of oscillation modes on Saturn’s rings, and we compare our results to the

observations of HN13. We discuss our results in Section 8.6.

8.2 Planetary Model

To understand the characteristics of elastic oscillations in rotating giant planets, we gen-

erate simple toy planet models composed of a one-component solid core surrounded by

a neutrally stratified fluid envelope. These models allow us to capture the basic proper-

ties of giant planets without getting bogged down in uncertain details (e.g., helium rain

out, liquid-metallic hydrogen phase transitions, core size and composition, etc.).

To generate our toy models, we first construct a polytropic model of index n = 1

(so that the pressure is related to density as P ∝ ρ2, which approximates the equation of

state for gaseous giant planets). This model has a density profile ρn(r). We then add a

solid core by choosing a core radius, Rc, a dimensionless density enhancement D, and

constant shear modulus µ (the shear modulus of the fluid above the core is zero). The

density of material in the core is calculated by multiplying the density of material with

r < Rc in the polytropic model by D such that ρ(r < Rc) = Dρn(r). We then normalize

the density profile so that the total mass/radius equal the mass/radius of Saturn. With

this density profile, we compute the gravitational acceleration via g = GM(r)/r2, where

M(r) =
∫ r

0
4πr2ρdr. We then assume the planet is neutrally stratified at all radii such

that the Brunt-Vaisala frequency N2 = 0. Under this assumption, the bulk modulus K is
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given by

K = −ρg
(d ln ρ

dr

)−1

= ρ
dP
dρ
. (8.1)

The bulk modulus is related to the pressure P via K = Γ1P, with Γ1 = d ln P/d ln ρ.

For the purposes of calculating adiabatic acoustic-elastic pulsations in non-rotating

spherically symmetric planets, a planetary model is completely described by three quan-

tities as a function of radius: the density ρ, adiabatic bulk modulus K, and the shear mod-

ulus µ (see elastic oscillation equations in Section 8.3). Integrating the hydrostatic equi-

librium equation yields the pressure P, while the sound speed is cs = [(K + 4µ/3)/ρ]1/2,

and the shear speed is vs = (µ/ρ)1/2.

Our models have only four free parameters (n, Rc, D, and µ), and are ideally suited

for understanding the basic characteristics of elastic oscillations in giant planets. Al-

though they are simplified, they exhibit all the basic features that will strongly affect the

properties of elastic oscillations in giant planets. The n = 1 polytropic density profile

will generate realistic estimates of frequencies of p-modes propagating in the fluid enve-

lope of the planet. The values of Rc, D, and µ affect the spectrum of modes propagating

in the solid core, therefore, observations of these modes could provide strong constraints

on core properties.

Figure 8.1 displays the structure of our primary toy planet model discussed in this

work. It was constructed using n = 1, Rc = 0.25R, and D = 4. It has a core mass

Mc = 16M⊕, central density ρc = 7.1 g/cm3, and central pressure Pc = 2.2 × 1012 Pa.

These values are consistent with the constraints provided by Guillot (2005).
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Figure 8.1: Toy planetary model of Saturn, with all quantities plotted in units with
G = M = R = 1. This model has an envelope density profile of a polytrope of index
n = 1, a core radius Rc = 0.25R and a core density jump D = 4.

8.2.1 The Shear Modulus

As will be shown below, the value of the shear modulus in the solid core is pivotal in

determining the characteristics of elastic oscillation modes within Saturn. The core of

Saturn is likely composed of ices and rocks. Assuming the core is at least partially solid,

its shear modulus may be determined by the properties of high pressure ices (of which

water ice is the dominant component).

Unfortunately, the shear modulus of water ice is unknown at the pressures (P ∼

1012Pa ∼ 107 bars) and temperatures (T ∼ 8 × 103K, Guillot 2005) of Saturn’s core.

Asahara et al. (2010) found µ ≈ 8 × 1010Pa for water ice at room temperature and

pressures of 6×1010 Pa, well below the central pressure of Saturn. The measurements of
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Asahara et al. (2010) show the shear modulus of ice increasing toward larger pressures,

suggesting µ > 8 × 1010Pa in the core of Saturn. However, the shear modulus of many

materials is also dependent on temperature. In the solid core of the Earth, the shear

modulus of iron near its melting point is smaller than the shear modulus of iron at lower

temperatures and pressures (Laio et al. 2000).

Recent molecular dynamics simulations (Cavazzoni 1999, French 2009, Militzer &

Wilson 2010, Militzer 2012, Hermann et al. 2011, Wang et al. 2011) have predicted

multiple new phases of ice at P & 1011Pa. In particular, ice is likely in either in a supe-

rionic or fluid phase at the core conditions of Saturn (French 2009, Wilson & Militzer

2012), depending on the core temperature. In the superionic phase, the oxygen atoms

form an ordered lattice, while the hydrogen atoms diffuse freely through the lattice. It

is possible that the shear modulus of this superionic state is smaller than lower tempera-

ture phases of ice in which the oxygen-hydrogen bonds contribute to the strength of the

lattice structure.

With such uncertainty in the shear modulus of material in a solid core of Saturn, we

take the shear modulus to be a free parameter. In this work, we consider shear moduli in

the range 2 × 108Pa < µ < 2 × 1012Pa, which seems to be a reasonable range given the

above considerations. For simplicity, we also assume the value of the shear modulus is

constant throughout the core.

8.3 Oscillations of Non-rotating Planets

The presence of a solid core alters the form of planetary oscillations through the intro-

duction of an elastic restoring force into the oscillation equations. The elastic forces act

like a spring, with the spring constant governed by the value of the shear modulus µ,
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whereas the bulk modulus K characterizes the incompressibility of the material.

The introduction of elastic restoring forces allows for new types of modes to prop-

agate in the solid regions of planets. In conventional asteroseismology, pressure is the

dominant restoring force for p-modes, while gravity (buoyancy) is the dominant restor-

ing force for g-modes. In terrestrial seismology, the elastic forces allow for the addition

of two new classes of modes for whom the elasticity is the dominant restoring force. The

first additional class are the spheroidal shear modes (we will refer to them as s-modes).

Like p-modes and g-modes, the s-modes have have poloidal displacement functions:

ξ(r) = U(r)Ylm(θ, φ)r̂ + V(r)∇⊥Ylm(θ, φ). (8.2)

The second class are the toroidal shear modes (we will refer to them as t-modes), which

have toroidal displacement functions

ξ(r) = W(r)∇ ×
[
r̂Ylm(θ, φ)

]
. (8.3)

The t-modes exhibit no radial displacement, no gravitational perturbation, and are totally

restricted to the solid regions of the planet. Each mode oscillates at its eigenfrequency

ω such that

ξ(r, t) = ξ(r)eiωt ∝ ei(mφ+ωt). (8.4)

With this convention, prograde modes with positive frequency have m < 0, while retro-

grade modes with positive frequency have m > 0.

Introducing the elastic forces into the oscillation equations makes them considerably

more complicated. In appendix F, we list the full oscillation equations (see also Dahlen

& Tromp 1998, Hansen & Van Horn 1979, Montgomery & Winget 1999) and boundary

conditions. The spheroidal oscillations are described by a system of six linear ordinary

differential equations, while the toroidal oscillations are decoupled from the spheroidal

oscillation equations and are described by two linear ordinary differential equations. We
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Figure 8.2: Oscillation mode spectrum of our planetary model with n = 1, Rc = 0.25R,
D = 4, and µ = 1.6GPa. The mode angular frequencies ωα (in units of

√
GM/R3 =

416µHz) are plotted as a function of the angular degree l. Envelope p-modes have been
omitted for clarity. We have not included l = 2 t-modes because they cannot mix with
modes with |m| > 1 (see Section 8.3.1). Note the nearly equal frequency spacing for
both s-modes and t-modes at all values of l.

choose to normalize our mode eigenfunctions via their inertia such that for any mode

(indexed by α), ∫
dVρ ξα · ξ

∗
α = 1, (8.5)

with the integral extending over the volume of the planet.

We solve the adiabatic elastic oscillation equations (subject to the appropriate bound-

ary conditions) for the spectrum of oscillation mode frequencies and eigenfunctions cor-
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Figure 8.3: Oscillation mode displacement functions in our planetary model with n = 1,
Rc = 0.25R, D = 4, and µ = 1.6Gpa. We plot the radial displacement Uα(r) (top panel),
horizontal displacement Vα(r) or Wα(r) (middle panel), and gravitational potential per-
turbation δΦα(r) (bottom panel). The different lines correspond to the l = 3 spheroidal
f-mode (black line, ωα = 1.75), a nearby l = 3 spheroidal mode (s4, blue short-dashed
line, ωα = 1.55), and an l = 4 toroidal mode (t4, red long-dashed line, ωα = 1.54).
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Figure 8.4: Radial displacements U of the l = 3 f-mode in the planetary model in Figure
8.1 for differing values of the core shear modulus µ. The f-mode wave function is nearly
unaffected outside of the core.

responding to a chosen planetary model. Figure 8.2 shows a plot of mode frequencies as

a function of l, while Figure 8.3 shows the displacement functions of some oscillation

modes of different types. Gas giant planetary models with a solid core and fluid enve-

lope support p-modes that are largely restricted to the fluid envelope, and s-modes that

are largely restricted to the solid core. The p-modes typically have large surface dis-

placements and gravitational potential perturbations, while the s-modes have very small

surface displacements and potential perturbations. The t-modes are very similar to the

core s-modes, except that their displacement and potential perturbations are exactly zero

in the fluid envelope.

The dispersion relation for t-modes is

k2
r =

ρ

µ
ω2 −

l(l + 1)
r2 . (8.6)
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Figure 8.5: Surface gravitational potential perturbations, δΦα(R), as a function of mode
frequency ωα in our planetary model with n = 1, Rc = 0.25R, D = 4, and µ = 1.6 GPa.
S-modes and t-modes of equal value of l have been connected by lines for clarity. The
actual value of δΦα(R) for the t-modes is exactly zero. The peaks in δΦα(R) for s-modes
are due to mixing with f-modes or i-modes.

This is also the approximate dispersion relation for s-modes. These modes propagate

at the shear speed vs =
√
µ/ρ. A core with large density and small (but finite) shear

modulus will support a dense spectrum of low frequency s-modes and t-modes. The

frequency spacing of these modes is

∆ω '
π

Rc

√
µ

ρc
, (8.7)

where ρc is the central density of the planet. This frequency spacing is nearly indepen-

dent of the mode index α (i.e., the values of l, m, and number of radial nodes), and is
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dependent only upon the core radius, density, and shear modulus. In the asymptotic

regime, s-modes and t-modes of the same l are offset from one another by ∼ ∆ω/2 be-

cause of differing boundary conditions at the core-envelope boundary.3 Consequently,

for s-modes of angular degree l, there exist t-modes of l ± 1 with similar frequencies,

and vice versa for t-modes.

The effect of a solid core on the properties of the f-mode and low order p-modes

is miniscule. The main reason is that f-modes and low order p-modes have almost all

of their inertia in the fluid envelope. Consequently, the value of the shear modulus

has essentially no impact on the f-mode frequency (the the f-modes shown in Figure 8.4

differ by less than one part in 105 in frequency), radial surface displacement, or potential

perturbation.4 Nonetheless, the value of the shear modulus does effect the f-mode wave

function in the core of the planet, as shown in Figure 8.4. For very rigid cores (large

µ), incoming waves are reflected, and the f-mode is excluded from the core. For softer

cores (small but finite µ), the f-mode may obtain a wave-like structure inside the core.

Finally, for fluid cores, the f-mode penetrates into the core, but with a small amplitude,

due to the jump in density.

In the absence of rotation, external gravitational perturbations will be produced al-

most exclusively by envelope f-modes and low order p-modes (see Figure 8.5).5 The

incompressive nature of low order s-modes and t-modes creates very small density and

gravity perturbations. Furthermore, because s-modes and t-modes are largely confined

to the core, they produce very small fluid displacements at the surface. Thus, in the

3For modes completely confined to the solid core, the boundary conditions at the core-envelope bound-
ary imply U(r) ' 0 for s-modes but imply dW(r)/dr ' 0 for t-modes. Therefore, the number of wave-
lengths differs by about 1/4 for s-modes and t-modes, accounting for the offset of ∼ ∆ω/2 between
s-modes and t-modes in Figure 8.2.

4An exception to this rule is at frequencies very near avoided crossings with s-modes or i-modes, see
Section 8.3.1.

5Moreover, only relatively low-degree (low value of l) modes will produce significant external grav-
itational perturbations because the strength of the perturbation outside the planet falls off as δΦ(a) =

δΦ(R)(R/a)l+1, where a is the distance from the center of the planet.

216



absence of rotation, s-modes and t-modes should be nearly impossible to detect.

Because our planetary models are neutrally stratified, they do not support g-modes.

However, a discontinuity in density at the core-envelope boundary is associated with a

single interface mode for each value of l. The frequency of this i-mode is

ω2
i ≈

√
l(l + 1)gc

Rc

ρb − ρa

ρb + ρa
, (8.8)

where a and b indicate the quantity should be evaluated above and below the interface,

respectively, and gc = g(Rc). For density jumps of D . 2 at the core-envelope boundary,

the frequency of the interface mode may be comparable to that of the f-mode.6 The sur-

face displacements and gravitational potential perturbations of the i-modes are typically

greater than s-modes but less than f-modes for our planetary models.

8.3.1 Mode Mixing

The distinction between different types of modes (s-modes, t-modes, i-modes, and f-

modes or p-modes) is not always clear. For a given planetary model, there may exist

modes of nearly equal ωα and identical l that will mix and obtain characteristics of two

types of modes. This phenomenon is well known in Earth seismology (DT98), and is

frequently observed in mixed modes in red giant stars (Chaplin & Miglio 2013).

Mode mixing may also occur in non-rotating, spherically symmetric giant planet

models (we examine rotation-induced mode mixing in Section 8.4). To understand the

process of mode mixing, we calculate the modes of the planetary model in Figure 8.1

for different values of the shear modulus µ. The frequencies ωα and surface displace-

ments Uα(R) of some selected modes are shown in Figure 8.6. At certain shear moduli
6Additional interface modes may also exist due to the presence of additional density discontinuities in

the planet. This may occur at the molecular-metallic hydrogen phase transition, the metallic hydrogen-
molecular helium composition gradient, or at discontinuities in a differentiated core.
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Figure 8.6: The frequencies ωα (top two panels) and radial surface displacements Uα(R)
(bottom two panels) of selected l = 3 modes from our model in Figure 8.1, plotted as a
function of the value of the shear modulus µ. The shear modulus is plotted in units of
GM2R−4 = 1.6TPa. Away from avoided crossings, the f-mode corresponds to the mode
lying along the nearly horizontal line at ωα ' 1.75, while the other modes are core s-
modes. The right two panels present a zoomed in view of an avoided crossing between
an s-mode and the f-mode.
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µ = µc, the f-mode and an s-mode have nearly identical frequencies. As the value of

µ approaches µc, the modes begin to exchange character with one another, causing the

f-mode to penetrate into the core and the s-mode to penetrate into the fluid envelope.

At µ = µc, the modes reach a minimum frequency separation and are equal superposi-

tions of one another. As µ increases away from µc, the mode frequencies diverge from

one another (note the frequencies are never exactly equal, resulting in an “avoided”

crossing), having smoothly exchanged mode character. If a planetary model happens

to contain modes near these avoided crossings, core s-modes may obtain substantially

larger surface displacements and gravitational potential perturbations.

However, we find that it is unlikely for an s-mode and an f-mode to be near an

avoided crossing in our planetary models, as evidenced by the extremely narrow width

of the avoided crossings in Figure 8.6. Avoided crossings between s-modes and i-modes

have larger frequency widths, but will be difficult to observe due to the smaller sur-

face displacements and potential perturbations of i-modes relative to f-modes. Finally,

avoided crossings between i-modes and f-modes or p-modes have substantial frequency

widths, but are unlikely to be observed because of the small number of i-modes (our

models have only one i-mode for each value of l). We conclude that it is unlikely to see

mode mixing phenomena (in the absence of rotation) in giant planets.

8.4 Rotational Mode Mixing

Thus far, we have considered the adiabatic acoustic-elastic oscillations of a spherically

symmetric, non-rotating planet. However, the giant planets in our solar system spin

rapidly, and the effects of rotation are quite important. For reference, Saturn’s rota-

tion period of '10h39m corresponds to Ωs ' 0.39 Ωdyn, while the frequencies of the
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f-modes are typically ω f ∼ l1/2Ωdyn. Previous studies (e.g., Marley 1991 and Vorontsov

& Zharkov 1981) have shown that including rotational forces is essential in predicting

the frequencies of f-modes of giant planets. Most studies of modes in rotating planets

utilize perturbation theory to obtain corrections to the frequencies and eigenfunctions

of the modes, computed in powers of the small parameter ε = Ωs/ω0, where ω0 is the

unperturbed mode frequency. To first order in ε, the only correction is the addition of

the Coriolis force, which splits the 2l + 1 degenerate eigenfrequencies (corresponding

to the 2l + 1 values of m for a given l) of the unperturbed planetary model. Second or-

der rotational effects include the centrifugal force and the rotationally-induced planetary

oblateness. In the absence of a solid core, the f-modes and p-modes are well separated

in frequency, and non-degenerate perturbation methods suffice when calculating the in-

fluence of rotation.

However, in planetary models with a solid core, the addition of s-modes and t-modes

may cause the spectrum of modes to become dense near the f-modes. In this case,

the frequency spacing between modes may be smaller than the rotational corrections,

and non-degenerate perturbation methods fail. The effect of rotation not only shifts the

frequencies of oscillation modes, but it can also induce strong rotational mode mixing.

The spheroidal modes acquire toroidal components, and vice versa. Both s-modes and

t-modes may mix strongly with the f-mode, and a more accurate treatment of rotational

mode mixing becomes necessary. In this paper, we consider only first order rotational

effects (i.e., the Coriolis force), and consider uniform planetary rotation.

Mode mixing due to the Coriolis force is governed by some basic selection rules.

First, only modes with m = m′ will mix. Second, spheroidal modes only couple to other

spheroidal modes with l = l′, and likewise for toroidal modes. Finally, spheroidal and

toroidal modes couple to one another only if l = l′ ± 1. Therefore, a spheroidal mode of
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angular degree l does not couple directly to spheroidal modes of l′ = l±2,7 although they

couple indirectly through intermediary toroidal modes. We do not consider rotational

coupling with inertial modes (if they exist in Saturn’s interior) because these modes

have a maximum frequency of ω = 2Ωs in the rotating frame, and thus have smaller

frequencies than any of Saturn’s f-modes. Our method for calculating the effect of

rotational mode mixing is outlined in Appendix G, here we describe only the basic

ideas.

To understand the coupling effect of rotation, consider a simple two mode system. In

the absence of rotation, the two eigenmodes have frequency ω1 and ω2, with eigenvec-

tors Z1 and Z2. Including the Coriolis correction, we project the rotationally modified

eigenmodes onto the original eigenmodes such that Z = a1Z1 + a2Z2 (see Appendix G).

The eigensystem (equation G.8) describing the coupled modes isω̄1 − ω C12

C∗12 ω̄2 − ω


 b1

b2

 = 0 (8.9)

where b1 = ω1a1, ω̄1 = ω1 + C11, and likewise for mode 2. The Coriolis mixing

coefficients Cαα′ are defined in equation G.20. We wish to solve for the eigenfrequencies

ω and eigenvectors b of this two mode system. Defining ∆12 = ω̄1 − ω̄2, we have( ω̄1 + ω̄2 − 2ω 0

0 ω̄1 + ω̄2 − 2ω

 +

 ∆12 2C12

2C∗12 −∆12


)  b1

b2

 = 0. (8.10)

Then, defining the mode mixing angle

tan 2θ12 =

∣∣∣∣∣2C12

∆12

∣∣∣∣∣, (8.11)

we have sgn(∆12) cos(2θ12) x12 sin(2θ12)

x∗12 sin(2θ12) −sgn(∆12) cos(2θ12)


 b1

b2

 = ω̄

 b1

b2

 , (8.12)

7Second order rotational effects introduce coupling between modes with l = l′ ± 2, but we consider
only Coriolis coupling in this work.
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with the modified eigenvalue ω̄ = (2ω − ω̄1 − ω̄2)/
√

∆2
12 + 4|C12|

2, and C12 = x12|C12|.8

Equation 8.12 has eigenvalues ω̄ = ±1 with corresponding eigenvectors

b+ =

 cos θ12

x∗12 sin θ12

 (8.13)

and

b− =

 sin θ12

−x∗12 cos θ12

 . (8.14)

The corresponding mode frequencies are

ω =
ω̄1 + ω̄2

2
±

1
2

√
∆2

12 + 4|C12|
2. (8.15)

When mode mixing is weak, i.e., 2|C12| � |∆12|, the mode frequencies and eigenfunc-

tions are only slightly perturbed. When the mode mixing is strong, i.e., 2|C12| � |∆12|,

the modes are split in frequency by ∆ω = 2|C12|. This represents the minimum splitting

possible between two rotationally mixed modes.

For strongly mixed modes, the mixing angle θ12 increases above zero, approaching

π/4 in the limit ∆12 → 0. In this limit, the modified mode eigenfunctions are an equal su-

perposition of the original mode eigenfunctions. Hence, if a core mode is strongly mixed

with the f-mode, it will obtain f-mode characteristics, including a much larger radial sur-

face displacement |ξα(R)| and gravitational potential perturbation |δΦα(R)|. Modes not

nearly degenerate with the f-mode may still have enhanced gravitational potential per-

turbations, with

δΦα '
Cfα

∆fα
δΦf , (8.16)

where Cfα and ∆f α are the coupling strength and frequency separation between the f-

mode and a nearby mode. For models in which the mode spectrum is dense near the

8The value of C12 is real for spheroidal-spheroidal and toroidal-toroidal mode coupling (i.e., x12 = ±1
in this case), and is imaginary for spheroidal-toroidal mode coupling (i.e., x12 = ±i in this case).

222



f-mode, we should expect to see a peak in δΦα centered on the f-mode, with a frequency

width at its peak of ∼ 2|Cfα|.

8.4.1 Strength of Coriolis Mode Mixing

The importance of mode mixing due to the Coriolis force is determined by the value

of Cαα′ . For most modes, the value of |Cαα′ | is largest when α = α′, i.e., due to self-

coupling. This self-coupling term is identical to the standard rotationally induced fre-

quency perturbation. For s-modes and t-modes, the self-coupling coefficient has a value

of Cαα ≈ mΩs/[l(l + 1)], while its value is typically of order Cff ≈ mΩs/l for f-modes

in our models. Thus, low degree prograde sectoral (m = −l) modes near the f-mode

are typically reduced in frequency by a few ×10% in Saturn due to the effect of self-

coupling.

In contrast to self-coupling, mixing between core modes and envelope modes is typ-

ically quite weak in our planetary models. The main reason is simply that s-modes and

t-modes have nearly all their inertia in the core, while f-modes and p-modes have nearly

all their inertia in the envelope, and so the mode eigenfunctions do not have a large

overlap in any region of the planet. We find typical values |Cαα′ | . 10−3|m|Ωs for mixing

between core modes and f-modes of similar frequency in our planetary models. This

value decreases with decreasing shear modulus µ because of the increasingly oscillatory

wave functions of the s-modes and t-modes. The value of |Cαα′ | also decreases with in-

creasing l because f-modes of larger angular degree are confined closer to the planetary

surface and have less inertia in the core. Therefore, the detuning ∆12 between a core

mode and an f-mode has to be very small for appreciable mixing to occur.

We also note that mixing between s-modes and t-modes can be large, with values
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of |Cαα′ | rising as large as typical values for self-coupling. These large values of |Cαα′ |

occur for s-modes of angular degree l and t-modes of angular degree l ± 1 with the

same number of nodes in their radial eigenfunctions. These mode pairs have similar

frequencies in non-rotating models, however, their frequencies must be split by at least

∼ 2|Cαα′ | in rotating planets. Such strong mixing implies that each low-frequency core

mode is a strong superposition of both spheroidal and toroidal components in a rapidly

rotating planet.

8.4.2 Two and Three-Mode Rotational Mixing

Figure 8.7 shows a plot of the results of mixing between two modes as a function of the

spin frequency Ωs. To make this figure, we consider mixing between the l = 3, m = −3

f-mode (Mode 1) and the l = 4, m = −3 t-mode (Mode 2) depicted in Figure 8.3.

At most spin frequencies, the modes are well-separated, and the mixing angle is small

because of the small value of Cf,α. However, near a particular spin frequency the modes

become nearly degenerate and mix strongly with one another, somewhat analogous to

the mixing described in Section 8.3.1.

Three-mode mixing is more complex than two-mode mixing, and the general solu-

tion for a three mode eigensystem similar to equation 8.9 is sufficiently complicated that

we do not attempt to analyze it here. Instead, we wish to understand the effect of rota-

tional three-mode mixing between two core modes and an f-mode. For instance, there

are many modes that do not couple directly to f-modes, but are coupled through an inter-

mediary mode. One example is an l = 5, m = −3 s-mode mixed with an l = 4, m = −3

t-mode, which in turn is mixed with the l = 3, m = −3 f-mode. We detail a solution

of such a three-mode system in Appendix I. The main result is that the l = 5 s-mode
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Figure 8.7: Top: the frequencies ω(α) of the rotationally mixed l = 3 f-mode and an
l = 4 t-mode from our model from Figure 8.1, as a function of Saturn’s spin frequency
Ωs (in units of

√
GM/R3). Bottom: the projections b(α)

f of each rotationally mixed mode
onto the f-mode. We have also plotted the mode mixing angle tan(θ). The modes have
an avoided crossing at Ωs ' 0.25, where they are maximally mixed. The “f”-mode
corresponds to ω1 for Ωs . 0.25, and corresponds to ω2 for Ωs & 0.25. For clarity, the
modes have been normalized via

∑
β |b

(α)
β |

2 = 1.
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Figure 8.8: Same as Figure 8.7, but for a system of three mixed modes. Away from
avoided crossings, the “f”-mode corresponds to the line with the steepest slope. The
“s”-mode and “t”-mode are strongly mixed at all values of Ωs, but only mix significantly
with the “f”-mode near the avoided crossings.

can strongly mix with the f-mode even though it does not couple to it directly. Thus,

we expect modes nearly degenerate with an f-mode will obtain substantial gravitational

potential perturbations, even if they are not directly coupled with the f-mode.

We also calculate the exact numerical solution to the three-mode system described

above, and we plot the results in Figure 8.8. As expected, both modes undergo avoided

crossings with the f-mode in which they mix strongly with it. We also note that the

strong mode mixing between the t-mode and s-mode causes their frequencies to diverge

away from one another as the spin frequency is increased.9. This mode “repulsion”

9In a real system, these modes will also mix strongly with other s-modes and t-modes, which will
mitigate this frequency divergence. Hence, it is important to extend mode mixing calculations to large
values of l in order to capture the realistic mixing behavior.
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Figure 8.9: Same as Figure 8.8, but for a system containing 112 m = −3 modes (only the
six modes with frequency nearest the f-mode are shown). Here we plot the projection
onto the f-mode, a(α)

f = b(α)
f /ω(α), with the modes normalized via equation H.4. The spin

frequency Ωs is plotted in units of Saturn’s spin frequency. We incorporate modes up to
l = 18, and have included all modes with frequency in the vicinity of the l = 3 f-mode.
The “f”-mode is labeled away from avoided crossings.

affects the location of avoided crossings with the f-mode, causing them to occur at a

spin frequency different than one would expect from a two mode analysis. Finally,

note that even though the t-mode and s-mode are strongly mixed, only the mode nearly

degenerate with the f-mode is affected by an avoided crossing with it. Therefore, modes

that differ substantially in frequency from an f-mode will not strongly mix with it.
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8.4.3 Multi-Mode Rotational Mixing

We now endeavor to understand the effects of mode mixing in more realistic systems,

which may contain hundreds of coupled modes. To this end, we calculate the solution

to equation G.19 for a system containing 112 modes from the planetary model in Figure

8.1 with µ = 1.6GPa. We have included all the modes with frequency comparable to the

l = 3 f-mode, which requires the inclusion of modes up to l = 18. The results, plotted

as a function of spin frequency, are shown in Figure 8.9. The qualitative features of the

mode mixing are similar to the two and three-mode mixing shown in Figures 8.7 and

8.8. Although many modes are capable of mixing with the f-mode, the small coupling

coefficients Cαα′ ensure that the widths of the avoided crossings are small compared to

the spacing between modes. We therefore determine that, for the toy planetary models

considered in this paper, the chances of finding a core mode strongly mixed with the

f-mode are very small.

8.5 Effect of Oscillation Modes on the Rings

Given a rotationally modified mode eigenfunction, we may calculate the gravitational

potential perturbation it produces exterior to the planet. For a mode composed of a

single spherical harmonic of angular degree l and azimuthal number m, the potential

produced outside the planet is

δΦα(r, t) = AαδΦα(R)
(R

r

)l+1

Ylm(θ, φ)eiσαt, (8.17)

where δΦα(R) is the potential perturbation at the surface of the planet, calculated from

our normalized mode eigenfunctions (equation 8.5), Aα is the (unspecified) amplitude
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of the mode, and σα is the mode frequency in the inertial frame,

σα = ωα − mΩs. (8.18)

This compact expression is modified in the presence of rotational mixing because each

mode acquires contributions from multiple angular degrees l (although m remains a good

quantum number). The potential produced by a rotationally modified mode is then

δΦα(r, t) = Aαeiσαt
∑
β

a(α)
β δΦβ(R)

(R
r

)l+1

Ylm(θ, φ), (8.19)

where a(α)
β is the projection of the rotationally modified mode onto an original mode β

(determined via the method in Appendix G), and the sum is over all original modes that

contribute to the modified mode eigenfunction. Each rotationally modified mode will

contain contributions from several types of modes (f-modes, t-modes, etc.) of many

different values of l.

We are interested in the value of the potential δΦα in the plane of the rings (θ = π/2)

at the location of the outer Lindblad resonance. The resonance occurs where the forcing

frequency experienced by a particle is equal to the local epicyclic frequency κ, i.e., where

m(Ω −Ωp) = κ, (8.20)

Ω is the local orbital frequency, and Ωp = −σα/m is the mode pattern frequency. The

orbital and epicyclic frequencies are not exactly equal because of the oblateness of Sat-

urn, which causes the two frequencies to differ by a factor ∼ 10−2 in the C-ring. Here

we set them equal because we are concerned primarily with the strength of the potential

(but see Appenix J for a more accurate description). Then the resonant location is

rL '

[ (1 − m)2GM
σ2
α

]1/3

, (8.21)

and the gravitational potential at the resonant location in the rings is

δΦα(rL) ' Aαeiσαt+mφ
∑
β

a(α)
β Ylm(π/2, 0)

[ (1 − m)2

σ2
α

GM
R3

]−(l+1)/3

δΦβ(R). (8.22)

229



In equation 8.22, we have used the fact that only modes of equal m couple to one an-

other. The effective potential driving waves at the Lindblad resonance is (Goldreich &

Tremaine 1979),

Ψα(rL) =

[
d

d ln r
+

2mΩ

σα + mΩ

]
δΦα(rL)

' Aαeiσαt+mφ
∑
β

a(α)
β WβδΦβ(R) (8.23)

with

Wβ = (2m − l − 1)Ylm(π/2, 0)
[ (1 − m)2

σ2
α

GM
R3

]−(l+1)/3

. (8.24)

The surface density variation and associated optical depth variation produced near a

Lindblad resonance is calculated in Appendix J.

The mode amplitudes Aα are unknown. To estimate them, we assume the most

prominent |m| = 3 wave (labeled W82.06 in Table 1) is produced by an unmixed f-mode

with frequency ω3, and we calculate the mode amplitude A3 required to generate the ob-

served optical depth variation in the rings (see Appendix J). We then assume the modes

follow energy equipartition, such that their amplitudes are given by ω2
α|Aα|

2 = ω2
3|A3|

2.10

The typical mode amplitudes required to produce the observed fluctuations are of order

|A| ∼ 10−9, resulting in radial surface displacements of order ξr(R) ∼ 30cm for f-modes.

These amplitudes are similar to those claimed to be observed by Gaulme et al. (2011) in

Jupiter and approximately what we might expect if the modes are stochastically excited

via convective turbulence, analogous to the excitation of solar p-modes (see discussion

in Marley & Porco 1993). However, the detailed dynamics of mode excitation are be-

yond the scope of this paper.
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Figure 8.10: The predicted pattern frequencies σα/|m| and optical depth variations pro-
duced by waves at Lindblad resonances with oscillation modes of our Saturn models
for m = −2 modes (top), m = −3 modes (middle), and m = −4 modes (bottom). We
have plotted modes of non-rotating models (black asterisks), models rotating uniformly
at Saturn’s observed rotation frequency (red pluses), and the observed waves (blue di-
amonds) from HN13. These plots are made for the Saturn model in Figure 8.1 with
µ = 1.6GPa. The spin frequency has been slightly tuned (Ωs/Ωs,o = 0.97) to produce
two strongly mixed modes near the f-mode in the middle panel. The vertical dashed line
indicates the approximate inner edge of the C-ring, while the horizontal dashed line is
an approximate minimum observable optical depth variation. Therefore, we should only
expect to observe waves in the top-left corner of the figure. In the non-rotating models,
the f-modes are the black asterisks in the top right, while the row of asterisks below
them are the l = |m| s-modes.
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Figure 8.11: Same as Figure 8.10 but for a Saturn model with µ = 0.32GPa.

8.5.1 Comparison with Observations

Figures 8.10-8.12 show the pattern frequencies Ωp (and associated Lindblad radii rL,

calculated via equation J.3) and optical depth variations δτ (see equation J.6) produced

by modes in our planetary models. We have also plotted the pattern frequencies, and

optical depth variations of the observed waves in the C-ring as tabulated by HN13.

10Although energy equipartition may be unlikely to occur, it is a good place to begin since the modes
of interest have similar frequencies ωα and angular degrees l.
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Figure 8.12: Same as Figure 8.10 but for a Saturn model µ = 8GPa.

We begin by examining the mode pattern frequencies. In each model, the pattern

speed of the l = −m f-mode in the non-rotating models is consistently too large. Adding

the Coriolis force lowers the pattern frequency of the modified “f”-mode (i.e., the lowest

frequency mode with a large value of δΦα), moving it closer to the observed pattern

frequencies, although the predicted frequencies remain too high. Adding second-order

rotational effects will lower the predicted frequencies further, likely making them more

consistent with observations. Moreover, with our simple planetary model, we should not
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expect exact agreement. Nonetheless, the close proximity of the predicted and observed

pattern frequencies of the “f”-modes is strong evidence that the observed waves are

generated by Saturn’s “f”-modes modes. This is one of the key findings of this paper,

and is consistent with the results of Marley & Porco (1993).

We can use Figures 8.10-8.12 to understand the qualitative effects of rotationally-

induced mode mixing. In the absence of rotation, the spectrum of low frequency modes

with significant gravitational perturbations is sparse, and is due almost entirely to f-

modes. However, as the rotation rate increases, core modes with frequencies comparable

to the f-mode obtain a potential perturbation

δΦα ≈
|Cfα|

ωf − ωα

δΦf , (8.25)

where ωf and ωα are the rotationally modified f-mode and core mode frequency, and

|Cfα| is their coupling coefficient (equation G.20). Consequently, many modes that had

miniscule potential perturbations in the non-rotating model (and thus fall below the plot-

ted range of Figures 8.10-8.12) obtain larger potential perturbations in the presence of

rotation (although typically still orders of magnitude smaller than the f-mode), caus-

ing the mode frequency spectrum for rotating models to appear much denser in Figures

8.10-8.12.

A mode nearly degenerate with the f-mode will obtain a potential perturbation

δΦα ' δΦf/
√

2, although in this case both modes are really hybrid f-modes. In this

case, the modes are split in frequency by ≈ 2|Cfα|. Our results suggest that such exact

degeneracies are rare in our models, as described in Section 8.4.3. To achieve signifi-

cant mixing, the frequency separation between a core mode and f-mode, |∆fα|, must be

of order |Cfα|. However, in our models, the typical frequency separations |∆αα′ | between

core modes are much larger than typical values of |Cfα|. It is thus unlikely that a core

mode will fall close enough in frequency to the f-mode to strongly mix with it. Such
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degeneracies are possible (see e.g., the middle panel of Figure 8.10), but usually require

fine-tuning to obtain. Since frequency splitting is observed by HN13 for both m = −2

and m = −3 modes, we conclude that it is unlikely to be produced solely by Coriolis

coupling between core modes and f-modes.

Finally, we examine the influence of the value of the shear modulus in the core. If

Saturn’s core contains a shear modulus µ & 8GPa (Figure 8.12), the core shear modes

have frequencies that are typically larger than the f-mode. Moreover, the core mode

spectrum is sparse, making it very unlikely for core modes to mix strongly with the f-

mode. Therefore, if µ & 8GPa, the observed waves in Saturn’s rings cannot be generated

due to the addition of elastic core oscillation modes for reasonable Saturnian models.

If the shear modulus is µ . 1.6GPa (Figure 8.10), there may exist many oscillation

modes with frequencies in the vicinity of the f-mode, allowing for the possibility of

strong mixing with it. However, a smaller shear modulus also decreases the coupling

coefficients, requiring a higher degree of degeneracy (smaller |∆fα|) for efficient mode

mixing to occur. Therefore, including only Coriolis mode mixing, we cannot identify

a value of the shear modulus that is likely to produce a mode spectrum similar to that

observed in Saturn’s rings.

8.6 Discussion and Conclusions

We have examined the influence of a solid core on the oscillation mode spectrum of

giant planets. In our toy planetary models, the rigidity of the core has almost no effect

on the frequencies of f-modes or low order p-modes (for the range of µ considered, they

change by less than 0.2 percent). However, the addition of a solid core adds two new

branches of oscillation modes: the spheroidal and toroidal core modes whose restoring
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force is the elastic shear force of the solid material. The frequency spectrum of these

modes is dependent primarily on the core radius Rc and shear modulus µ, with larger

and less rigid (small µ) cores supporting dense spectra of low frequency shear modes.

In the absence of rotation, these modes are almost completely confined to the core, and

they produce negligible displacements or gravitational perturbations at the surface of the

planet.

We have also examined the influence of the Coriolis force on the mode frequen-

cies and eigenfunctions. In addition to decreasing the oscillation mode frequencies of

prograde modes, the Coriolis force induces mixing between oscillation modes of equal

azimuthal number m. Spheroidal modes (f-modes, s-modes, i-modes, and p-modes) of

angular degree l mix with one another, as do toroidal modes. Furthermore, spheroidal

modes of angular degree l mix with toroidal modes of angular degree l ± 1, allowing

for chains of mode mixing extending to arbitrary values of l. Mode mixing is strongest

when the rotationally modified frequencies of two modes are nearly degenerate with

one another. If value of the core shear modulus µ is small (µ . 3GPa) but finite,

the spectrum of core oscillation modes is dense near the f-mode. Therefore, one or

multiple core modes may be nearly degenerate with the f-mode and mix strongly with

it. These strongly mixed modes would manifest themselves as hybrid “f”-modes, with

nearly equal frequencies and similar mode eigenfunctions.

The main objective of this investigation is to compare our planetary oscillation cal-

culations with the results of HN13, who have measured the pattern numbers and fre-

quencies of waves in Saturn’s rings that appear to be excited by Saturn’s oscillation

modes. As speculated by HN13 and originally proposed by Marley & Porco (1993), we

find the pattern frequencies and azimuthal numbers associated with individual waves in

Saturn’s rings are consistent with being excited by Saturn’s prograde sectoral (l = −m)
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f-modes. It is possible that with more realistic planetary models and including higher

order spin affects, the measured frequencies of these modes can be used to constrain

Saturn’s interior structure.

HN13’s observations of multiple wave trains (finely spaced in frequency but with

identical m) seem to indicate the existence of multiple oscillation modes with frequen-

cies near the frequencies of Saturn’s f-modes. We have attempted to explain this obser-

vation through the rotational mixing between shear modes in Saturn’s core and f-modes

in Saturn’s fluid envelope. This idea may be able to explain several features of HN13’s

observations, listed below.

1. Our theory would explain why the waves observed by HN13 all lie close to

predicted locations of resonances with Saturn’s f-modes. We have shown that only core

modes very near in frequency to the f-mode will mix appreciably with it. Therefore, only

these modes will obtain large enough gravitational potential perturbations to produce

observable disturbances in Saturn’s rings, and hence only modes with frequencies near

the f-mode can be observed.

2. We can explain the relative magnitude of observed frequency splittings (largest

frequency splittings for |m| = 2 modes, finer frequency splittings for |m| = 3 modes,

and no observed frequency splitting for the |m| = 4 mode). Compared to higher degree

modes, the l = 2, |m| = 2 f-mode penetrates deeper into the planet. It has more inertia in

the core, and thus mixes more strongly with core modes, as evidenced by its larger ro-

tational coupling coefficients |Cfα| with core modes. Therefore we should expect modes

that mix strongly with the l = 2 f-mode to have larger frequency separations from it than

the modes that mix with the l = 3, |m| = 3 f-mode. The l = 4, |m| = 4 mode may exhibit

no splitting because it mixes so weakly with core modes that no modes are close enough

in frequency to mix strongly with it.
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3. Our theory can account for the unequal amplitudes of different waves. HN13’s

observations show that the finely spaced waves in Saturn’s rings have very different op-

tical depth variations, implying that they are excited by modes with different amplitudes

and/or gravitational potential perturbations. According to our theory, modes nearly de-

generate with the f-mode may obtain a potential perturbations comparable to (but less

than) that of the unperturbed f-mode, with the precise value determined by the rotational

coupling coefficient and degree of frequency detuning.

However, our theory cannot yet explain all the observations, and some remaining

concerns are as follows:

1. Our calculations indicate that f-modes mix inefficiently with core shear modes,

necessitating a very small frequency de-tuning for appreciable mixing to occur. Such

small frequency de-tunings are unlikely to occur unless the model is fine-tuned to pro-

duce a mode nearly degenerate with an f-mode. Even with a finely tuned model, it is

highly unlikely to simultaneously achieve the observed |m| = 2 and |m| = 3 frequency

splittings. However, it remains possible that the inclusion of higher order rotational

and non-spherical mixing terms may create larger mixing coefficients and alleviate this

concern.

2. A very small value of the shear modulus (µ . 3 GPa) is required for our mecha-

nism to operate. In comparison, the shear modulus of Earth’s core is µ ≈ 100 GPa. (Laio

et al. 2000), and the pressure in Saturn’s core is of order P ≈ 2 TPa. Although such a

small value of the shear modulus may seem unlikely, it may arise from the high pressure

superionic phase of ice (see references in Section 8.2.1) likely to exist in Saturn’s core.

3. We have essentially ignored the effects of inertial modes and gravity modes, and

have only briefly considered interface modes. We have also ignored non-adiabatic and
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anelastic damping effects. These effects should be more thoroughly quantified in the

future.
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APPENDIX A

CALCULATION WITH MASSIVE STAR MODEL

To test the accuracy of our numerical calculations and especially the importance

of self-consistency in real stellar models, we compute the tidal response of several toy

models. The first toy model we employ is shown in Figure A.1 and is meant to mimic a

massive early-type star. The model contains an inner convection zone surrounded by a

thick radiative envelope. The convection zone extends to r = 0.25R, beyond which the

value of N2 rises linearly to N2 ≈ 8GM/R3. Dynamical tides in such massive stars have

been studied by Zahn (1975, 1977) and Goldreich & Nicholson (1989), who showed that

the dominant effect arises from the gravity waves launched at the core-envelope bound-

ary, which then propagate outwards and eventually dissipate near the stellar surface.

Zahn (1975) derived an analytic solution for the wave amplitude and the corresponding

tidal torque. Although our model does not contain some of the details exhibited by real-

istic massive star models, it does capture the most important features. We can compare

our result with Zahn’s to calibrate our numerical method and to assess the degree of

self-consistency required to produce reliable results for the tidal torque.

Figure A.2 shows an example of our numerical results for the dynamical tides gener-

ated in a massive star by a companion, for a given tidal frequency ω = 2Ω = 2.3 × 10−2

(in units where G = M = R). We see that gravity waves are excited at the base of

the radiative zone where N2 begins to rise above zero. A net energy flux Ė = ΩJ̇z =

Ω(GM′2R5/a6)F(ω) flows outwards toward the stellar surface. Figure A.3 shows our

numerical result of the dimensionless function F(ω) ≡ J̇z/To [see equation (3.42)],

evaluated at the outer boundary, as a function of the tidal frequency ω. The result can

be fitted by F(ω) ∝ ω8/3, in agreement with the scaling found by Zahn (1975).

The power-law scaling of the energy flux can be derived using the method of Goldre-
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Figure A.1: The square of the Brünt-Vaisälä (thin solid line) and Lamb (dashed line)
frequencies (for l = 2), in units of GM/R3, as a function of the normalized radius in a
simple massive star model. Also plotted is the stellar density profile (thick solid line) in
units of M/R3. The model has an inner convection zone extending to r = 0.25R. The
stellar properties are only plotted out to r = 0.6R, where an outgoing wave boundary
condition is adopted in our calculation of the tidal excitation.

ich & Nicholson (1989). Assume |ξdyn
⊥ | ≈ ξ

eq
⊥ at r = rc+, which is located one wavelength

above the convective boundary (r = rc). From the dispersion relation (3.27), we find that

the Brünt-Vaisälä frequency at rc+ is given by (for l = 2)

N(rc+) ≈
(dN2

dr
rc

)1/3

ω1/3. (A.1)

Using ξeq
⊥ ' −

[
1/(6r)

](
Ur2/g

)′
' −U/(2g), we evaluate equation (3.41) to find

Ė ≈
3π
√

6
10

(M′

Mt

)2 ρr7Ω5ω8/3

g2(dN2/d ln r)1/3 . (A.2)

where Mt = M + M′, and all the quantities (ρ, r, g, and dN2/dr are evaluated at r =

rc+ ' rc). The scaling of this estimate nearly agrees Goldreich & Nicholson (1989), who
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Figure A.2: Dynamical tide in a massive star (based on the toy model depicted in Figure
A.1) driven by a companion of mass M′ = M, with the tidal frequency ω = 2.3 × 10−2.
Top: The energy flux (dark solid line) Ė = ΩJ̇z as a function of radius, with J̇z calculated
from equation (3.39). All values are plotted in units of G = M = R = 1. Bottom: The
real part of ξdyn

⊥ (dark solid line) and imaginary part of ξdyn
⊥ (dashed line) as a function of

stellar radius. The value of N has been plotted in green (light solid line) in both panels.
In this model, the energy flux rises to its final value just outside of the convective zone,
showing that the wave is excited at this location.

obtained Ėr ∝ Ω4ω11/3, where Ėr is the energy flux carried by outgoing gravity waves in

the rotating frame of the star, not the total energy transfer rate from the orbit. These two

energy transfer rates are related by Ė = ΩJ̇z = 2ΩĖr/ω. Goldreich & Nicholson (1989)

estimates dN2/dr ≈ g/H ≈ g/r, and with g ' 4πGρ̄r/3 (ρ̄ is the mean density interior

to rc), equation (A.2) becomes

Ė ≈ 0.08
(M′

Mt

)2ρr5Ω5ω8/3

(Gρ̄)7/3 . (A.3)

The value of F(ω) based on equation (A.2) is plotted in Figure A.3. Compared to our

numerical results, we see that equation (A.2) overestimates F(ω) by an order of mag-

nitude [by contrast, equation (A.3) would overestimate F(ω) by more, since for our toy
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Figure A.3: The dimensionless tidal torque F(ω) = J̇z/To [see equation (3.42)] carried
by the outgoing gravity wave as a function of the tidal frequency ω (solid line). The
analytical estimate from equation (A.2) is also plotted (dashed line). The frequency is
in units of G = M = R = 1. The small wiggles at high frequencies are likely due to
the slight inaccuracy of our implementation of the outer boundary condition due to the
neglected terms which become non-negligible at higher tidal frequencies.

stellar model dN2/d ln r � g/r]. From our numerical results, we find that the dynami-

cal part of the tide only reaches an amplitude of ξdyn
⊥ ≈ ξ

eq
⊥ /4. If we had used this wave

amplitude in our estimate, equation (A.2) would be a factor of 16 smaller and would

provide an accurate approximation to F(ω) at all frequencies considered.
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APPENDIX B

CALCULATION OF EQUILIBRIUM TIDE

In this appendix we present our improved method for isolating the dynamical and

equilibrium components of the tidal perturbation. Using the Cowling approximation,

the oscillation equations are

1
r2

(
r2ξr

)′
−

g
c2

s
ξr +

1
ρc2

s

(
1 −

L2
l

ω2

)
δP −

l(l + 1)U
ω2r2 = 0, (B.1)

and

δP′ +
g
c2

s
δP + ρ

(
N2 − ω2)ξr + ρU′ = 0, (B.2)

where U is the tidal potential produced by the companion, the ′ denotes d/dr, and g is

the gravitational acceleration. The other perturbation variables are related to δP and ξr

by

ξ⊥ =
1

rω2

(
δP
ρ

+ U
)
, (B.3)

δρ =
1
c2

s
δP +

ρN2

g
ξr. (B.4)

Using equation (B.3), equations (B.1) and (B.2) may be rewritten

1
r2

(
r2ξr

)′
−

g
c2

s
ξr +

(rω2

c2
s
−

l(l + 1)
r

)
ξ⊥ −

U
c2

s
= 0, (B.5)

ξ′⊥ +

(1
r
−

N2

g

)
ξ⊥ +

N2 − ω2

rω2 ξr +
N2

rgω2 U = 0. (B.6)

The zeroth order solution to the equilibrium tide can be found by taking the limit

ω = 0 in equations (B.5) and (B.6), yielding (see also Goldreich & Nicholson 1979)

ξ
eq,0
r = −U/g (B.7)

and

ξ
eq,0
⊥ = −(Ur2/g)′/[l(l + 1)r]. (B.8)
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Defining ξr = ξ
eq,0
r + ξ̄r and likewise for ξ⊥, we substitute into equations (B.5) and (B.6)

to find
1
r2

(
r2ξ̄r

)′
−

g
c2

s
ξ̄r +

(rω2

c2
s
−

l(l + 1)
r

)
ξ̄⊥ +

rω2

c2
s
ξ

eq,0
⊥ = 0, (B.9)

and

ξ̄′⊥ +

(1
r
−

N2

g

)
ξ̄⊥ +

N2 − ω2

rω2 ξ̄r +

[
ξ

eq,0′
⊥ +

(1
r
−

N2

g

)
ξ

eq,0
⊥ −

1
r
ξ

eq,0
r

]
. (B.10)

To find the first order term of the equilibrium tide, we again take the limit of ω = 0 in

equations (B.9-B.10) to find

ξ
eq,1
r =

rω2

N2 − ω2

[(N2

g
−

1
r

)
ξ

eq,0
⊥ +

1
r
ξ

eq,0
r − ξ

eq,0′
⊥

]
, (B.11)

and

ξ
eq,1
⊥ =

1
l(l + 1)

[(
2 −

gr
c2

s

)
ξ

eq,1
r + rξeq,1′

r +
r2ω2

c2
s
ξ

eq,0
⊥

]
. (B.12)

We find that higher order terms are not essential for our purposes. Moreover,

these terms typically involve multiple derivatives of stellar properties that are diffi-

cult to compute from a grid of stellar quantities. The total equilibrium tide is ξeq =

ξeq,0 + ξeq,1 + O(ω4). At our outer boundary, the dynamical tide is computed using

ξdyn = ξ − ξeq.
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APPENDIX C

GENERAL SCALING FOR SPIN-ORBIT SYNCHRONIZATION AND TIDAL

HEATING

In Section 5.2, we showed that the averaged dimensionless tidal torque on a He WD

scales with the tidal forcing frequency as F ∝ ω6. For a CO WD, the scaling is F ∝ ω5

(see Paper II). In general, we may parameterize the tidal torque by

Ttide = J̇z = T0 f̂ ω̂n (C.1)

with the dimensionless values f̂ and n determined from the dynamics of gravity wave

excitation and dissipation within the WD. Using equation (C.1), we can examine the

general behaviors of spin-orbit synchronization and tidal heating in a compact binary

undergoing gravitational radiation-driven orbital decay (see also Section 8.1 of Paper

II).

Combining equations (5.6) and (5.12) as we did in Section 5.3, we find that tides

begin to synchronize the star at a critical orbital frequency

Ωc =

[ 2.4
2n+1/2

κ

f̂

(Rs

R

)5/2

qM

] 3
3n+1

Ωdyn. (C.2)

Here, Rs = 2GM/c2, qM = (M + M′)5/3/(M2/3M′), and Ωdyn =
√

GM/R3. Thus, less

compact stars (with larger R/Rs) begin synchronization at larger orbital periods. Note

that if n >∼ 3 as for WDs, the critical frequency Ωc does not depend sensitively on f̂ or κ̂,

and only a very rough estimate of these quantities is necessary.

The tidal heating rate is given by equation (5.15). For Ω > Ωc (see Paper II),

Ωs ' Ω −Ωc

(
Ωc

Ω

)1/(3n)

, (C.3)

and combining equations (5.15), (C.2), and (C.3) yields

Ėheat =

[ 2.4

2n
√

2

κn+1

f̂

(Rs

R

)5/2

qM2

] 1
n
(

Ω

Ωdyn

) n−1
3n

ĖGW, (C.4)
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where qM2 = (M+M′)(5+n)/3M2(n−1)/3/M′n+1. Note that for n >∼ 3 as it is for WDs, the tidal

heating rate is very insensitive to the value of f̂ . At typical orbital periods (Ω � Ωdyn),

the tidal heating rate is a small fraction of the energy loss rate due to gravitational waves

(especially for non-compact stars), but it becomes more significant at shorter orbital

periods.
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APPENDIX D

ESTIMATING THE CORE-ENVELOPE COUPLING TIME SCALE

In the two zone model (see Section 5.4.2), the thickness of the synchronized enve-

lope is dependent on the parameter tcoup. In stably stratified stars like WDs, angular

momentum can be transported by magnetic fields. In the presence of a poloidal field B

connecting the core and envelope, tcoup can be estimated from the Alfven wave crossing

time,

tA =

∫ R

0
dr

√
4πρ
B

. (D.1)

We find tA ≈ 102 yr(103G/B) for our CO WD model, and tA ≈ 50 yr(103G/B) for our

He WD model.

For WDs without an intrinsic magnetic field, angular momentum may be transported

via the Tayler-Spruit dynamo (Spruit 2002). To estimate tcoup, we calculate the effective

viscosity νTS for angular momentum transport using the the method outlined in Spruit

(2002). For simplicity, we calculate νTS without including the effects of composition

gradients in the WD to find

νTS = r2Ωs

(
Ωs

N

)1/2( κT

r2N

)1/2

, (D.2)

where κT is the heat diffusivity. This viscosity does not depend on the local shear, and is

thus independent of the precise rotation profile of the star.1

We then estimate the coupling time from the Tayler-Spruit dynamo to be

tTS =

∫ R

0
dr

R − r
νTS

. (D.3)

We find tTS ≈ 2 × 103 yr (P/30min)3/2 for both 0.3M� He and 0.6M� CO WDs. The

values of tA and tTS convince us that tcoup . 103 yr for the short orbital periods of interest.
1The Tayler-Spruit dynamo requires a minimum local shear to operate (see Spruit 2002), causing

significant shear to persist if the dynamo dominates angular momentum transport. This shear may signif-
icantly impact wave dynamics, in addition to causing viscous heating and mixing.
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APPENDIX E

NON-TIDAL ORBITAL EVOLUTION

We wish to compare the effects of three-body tides to other physical mechanisms

that may produce orbital evolution in triple-star systems. One such mechanism is tidal

orbital decay due to the induced eccentricity of the inner binary (Stars 2 and 3) due to

the perturbing gravitational influence of Star 1. This effect has been studied in detail by,

e.g., Ford et al. 2000. In this mechanism, the eccentricity of the orbit of Stars 2 and 3

about one another oscillates around a small, non-zero value due to the presence of Star

1. Tidal interactions between Stars 2 and 3 act to re-circularize the orbit, dissipating

energy and causing the orbit of Stars 2 and 3 about one another to decay. The orbital

decay time scale due to dissipation in Star 2 is (Lithwick & Wu 2012)

tecc =
a23

ȧ23
=

1
18π

Q
k2

Ω23R3
2

GM2

1
q(1 + q)

(a23

R2

)8 1
〈e2〉

, (E.1)

where Q is the tidal quality factor, k2 is the constant of apsidal motion, q = M2/M3,

and 〈e2〉 is the mean square eccentricity of the orbit of Stars 2 and 3 about one another.

We have divided by an extra factor of two to account for tidal dissipation in both stars.

According to Georgakarakos (2002), the mean square eccentricity for a nearly equal

mass binary (M2 ' M3) is

〈e2〉 '
43
4

( M1

M1+M2+M3

)2( Ω1

Ω23

)4

. (E.2)

However, for unequal mass inner binaries (M2 , M3) or systems near an orbital reso-

nance, the mean square eccentricity may be significantly larger. In our calculations, we

use k2 = 0.02 (appropriate for low mass dwarf stars), and Q = 105.

Another effect that can cause orbital decay in a compact triple system is magnetic

braking. Magnetic braking is likely to act on short time scales in systems like HD
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181068 because Stars 2 and 3 are rapidly rotating, low mass stars with convective en-

velopes that likely have strong magnetic dynamos. We estimate the torque due to mag-

netic braking according to the prescription of Krishnamurthi et al. 1997, yielding a

magnetic braking timescale of

tmag =
a23

ȧ23
=

µ23a2
23

4KMBΩ2
s,c

( M2

M�

)1/2(R2

R�

)−1/2

, (E.3)

where Ωs,c is a critical rotation rate of Ωc ∼ 10Ωs,�, and KMB is a calibrated constant

of KMB ≈ 2.6 × 1047g s cm2. Once again, we have divided by an extra factor of two

to account for magnetic braking produced by Stars 2 and 3, assuming they are nearly

identical. Star 1 may produce additional magnetic braking, but because a1 � a23 in

hierarchical triples, the time scale of tidal orbital decay associated with this process is

long, and can be ignored.

Finally, the orbit of Stars 2 and 3 may decay due to the emission of gravitational

waves. The orbital decay time scale due to gravitational waves is

tGW =
a23

ȧ23
=

5c5

64G3

a4
23

M2M3(M2 + M3)
. (E.4)
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APPENDIX F

ELASTIC OSCILLATION EQUATIONS

In this work we consider purely adiabatic and elastic oscillations, i.e., we neglect

damping produced by non-adiabaticity and anelasticity. Under these approximations,

the elastic forces act like a spring, which is characterized by the stress tensor

σ = K(∇ · ξ)I + 2µs. (F.1)

Here, K is the adiabatic bulk modulus, related to the pressure P via K = Γ1P, with

Γ1 the adiabatic index of the material. Also, µ is the shear modulus, ξ is the vector

displacement, I is the identity matrix, and the deviatoric strain tensor s is defined

s ≡
1
2

[
∇ξ + (∇ξ)T

]
−

1
3
(
∇ · ξ

)
I (F.2)

The perturbed hydroelastic oscillation equations read

∂2ξ

∂t2 =
δρ

ρ2∇P −
1
ρ
∇δP − ∇δΦ + δfe, (F.3)

where the elastic force fe is

δfe =
2
ρ
∇ · (µs) (F.4)

=
2
ρ
∇µ · s +

µ

ρ

(
∇2ξ +

1
3
∇(∇ · ξ)

)

We decompose all variables into spherical harmonics, or spherical vector harmonics

where appropriate:

ξ(r, t) =
∑
l,m

[Ul(r)Ylmr̂ + Vl(r)r∇Ylm + Wl(r)∇ × (rYlm)] eiωt

δΦ =
∑
l,m

[δΦl(r)Ylm] eiωt
(F.5)
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Then the equations become separated such that only r-dependence is left, and the equa-

tions for different harmonics are self-contained. From now on we will drop the subscript

l and consider the equations for a single harmonic. Explicitly, the displacement vector

becomes:

ξr = U(r)Ylm

ξθ = V(r)
∂Ylm

∂θ
+

W(r)
sin θ

∂Ylm

∂φ

ξφ =
V(r)
sin θ

∂Ylm

∂φ
−W(r)

∂Ylm

∂θ
.

(F.6)

In addition, there is also the Poisson equation for δΦ:

∇2δΦ = 4πGδρ. (F.7)

We also define

αYlm = ∇ · ξ =

[
U̇ +

2
r

U −
l(l + 1)

r
V
]

Ylm, (F.8)

where the dot denotes a radial derivative, and we have dropped the radial functionality

for simplicity. The continuity equation gives

δρ = −ξ · ∇ρ − ρ∇ · ξ

= − (Uρ̇ + ρα) Ylm (F.9)

Equation F.3 represents three 2nd-order ordinary differential equations for U, V , W,

while equation F.7 is a 2nd order ODE for δΦ. We wish to transform these four second-

order ODEs into eight first-order ODEs. First we define a new quantity, the Lagrangian
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traction T ≡ r̂ · ∆σ, where ∆σi j = Kαδi j + 2µsi j. Then we have

T = r̂ · ∆σ

= Tr(r)Ylmr̂ + T⊥(r)r∇Ylm + Tt(r)∇ × (rYlm)

=

([
K −

2
3
µ

]
α + 2µU̇

)
Ylmr̂

+ µ

{(U
r

+ V̇ −
V
r

)
∂Ylm

∂θ
+

(
Ẇ −

W
r

) 1
sin θ

∂Ylm

∂φ

}
θ̂

+ µ

{(U
r

+ V̇ −
V
r

) 1
sin θ

∂Ylm

∂φ
−

(
Ẇ −

W
r

)
∂Ylm

∂θ

}
φ̂. (F.10)

We now define 8 new variables as follows:

y1 = U, (F.11)

y2 ≡ Tr =

(
K −

2
3
µ
)
α + 2µU̇, (F.12)

y3 = V, (F.13)

y4 ≡ T⊥ = µ
(U

r
+ V̇ −

V
r

)
, (F.14)

y5 = δΦ, (F.15)

y6 = ẏ5 + 4πGρy1, (F.16)

y7 = W, (F.17)

y8 ≡ Tt = µ
(
Ẇ −

W
r

)
. (F.18)

Note that y1, y3, y7 are the displacement components, while y2, y4, y8 are the La-

grangian tractions. y6 is the Lagrangian gravitational attraction, chosen as a variable

for convenience when applying boundary conditions (see section F.0.1). Then the final
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equations are:

ẏ1 = −
2(K − 2

3µ)

(K + 4
3µ)

y1

r
+

1
(K + 4

3µ)
y2 +

l(l + 1)(K − 2
3µ)

(K + 4
3µ)

y3

r
, (F.19)

ẏ2 =

−4ρg − ω2ρr +
12µK

(K + 4
3µ)r

 y1

r
−

4µ
(K + 4

3µ)
y2

r

+ l(l + 1)
ρg −

6µK
(K + 4

3µ)r

 y3

r
+ l(l + 1)

y4

r
+ ρy6, (F.20)

ẏ3 = −
y1

r
+

y3

r
+

y4

µ
, (F.21)

ẏ4 =

ρg −
6Kµ

(K + 4
3µ)r

 y1

r
−

(K − 2
3µ)

(K + 4
3µ)

y2

r

+

−ω2ρr +
2µ[(K − 2

3µ)(2l2 + 2l − 1) + 2µ(l2 + l − 1)]

(K + 4
3µ)r

 y3

r

− 3
y4

r
+ ρ

y5

r
, (F.22)

ẏ5 = −4πGρy1 + y6, (F.23)

ẏ6 = 4πGρl(l + 1)
y3

r
+

l(l + 1)
r

y5

r
−

2
r

y6, (F.24)

ẏ7 =
y7

r
+

y8

µ
, (F.25)

ẏ8 =

[
−ω2ρr +

µ(l2 + l − 2)
r

]
y7

r
−

3
r

y8. (F.26)

Note that y7 and y8 completely decouple from the other equations. The first six equations

are integrated to obtain the spheroidal modes, while the last two are integrated to obtain

the toroidal modes.

In fluid regions where µ→ 0, y4 → 0 and y3 is found from the algebraic relation

y3 =
1

rω2

(
gy1 −

1
ρ

y2 + y5

)
. (F.27)

F.0.1 Boundary Conditions

The boundary conditions (BCs) for elastic oscillations can be found in Dahlen and

Tromp (1998) and in Crossley (1975). For the spheroidal oscillations, the BCs at r = 0
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are, to lowest order in r,

y1 = Arl−1, (F.28)

y2 = 2(l − 1)µArl−2, (F.29)

y3 =
A
l

rl−1, (F.30)

y4 =
2(l − 1)µA

l
rl−2, (F.31)

y5 =

[
−

4πGρA
l

+
B
l

]
rl, (F.32)

y6 = Brl−1. (F.33)

(F.34)

For l = 0, A = 0 and higher order terms in r are needed to establish the BCs (see Crossley

1975). When l = 1, the displacements are finite at the center of the planet. Note that for

l = 2, the value of the tractions Tr and T⊥ are finite, i.e., the core is undisplaced but is

under stress. For l > 2, the values of all perturbation variables are zero at the center of

the planet. Equations (F.28) comprise only two independent BCs (corresponding to the

undetermined constants A and B), and additional inner BCs are trivially satisfied due to

the form of the oscillation equations. In practice, for l ≥ 2, we use the four inner BCs

y1 = 0, (F.35)

y2 = ly4, (F.36)

y4 = 0, (F.37)

y6 = 0, (F.38)

(F.39)

although other choices are possible.
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The three independent boundary conditions at the surface of the planet are

y2 = 0, (F.40)

y4 = 0, (F.41)

y6 = −
l + 1

R
y5. (F.42)

(F.43)

Note that in a fluid envelope, the first of these conditions is equivalent to the boundary

condition ∆P = 0 commonly used in asteroseismology. The condition on y4 is trivially

satisfied in a planetary model with a fluid envelope, since y4 = 0 in fluid regions. In our

calculations, we instead use the outer BCs involving y2 and y6, the four inner BCs listed

above, and the jump conditions at internal discontinuities described below.

At an internal fluid-solid interface, the values of y1, y2, y4, y5, and y6 must be con-

tinuous. There is no relation to determine the change in y3 across a fluid-solid interface,

and in general y3 is discontinuous at these interfaces. At a solid-solid interface, however,

y3 must also be continuous. Note that the continuity of y6 across an interface implies a

discontinuity in the gravitational perturbation, δdΦ/dr. Also note that the continuity of

y4 implies that it is zero at a fluid-solid interface.

For torsional oscillations of l ≥ 2, the BCs are y7 = 0 at r = 0 and y8 = 0 at r = R. At

a fluid-solid interface, y8 is continuous but y7 is generally discontinuous. At solid-solid

interfaces, both y7 and y8 are continuous.

Solving the eigensystem F.26 for an eigenvalue ω also requires a normalization

boundary condition. Typically, the normalization

y1(R) = 1 (F.44)

is used to solve for the oscillation modes, although the choice of normalization is en-

tirely arbitrary. For oscillation modes in planets with a solid core and a fluid envelope,
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the condition of equation F.44 is poorly suited for numerical computation. The reason

is that p-modes confined to the fluid envelope have very large relative surface displace-

ments, while shear modes confined to the solid core have very small relative surface

displacements. It is very difficult for numerical routines to converge to both types of

modes, as their scales using equation F.44 may be different by many orders of mag-

nitude. For our models, we find the normalization condition y3 = 1 just below the

core-envelope boundary allows our code to quickly converge to both p-modes and shear

modes. The modes are then renormalized via equation 8.5.
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APPENDIX G

SOLVING FOR ROTATIONALLY MIXED MODES

In the absence of rotation, the perturbed momentum equations take the form

∂2ξ

∂t2 +Hξ = 0, (G.1)

whereHξ is given by the negative of the right hand side of equation F.3. An eigenfunc-

tion ξα and its associated eigenvalue ω2
α satisfy Hξα = ω2

αξα. The eigenfunctions are

orthonormal such that the inner product between two eigenfunctions is

〈ξα|ξβ〉 =

∫
dVρξ∗α · ξβ = δαβ. (G.2)

and the integral extends over the volume of the planet.

We now consider the effect of rotation, in the rotating frame of the planet. First order

rotational effects result in the addition of the Coriolis force to the momentum equation

such that equation G.1 becomes

∂2ξ

∂t2 + Cξ +Hξ = 0, (G.3)

where the Coriolis force is given by

Cξα = 2iωα(Ωs × ξα), (G.4)

and Ωs is the spin vector. In this paper, we consider uniform rotation about the z-axis

such that Ωs = Ωsẑ.

The original eigenfunctions and eigenfrequencies are no longer solutions to the

eigensystem of equation G.3. Instead, we look for solutions using the original eigen-

functions as basis functions such that(
H + C

)(∑
β

aβξβ
)

= ω2
(∑

β

aβξβ
)
, (G.5)
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where aβ are undetermined complex constants. In equation G.5, the sum runs over all

eigensolutions of equation G.1 such that there are N terms, where N is the dimension of

H . In practice, this sum will need to be truncated, as we will describe below. In Dirac

notation, equation G.5 is (
H + C

)∑
α

aβ|ξβ〉 = ω2
∑
α

aβ|ξβ〉. (G.6)

To solve for the constants aβ, we operate on each side of equation G.6 by an arbitrary

eigenvector 〈ξα| to obtain

ω2
αaα +

∑
β

〈ξα|C|ξβ〉aβ = ω2aα. (G.7)

Using equation G.4, we obtain

ω2
αaα + 2ω

∑
β

Cα,βaβ = ω2aα. (G.8)

where Cαβ is a complex coupling coefficient that describes the strength of coupling due

to the Coriolis force between two original oscillation modes. Explicit expressions for

Cαβ are given in Appendix G.0.3.

Equation G.8 represents an eigensystem for the modified eigenvalues ω, with each

row in the matrix equation indexed by α and each column indexed by β. For each

eigenvalue ω2, the complex components of the eigenvector a = {a1, ...aN} represent the

projection of the new eigenmode onto each original mode β. In matrix form, equation

G.8 is a quadratic eigenvalue problem:

(
Ω + 2ωC

)
a = ω2Ia, (G.9)

with Ω = diag{ω2
1, ..., ω

2
N}, I is the identity matrix, and

C =


C11 · · · C1N

...
. . .

...

CN1 · · · CNN

 (G.10)
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The N × N eigenvalue problem of equation G.9 is equivalent to the 2N × 2N eigenvalue

problem  0 I

Ω 2C


 a

b

 = ω

 a

b

 , (G.11)

where b = ωa. Equation G.11 is equivalent to the phase space mode expansion, where

a mode Z of eigenvalue ω is defined by both its displacement and velocity vectors such

that Z = [a,b] = [a, ωa]. Solving the eigensystem of equation G.11 yields 2N eigen-

values ω. In the limit Ωs → 0, the solutions come in pairs ωα and −ωα, representing the

prograde and retrograde modes. Note that in this form, the matrix on the left hand side

of equation G.11 is not explicitly Hermitian, however, we show below that the system

can be written in a Hermitian form.

We solve the eigensystem G.11 for the eigenvalues ω and the associated eigenfunc-

tions a. Because only modes of the same m are coupled (see Section G.0.3), we may

solve equation G.11 separately for each value of m we wish to consider. For negative

m, the positive values of ω represent prograde modes, and the negative values of ω rep-

resent retrograde modes. In principle, we must include every oscillation mode (i.e., for

a given m we must include modes of all l and n) in the eigensystem. In practice, we

must truncate the eigensystem at finite values of l and n. To determine which modes to

include, we can solve equation G.11 for a limited set of modes near the l = m f-modes,

and then extend our calculations to larger values of l and larger frequency ranges to

see if the results change. For the planetary models, spin frequencies, and mode fre-

quencies considered in this paper, we find that including only modes with l . 14 and

ωl,n/3 . ω f . 3ωl,n yields a good approximation.
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G.0.2 Alternative Formalism

The eigensystem equation G.11 can be solved more elegantly, as shown in Dyson &

Schutz (1979) and DT98. We seek to solve the eigenvalue problem

[
H + ωC̄

]
ξ = ω2ξ, (G.12)

whereH has the same definitions as above, and C̄ = 2iΩs×. Defining each eigenvector

via its six-dimensional eigenfunction

Z =

 ξωξ
 . (G.13)

We rewrite equation G.12 as

(  0 I

H 0

 +

0 0

0 C̄


)
Z = ωZ, (G.14)

where I is the identity matrix. We decompose Z in terms of original eigenvectors,

Z =
∑
β

aβZβ, (G.15)

where here the sum runs over the 2N components β (accounting for both negative and

positive eigenfrequencies) because we have employed the phase space mode expansion,

in contrast to the configuration space expansion used in equation G.5. Recalling that

Hξβ = ω2
βξβ, equation G.14 becomes

∑
β

ωβaβZβ +
∑
β

0 0

0 C̄

 aβZβ =
∑
β

ωaβZβ. (G.16)

We now multiply by the auxiliary operator

P =

H 0

0 I

 , (G.17)
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and take the inner product with Zα to obtain

2ω3
αaα + 2ωα

∑
β

ωβaβCαβ = 2ω2
αωaα, (G.18)

where Cαβ has the same definition as above. Defining bα = ωαaα, we have

ωαbα +
∑
β

Cαβbβ = ωbβ. (G.19)

Equation G.19 represents a Hermitian eigensystem because Cαβ = C∗βα, therefore it is

amenable to numerical matrix solving techniques. Once the eigenvectors b are deter-

mined, components of the desired eigenvector a are given by aβ = bβ/ωβ.

G.0.3 Rotational Coupling Coefficients

The elements Cαα′ of the rotational coupling matrix are defined as

Cαα′ = iΩs

∫
dVρξ∗α ·

(
ẑ × ξα′

)
, (G.20)

where ẑ is the unit vector in the z direction. Explicitly, the value of Cαα′ is (see also

Dahlen & Tromp 1998)

Cαα′ = mΩsδll′δmm′

∫ R

0
drρr2

(
UV ′ + VU′ + VV ′ + WW ′

)
−

iΩs

2
(
S lmδll′+1 + S l′mδll′−1

)
δmm′

×

∫ R

0
drρr2

[(
k2

l − k2
l′ − 2

)
UW ′ +

(
k2

l − k2
l′ + 2

)
U′W +

(
k2

l + k2
l′ − 2

)(
VW ′ − V ′W

)]
,

(G.21)

with k2
l = l(l + 1) and

S lm =

[ (l + m)(l − m)
(2l + 1)(2l − 1)

]1/2

. (G.22)

For compactness, we have dropped the α subscript on the right hand side of equa-

tion G.21. The displacement functions U, V , and W are defined in equation F.6. The
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first integral in equation G.21 accounts for spheroidal-spheroidal coupling and toroidal-

toroidal mode coupling. For α = α′, it reduces to the conventional rotational splitting

parameter. The second integral in equation G.21 accounts for spheroidal-toroidal mode

coupling. Note the Hermitian nature of Cαα′ , i.e., Cαα′ = C∗α′α.

The value of Cαα′ is zero unless the modes satisfy certain angular selection rules. In

particular, only modes of equal azimuthal number m = m′ can couple since the introduc-

tion of rotation does not break the axial symmetry of the problem. Similarly, spheroidal

modes couple only to other spheroidal modes of equal angular degree such that l = l′.

The same is true for toroidal modes. However, spheroidal modes of degree l may couple

to toroidal modes of degree l′ = l ± 1, and vice versa. Therefore, spheroidal modes

of Yl,m are coupled to toroidal modes of Yl+1,m, which in turn are coupled to spheroidal

modes of Yl+2,m, etc. Thus, the inclusion of the Coriolis forces introduces an infinite

chain of coupling with modes of higher angular degree l.
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APPENDIX H

MODE NORMALIZATION

The modes obtained by solving the eigensystem G.11 or G.19 must be appropriately

normalized, because they are no longer orthonormal under expression G.2. Instead, the

modes satisfy the modified orthonormality condition

〈〈Zα|Zα′〉〉 ≡ 〈Zα|P|Zα′〉 = 2ω2
αδα,α′ , (H.1)

with P defined by equation G.17. Explicitly, equation H.1 is

〈[∑
β

a∗α,βξ
∗
α , ωα

∑
β

a∗α,βξ
∗
β

]∣∣∣∣[∑
β′

aα′,β′ω2
β′ξα′ , ωα′

∑
β

aα′,β′ξβ′
]T〉

= 2ω2
αδα,α′ . (H.2)

Recall that these sums include the 2N original modes, with each of the N eigenfunctions

ξβ corresponding to the modes of frequency ωβ and −ωβ. Therefore, for identical modes

α = α′, each value of β on the left hand vector of equation H.2 will have a finite overlap

with two terms in the sum in the right hand vector (corresponding to both the ωβ = ωβ′

term and the ωβ = −ωβ′ term). So for modes with α = α′ the normalization condition

becomes

∑
β

(
|aα,β|2ω2

β + a∗α,βaα,−βω
2
−β

)
+ ω2

α

∑
β

(
|aα,β|2 + a∗α,βaα,−β

)
= 2ω2

α, (H.3)

where the subscript −β refer to the original mode with eigenfrequency of opposite sign,

respectively. The sum in equation H.3 over the 2N modes β can be written more simply

as a sum over the N modes with ωβ > 0:

∑
ωβ>0

1
2

(
1 +

ω2
β

ω2
α

)(
|aα,β|2 + |aα,−β|2 + 2Re

[
a∗α,βaα,−β

])
= 1. (H.4)

In the limit Ωs → 0, equation H.4 reduces to |aα,β|2δα,β = 1, equivalent to equation G.2.
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APPENDIX I

THREE-MODE MIXING

In this section we solve for the eigenvalues and eigenvectors of a three mode system

coupled through the Coriolis force. We consider Mode 1 to be an f-mode, Mode 2 to be

an arbitrary mode mixed with the f-mode, and Mode 3 to be an arbitrary mode that does

not mix directly with Mode 1 but does mix with Mode 2. The eigensystem describing

these three modes is
2(ω̄1 − ω) 2C12 0

2C∗12 2(ω̄2 − ω) 2C23

0 2C∗23 2(ω̄3 − ω)




b1

b2

b3

 = 0, (I.1)

with ω̄1 = ω1 + C11 and likewise for modes 2 and 3. This eigensystem is equivalent to
∆13 − ∆ 2C12 0

2C∗12 ∆2 − ∆ 2C23

0 2C∗23 −∆13 − ∆




b1

b2

b3

 = 0, (I.2)

where ∆13 = ω̄1 − ω̄3, ∆2 = 2ω̄2 − ω̄1 − ω̄3, and ∆ = 2ω − ω̄1 − ω̄3.

We now examine the specific case where modes 1 and 3 are degenerate, i.e., ∆13 = 0.

The characteristic equation for this case is

∆
[
∆2 − ∆2∆ − 4(|C12|

2 + |C23|
2)
]

= 0. (I.3)

The eigenvalues are ∆0 = 0 and ∆± = 1
2

[
∆2 ±

√
∆2

2 + 16(|C12|
2 + |C23|

2)
]
. These frequen-

cies correspond to ω0 = ω̄1 = ω̄3 and

ω± =
2ω̄2 + ω̄1 + ω̄3

4
±

1
4

[
∆2

2 + 16(|C12|
2 + |C23|

2)
]1/2

. (I.4)

The associated (unnormalized) eigenvectors are

b0 =


C23

0

−C∗12

 (I.5)
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and

b± =


2C12

∆±

2C∗23

 . (I.6)

In all cases, the mode with frequency ω0 is a superposition of Modes 1 and 3, with

the relative weights determined by the relative values of |C12| and |C23|. If |C12| �

|C23|, i.e., Mode 1 is essentially decoupled from the system, then this mode is a slightly

perturbed version of Mode 1. If |C12| � |C23|, i.e., Mode 3 is essentially decoupled from

the system, then this mode is a slightly perturbed version of Mode 3.

If the modes are minimally mixed, [16(|C12| + |C23|) � |∆2|], two modes have fre-

quency ω ' ω̄1 = ω̄3 and one has ω ' ω̄2, as we would expect for non-mixed modes.

However, the two modes with ω ' ω̄1 = ω̄3 may still be strongly mixed. In the nearly

degenerate limit [16(|C12| + |C23|) � |∆2|], all three modes are mixed with one another,

with the weights determined by the relative coupling coefficients.

It is important to note that if |C12| and |C23|, have similar magnitudes, there will al-

ways exist at least two modes that are strong superpositions of Modes 1 and 3, regardless

of the value of ∆2. This entails that if a mode (in our example Mode 3) is nearly degen-

erate with the f-mode, it can mix strongly with it (through another mode, in our example

Mode 2) even if it does not mix directly with the f-mode. The mode that serves as in-

termediary (Mode 2) need not be similar in frequency to Mode 1 and 3. Furthermore,

in Section 8.4.2, we show that systems in which |C12| and |C23| have very different mag-

nitudes can still exhibit strong mixing between Modes 1 and 3. In this case, the strong

mixing does not occur when ω̄1 ' ω̄3, although it does occur when there are two eigen-

frequencies with ω ' ω̄1. We should therefore expect that modes very near in frequency

to the f-mode will mix strongly with it, regardless of their original characteristics.
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APPENDIX J

EFFECT OF MODES ON THE RINGS

The characteristics of density waves launched at Lindblad resonances are elegantly

characterized in Goldreich & Tremaine (1979) and in Greenberg & Brahic (1984). Here

we summarize the relevant results and apply them to the Saturnian ring system. The

wave-like response of the disk near (but not exactly at) the Lindblad resonance is a

traveling wave of form

δΦ ' −Ψ
√

2π|z| exp
[
ix2/(2z)

]
. (J.1)

Here, δΦ is the wave-like gravitational perturbation induced in the rings, not to be con-

fused with the value of the δΦα associated with a given oscillation mode. Ψ is the

effective perturbing potential (see equation J.4), x = (r− rL)/rL is the fractional distance

away from the Lindblad resonance, and

z =
2πGΣ

rD
, (J.2)

is approximately the square of the radial wavelength. Here, Σ is the unperturbed ring

surface density, and D ' 3(m − 1)Ω2 near Lindblad resonances in Saturn’s rings. The

value of z is of order z ∼ Mrings/M ∼ 10−9, where Mrings is the mass of the C-ring. The

wavelength of the waves is very short compared to the Lindblad radius, thus, the waves

are very tightly wound. The wavelength decreases away from the Lindblad radius, al-

though the waves typically damp out after ∼ 10 wavelengths. This form of the response

is accurate for cs/(Ωr) � 1, GΣ/(Ω2r) � 1, c2
s/(GΣr) � 1, where cs is the typical

random velocity of ring particles. These are all excellent approximations for Saturn’s

rings.

A fairly accurate location of the resonant location of a mode is obtained by solving

equation 8.20, including corrections due to the gravitational moments of Saturn. The
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solution is

rL ' rL0

[
1 −

1 + m
2(1 − m)

J2

(
R
r0

)2

+
5(3 + m)
8(1 − m)

J4

(
R
r0

)4 ]
+ O

(
J6, J2

2
)
, (J.3)

where rL0 is given by equation 8.21, and for Saturn J2 = 1.633 × 10−2 and J4 = −9.2 ×

10−4 (Guillot 2005). The effective forcing potential is

Ψ = A
[ d
d ln r

+
2mΩ

mΩ + σα

]
δΦα(rL), (J.4)

where A is the mode amplitude. Each component l′ of the potential has the form δΦα,l′ ∝

r−(l′+1), resulting in Ψα,l′ = (2m′ − l′ − 1)δΦα,l′ (see also equation 8.23).

The associated density perturbation is

δΣ '
i

2πGr1/2

d
dr

(
r1/2δΦ

)
'

∣∣∣∣∣3(1 − m)
4π2

Ω2|Ψ|2

G3ΣrL

∣∣∣∣∣1/2x exp
(
i
[
x2/(2z) + mφ + σt

])
. (J.5)

This equation applies in the inviscid limit and predicts the density perturbation to be-

come larger with increasing distance away from resonance. In reality, the waves damp

out and (in Saturn’s rings) the density perturbations typically decrease after one or two

wavelengths away from resonance.1 The associated perturbation in optical depth is

δτ = κmδΣ, where κm is the local mass extinction coefficient (opacity) of the rings,

and we have assumed that it is independent of Σ.

We would like to use the observed variation in optical depth to estimate the ampli-

tudes of the modes driving the waves. Since the wave amplitude is damped by viscous

effects, we must judiciously choose a location x at which to evaluate equation J.5. This

location must be far enough from the resonance such that equation J.1 is applicable, but

1Equation J.5 applies in the linear regime. Detectable waves in Saturn’s rings often have density
perturbations of order unity and are relatively non-linear, causing their optical depth variations to be
cuspy. We ignore this issue in this work, although it may affect estimates of mode amplitude.
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close enough so that the wave has not been significantly damped. Evaluating equation

J.5 at x = ∆r/rL, we have

|δτ| ≈

∣∣∣∣∣3(1 − m)
4π2

κ2
mΩ2|Ψ|2

G3ΣrL

∣∣∣∣∣1/2∣∣∣∣∣∆r
rL

∣∣∣∣∣, (J.6)

Thus, the amplitude of the mode is

|A| ≈
∣∣∣∣∣3(1 − m)

4π2

κ2
mΩ2|Ψ̄|2

G3ΣrL

∣∣∣∣∣−1/2∣∣∣∣∣ rL

∆r

∣∣∣∣∣|δτ|, (J.7)

with

Ψ̄ =
∑
β

aβWβδΦβ(R). (J.8)

To estimate mode amplitudes from HN13, we typically evaluate δτ near its maximum,

about one wavelength away from the resonant radius, where ∆r ∼ 5km. This procedure

assumes that damping has had a negligible effect on wave amplitude within the first

wavelength.

Finally, to calculate optical depth fluctuations produced by modes in our toy Saturn

models, we first calculate the amplitude of a mode required to produce the largest ob-

served m = −3 wave in Saturn’s rings. We use the observed values of κm and σm from

HN13, and we assume the wave is generated by an unmixed l = 3, m = −3 f-mode with

δΦα(R) ' 1, determined from our mode calculations. This procedure typically results in

a dimensionless amplitude |A3| ' 10−9. We then assume energy equipartition amongst

the oscillation modes, such that the amplitudes of modes in our model are determined by

ω2
α|Aα|

2 = ω2
3|A3|

2. The optical depth variation is then calculated according to equation

J.6, and is evaluated where ∆r ∼ 5km.
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