
MATTER AND RADIATION IN THE STRONG

MAGNETIC FIELDS OF NEUTRON STARS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Zachary James Medin

August 2008



c© 2008 Zachary James Medin

ALL RIGHTS RESERVED



MATTER AND RADIATION IN THE STRONG MAGNETIC FIELDS OF

NEUTRON STARS

Zachary James Medin, Ph.D.

Cornell University 2008

Recent observations of the radiation from highly magnetized neutron stars have

provided a wealth of information on these objects, but they have also raised many

new questions. We study various aspects of the surfaces and magnetospheres of

neutron stars, including the cohesive properties and condensation of the stellar

surface, formation of magnetosphere acceleration zones, and the initiation and

propagation of electron-positron cascades through the magnetosphere.

We present calculations of the electronic structure of matter in strong magnetic

fields ranging from B = 1012 G to 2 × 1015 G, appropriate for observed magnetic

neutron stars. Our calculations are based on the density functional theory. We

find that condensed matter surfaces composed of hydrogen, helium, and carbon

are all bound relative to individual atoms for B = 1012 G or higher. Condensed

iron surfaces, however, are only significantly bound for B >∼ 1014 G. We also

present Hartree–Fock calculations of the polarization-dependent photoionization

cross sections of the He atom in strong magnetic fields ranging from 1012 G to

1014 G.

We investigate several important astrophysical implications of our calculations

of the cohesive property of magnetic condensed matter. We find that for sufficiently

strong magnetic fields and/or low temperatures, the neutron star surface may be

in a condensed state with little gas or plasma above it; such surface condensation

may lead to the formation of a charge-depleted acceleration zone (“vacuum gap”)



in the magnetosphere above the stellar polar cap. We quantitatively determine

the conditions for surface condensation and vacuum gap formation in magnetic

neutron stars. We find that condensation can occur if the thermal energy kT of

the neutron star surface is less than about 8% of its cohesive energy Qs, and that

a vacuum gap can form if kT is less than about 4% of Qs.

We study the conditions for the onset of pair cascades in the magnetospheres

of neutron stars and the related pulsar death line/boundary. We also present

Monte Carlo simulations of the full pair cascade from onset to completion. Our

calculations generalize previous works to the superstrong field regime. We find that

curvature radiation is a viable mechanism for the initiation of pair cascades, but

that resonant and nonresonant inverse Compton scatterings are not. Additionally,

we obtain the final photon spectra and pair energy distribution functions of the

cascade and find significant differences between their nature in high-field neutron

stars and in moderate-field neutron stars.
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CHAPTER 1

OVERVIEW

This thesis contains three parts dealing with various aspects of matter and

radiation in highly magnetized neutron stars: on the properties of matter in strong

magnetic fields (Part I), on the formation of condensed matter on the surface of a

neutron star and a charge-depleted acceleration zone in the magnetosphere above

the stellar polar cap (Part II), and on the physics of pair cascades in neutron star

magnetospheres (Part III).

Part I consists of Chapters 2–4. In Chapters 2 and 3 we present calculations

of the electronic structure of matter in strong magnetic fields ranging from B =

1012 G to 2 × 1015 G, appropriate for observed magnetic neutron stars. At these

field strengths, the magnetic forces on the electrons dominate over the Coulomb

forces, and to a good approximation the electrons are confined to the ground

Landau level. Our calculations are based on the density functional theory, and

use a local magnetic exchange-correlation function appropriate in the strong field

regime. The band structures of electrons in different Landau orbitals are computed

self-consistently. Numerical results of the ground-state energies for atoms and

molecules are given in Chapter 2 for HN (up to N = 10), HeN (up to N =

8), CN (up to N = 5), and FeN (up to N = 3), as well as for various ionized

atoms. Numerical results of the ground-state energies and electron work functions

for one-dimensional chains are given in Chapter 3 for H∞, He∞, C∞, and Fe∞.

Fitting formulae for the B-dependence of the energies are also given in both cases.

In general, as N increases, the binding energy per atom in a molecule, |EN |/N ,

increases and approaches the energy per cell of the corresponding infinite chain.

For all the field strengths considered in these two chapters, hydrogen, helium, and
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carbon molecules and chains are found to be bound relative to individual atoms

(although for B less than a few ×1012 G, carbon molecules and chains are very

weakly bound relative to individual atoms). Iron molecules are not bound at

B <∼ 1013 G, but become energetically more favorable than individual atoms at

larger field strengths; similarly, iron chains are significantly bound for B >∼ 1014 G

and are weakly bound if at all at B <∼ 1013 G. In Chapter 3 we also study the

cohesive property of three-dimensional condensed matter of H, He, C, and Fe at

zero pressure, constructed from interacting chains in a body-centered tetragonal

lattice. Such three-dimensional condensed matter is found to be bound relative to

individual atoms, with the cohesive energy increasing rapidly with increasing B.

In Chapter 4 we present Hartree–Fock calculations of the polarization-dependent

photoionization cross sections of the He atom in strong magnetic fields ranging from

1012 G to 1014 G. We are motivated by recent observations of thermally emitting

isolated neutron stars, which revealed spectral features that could be interpreted

as radiative transitions of He in a magnetized neutron star atmosphere. Conve-

nient fitting formulae for the cross sections are given as well as related oscillator

strengths for various bound-bound transitions. The effects of finite nucleus mass

on the radiative absorption cross sections are examined using perturbation theory.

Part II consists of Chapter 5. In Chapter 5 we investigate several important

astrophysical implications of our calculations of the cohesive property of magnetic

condensed matter (Chapters 2 and 3). These calculations suggest that for suffi-

ciently strong magnetic fields and/or low temperatures, the neutron star surface

may be in a condensed state with little gas or plasma above it. Such surface

condensation can significantly affect the thermal emission from isolated neutron

stars, and may lead to the formation of a charge-depleted acceleration zone (“vac-
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uum gap”) in the magnetosphere above the stellar polar cap. In this chapter we

quantitatively determine the conditions for surface condensation and vacuum gap

formation in magnetic neutron stars. We find that condensation can occur if the

thermal energy kT of the neutron star surface is less than about 8% of its cohesive

energy Qs, and that a vacuum gap can form if Ω ·Bp < 0 (i.e., the neutron star’s

rotation axis and magnetic moment point in opposite directions) and kT is less

than about 4% of Qs. For example, at B = 3×1014 G, a condensed Fe surface forms

when T <∼ 107 K and a vacuum gap forms when T <∼ 5× 106 K. Thus, vacuum gap

accelerators may exist for some neutron stars. We discuss the implications of our

results for the recent observations of neutron star thermal radiation as well as for

the detection/non-detection of radio emission from high-B pulsars and magnetars.

Part III consists of Chapters 6 and 7. In Chapter 6 we study the conditions

for the onset of pair cascading in the magnetospheres of neutron stars, motivated

by the important role these cascades play in the emission of coherent radio waves

from pulsars. To initiate the cascade an acceleration region is required; we consider

acceleration zones formed either by complete charge depletion directly above the

polar cap due to surface condensation, as described in Chapter 5 (a Ruderman-

Sutherland type “vacuum gap”), or by partial charge depletion over a more ex-

tended region due to relativistic frame dragging (a type of “space-charge-limited-

flow” gap). Our calculations of the condition of cascade-induced gap breakdown

and the related pulsar death line/boundary generalize previous works to the super-

strong field regime. Photon emission by accelerating electrons and positrons due

to both curvature radiation and resonant/nonresonant inverse Compton scattering

are considered; we find that inverse Compton scatterings do not produce a suffi-

cient number of high energy photons in the gap (despite the fact that resonantly

upscattered photons can immediately produce pairs for B >∼ 1.6 × 1014 G) and
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thus do not lead to pair cascades for most neutron star parameters.

In Chapter 7 we present simulations of the full pair cascade from onset to

completion, for various neutron star parameters (spin, magnetic field strength and

geometry, and temperature). The initial strength of the cascade (peak energy

and number of particles) is estimated from our analysis of the acceleration region

(Chapter 6). Our calculations of the final photon spectra and pair plasma dis-

tributions for the pair cascade generalize previous works to the superstrong field

regime (both photon splitting and low-Landau-level pair creation are considered).

We find that when curvature radiation is the dominant mechanism for photon

emission in the gap, the pulsar death lines/boundaries derived in Chapter 6 and in

other works are good indicators of the strength of the cascade (e.g., if the neutron

star lies on the “alive” side of the death boundary it will have a very strong cas-

cade); when inverse Compton scattering (resonant or not) is the dominant photon

emission mechanism, most neutron stars will have very weak cascades regardless

of the death boundary.
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CHAPTER 2

DENSITY-FUNCTIONAL-THEORY CALCULATIONS OF

MATTER IN STRONG MAGNETIC FIELDS: ATOMS AND

MOLECULES

2.1 Introduction

Neutron stars (NSs) are endowed with magnetic fields far beyond the reach of

terrestrial laboratories (Mészáros 1992; Reisenegger 2005; Harding & Lai 2006).

Most of the ∼ 1600 known radio pulsars have surface magnetic fields in the range

of 1011 − 1013 G, as inferred from their measured spin periods and period deriva-

tives and the assumption that the spindown is due to magnetic dipole radiation. A

smaller population of older, millisecond pulsars have B ∼ 108 − 109 G. For about

a dozen accreting neutron stars in binary systems, electron cyclotron features have

been detected, implying surface fields of B ∼ 1012−1013 G. An important develop-

ment in astrophysics in the last decade centered on the so-called anomalous x-ray

pulsars and soft gamma repeaters (Woods & Thompson 2005): there has been

mounting observational evidence in recent years that supports the idea that these

are magnetars, neutron stars whose radiations are powered by superstrong mag-

netic fields of order 1014−1015 G or higher (Duncan & Thompson 1992; Thompson

& Duncan 1995, 1996). By contrast, the highest static magnetic field currently pro-

duced in a terrestrial laboratory is 5 × 105 G; transient fields approaching 109 G

have recently been generated during high-intensity laser interactions with dense

plasmas (Wagner et al. 2004).

It is well-known that the properties of matter can be drastically modified by

strong magnetic fields found on neutron star surfaces. The natural atomic unit for
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the magnetic field strength, B0, is set by equating the electron cyclotron energy

h̄ωBe = h̄(eB/mec) = 11.577B12 keV, where B12 = B/(1012 G), to the character-

istic atomic energy e2/a0 = 2 × 13.6 eV (where a0 is the Bohr radius):

B0 =
m2

ee
3c

h̄3 = 2.3505 × 109 G. (2.1)

For b = B/B0 >∼ 1, the usual perturbative treatment of the magnetic effects on

matter (e.g., Zeeman splitting of atomic energy levels) does not apply. Instead, in

the transverse direction (perpendicular to the field) the Coulomb forces act as a

perturbation to the magnetic forces, and the electrons in an atom settle into the

ground Landau level. Because of the extreme confinement of the electrons in the

transverse direction, the Coulomb force becomes much more effective in binding

the electrons along the magnetic field direction. The atom attains a cylindrical

structure. Moreover, it is possible for these elongated atoms to form molecular

chains by covalent bonding along the field direction. Interactions between the

linear chains can then lead to the formation of three-dimensional condensed matter

(Ruderman 1974; Ruder et al. 1994; Lai 2001).

Our main motivation for studying matter in such strong magnetic fields arises

from the importance of understanding neutron star surface layers, which play a

key role in many neutron star processes and observed phenomena. Theoretical

models of pulsar and magnetar magnetospheres depend on the cohesive properties

of the surface matter in strong magnetic fields (Ruderman & Sutherland 1975;

Arons & Scharlemann 1979; Usov & Melrose 1996; Harding & Muslimov 1998;

Beloborodov & Thompson 2007). For example, depending on the cohesive energy

of the surface matter, an acceleration zone (“polar gap”) above the polar cap of a

pulsar may or may not form. More importantly, the surface layer directly mediates

the thermal radiations from neutron stars. The advent of x-ray telescopes in recent

years has made detailed study of neutron star surface emission a reality. Such
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study can potentially provide invaluable information on the physical properties

and evolution of NSs: equation of state at supernuclear densities, superfluidity,

cooling history, magnetic field, surface composition, different NS populations, etc.

(see, e.g., Yakovlev & Pethick 2004). More than two dozen isolated neutron stars

(including radio pulsars, radio-quiet neutron stars and magnetars) have clearly

detected thermal surface emission (Kaspi et al. 2006; Haberl 2005; Harding & Lai

2006). While some neutron stars show featureless spectra, absorption lines or

features have been detected in half a dozen or so systems (Haberl 2005). Indeed,

many of the observed neutron stars have sufficiently low surface temperatures

and/or high magnetic fields, such that bound atoms or molecules are expected to

be present in their atmospheres (Lai & Salpeter 1997; Potekhin et al. 1999; Ho &

Lai 2003; Potekhin et al. 2004). It is even possible that the atmosphere is condensed

into a solid or liquid form from which radiation directly emerges (Lai & Salpeter

1997; van Adelsberg et al. 2005; Lai 2001). Thus, in order to properly interpret

various observations of neutron stars, it is crucial to have a detailed understanding

of the properties of atoms, molecules and condensed matter in strong magnetic

fields (B ∼ 1011-1016 G).

2.1.1 Previous works

H and He atoms at almost all field strengths have been well studied (Ruder et

al. 1994; Jones et al. 1999; Al-Hujaj & Schmelcher 2003a), including the nontriv-

ial effect associated with the center-of-mass motion of a H atom (Potekhin 1998).

Neuhauser et al. (1987) presented numerical results for several atoms up to Z = 26

(Fe) at B ∼ 1012 G based on calculations using a one-dimensional Hartree-Fock

method (see also Mori & Hailey 2002 for Z up to 10). Some results [based on
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a two-dimensional (2D) mesh Hartree-Fock method] for atoms (up to Z = 10)

at the field strengths B/B0 = 0.5 − 104 are also available (Ivanov & Schmelcher

2000; Al-Hujaj & Schmelcher 2004a,b). The Hartree-Fock method is approximate

because electron correlations are neglected. Due to their mutual repulsion, any

pair of electrons tend to be more distant from each other than the Hartree-Fock

wave function would indicate. In zero-field, this correlation effect is especially pro-

nounced for the spin-singlet states of electrons for which the spatial wave function

is symmetrical. In strong magnetic fields (B � B0), the electron spins (in the

ground state) are all aligned antiparallel to the magnetic field, and the multielec-

tron spatial wave function is antisymmetric with respect to the interchange of two

electrons. Thus the error in the Hartree-Fock approach is expected to be less than

the 1% accuracy characteristic of zero-field Hartree-Fock calculations (Neuhauser

et al. 1987; Schmelcher et al. 1999). Other calculations of heavy atoms in strong

magnetic fields include Thomas-Fermi type statistical models (Fushiki et al. 1992;

Lieb et al. 1994a,b) and density functional theory (Jones 1985, 1986; Kössl et al.

1988; Relovsky & Ruder 1996). The Thomas-Fermi type models are useful in es-

tablishing asymptotic scaling relations, but are not adequate for obtaining accurate

binding and excitation energies. The density functional theory can potentially give

results as accurate as the Hartree-Fock method after proper calibration is made

(Vignale & Rasolt 1987, 1988).

Quantitative results for the energies of hydrogen molecules HN with N =

2, 3, 4, 5 in a wide range of field strengths (B � B0) were obtained (based on

the Hartree-Fock method) by Lai et al. (Lai et al. 1992; Lai 2001) and molecular

excitations were studied in Lai & Salpeter (1996); Schmelcher et al. (2001) (more

complete references can be found in Lai 2001). Quantum Monte Carlo calculations

of H2 in strong magnetic fields have been performed (Ortiz et al. 1995). Some
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numerical results of He2 for various field strengths are also available (Lai 2001).

Hartree-Fock results of diatomic molecules (from H2 up to C2) and several larger

molecules (up to H5 and He4) at B/B0 = 1000 are given in Demeur et al. (1994).

2.1.2 Plan of this chapter

In this chapter and Chapter 3, we develop a density-functional-theory calculation

of the ground-state energy of matter for a wide range of magnetic field strengths,

from 1012 G (typical of radio pulsars) to 2×1015 G (magnetar fields). We consider

H, He, C, and Fe, which represent the most likely composition of the outermost

layer of neutron stars (e.g., Harding & Lai 2006). The present chapter focuses on

atoms (and related ions) and small molecules. Because of additional complications

related to the treatment of band structure, calculations of infinite molecular chains

and condensed matter are presented in Medin & Lai (2006a).

Our calculations are based on density functional theory (Hohenberg & Kohn

1964; Kohn & Sham 1965; Jones & Gunnarsson 1989). As mentioned above, the

Hartree-Fock method is expected to be highly accurate, particularly in the strong

field regime where the electron spins are aligned with each other. In this regime the

density functional method is not as accurate, due to the lack of an exact correlation

function for electrons in strong magnetic fields. However, in dealing with systems

with many electrons, the Hartree-Fock method becomes increasingly impractical

as the magnetic field increases, since more and more Landau orbitals (even though

electrons remain in the ground Landau level) are occupied and keeping track of

the direct and exchange interactions between electrons in various orbitals becomes

computationally rather tedious. Our density-functional calculations allow us to

obtain the energies of atoms and small molecules and the energy of condensed
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matter using the same method, thus providing reliable cohesive energy of con-

densed surface of magnetic neutron stars, a main goal of our study. Compared

to previous density-functional-theory calculations (Jones 1985, 1986; Kössl et al.

1988; Relovsky & Ruder 1996), we use an improved exchange-correlation function

for highly magnetized electron gases, we calibrate our density functional code with

previous results (when available) based on other methods, and (for calculations of

condensed matter) adopt a more accurate treatment of the band structure. More-

over, our calculations extend to the magnetar-like field regime (B ∼ 1015 G).

Note that in this chapter we neglect the motions of the nuclei, due to electron-

nucleus interactions or finite temperatures. The center-of-mass motions of the

atoms and molecules induce the motional Stark effect, which can change the inter-

nal structure of the bound states (see, e.g., Lai 2001; Potekhin 1998). Such issues

are beyond the scope of this chapter.

After summarizing the approximate scaling relations for atoms and molecules

in strong magnetic fields in Section 2.2, we describe our method in Section 2.3

and present numerical results in Section 2.4. Some technical details are given in

Appendix A.

This chapter is based on the published paper by Medin & Lai 2006 [Medin

Z., Lai D., 2006, Physical Review A, 74, 062507; c©2006. The American Physical

Society. All rights reserved]. It is reprinted here with minor changes, based on

rights retained by the author.
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2.2 Basic scaling relations for atoms and molecules in strong

magnetic fields

2.2.1 Atoms

First consider a hydrogenic atom (with one electron and nuclear charge Z). In

a strong magnetic field with b = B/B0 � Z2, the electron is confined to the

ground Landau level (“adiabatic approximation”), and the Coulomb potential can

be treated as a perturbation. The energy spectrum is specified by two quantum

numbers, (m, ν), where m = 0, 1, 2, . . . measures the mean transverse separation

between the electron and the nucleus (−m is also known as the magnetic quantum

number), while ν specifies the number of nodes in the z wave function. There are

two distinct types of states in the energy spectrum Emν. The “tightly bound” states

have no node in their z wave functions (ν = 0). The transverse size of the atom

in the (m, 0) state is L⊥ ∼ ρm = (2m + 1)1/2ρ0, with ρ0 = (h̄c/eB)1/2 = b−1/2 (in

atomic units).1 For ρm � 1, the atom is elongated with Lz � L⊥. We can estimate

the longitudinal size Lz by minimizing the energy, E ∼ L−2
z − ZL−1

z ln(Lz/L⊥)

(where the first term is the kinetic energy and the second term is the Coulomb

energy), giving

Lz ∼
(

Z ln
1

Zρm

)−1

. (2.2)

The energy is given by

Em0 ∼ −Z2

[

ln
1

Z2

(

b

2m + 1

)]2

(2.3)

for b � (2m + 1)Z2. Another type of state of the atom has nodes in the z wave

functions (ν > 0). These states are “weakly bound”, and have energies given by

1Unless otherwise specified, we use atomic units, in which length is in a0 (Bohr radius), mass
in me, energy in e2/a0 = 2 Ry, and field strength in units of B0.
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Emν ' −Z2n−2 Ry, where n is the integer part of (ν + 1)/2. The sizes of the wave

functions are ρm perpendicular to the field and Lz ∼ ν2/Z along the field (see Lai

2001 and references therein for more details).

A multielectron atom (with the number of electrons Ne and the charge of the

nucleus Z) can be constructed by placing electrons at the lowest available energy

levels of a hydrogenic atom. The lowest levels to be filled are the tightly bound

states with ν = 0. When a0/Z �
√

2Ne − 1ρ0, i.e., b� 2Z2Ne, all electrons settle

into the tightly bound levels with m = 0, 1, 2, · · · , Ne − 1. The energy of the atom

is approximately given by the sum of all the eigenvalues of Eq. (2.3). Accordingly,

we obtain an asymptotic expression for Ne � 1 (Kadomtsev & Kudryavtsev 1971):

E ∼ −Z2Ne

(

ln
b

2Z2Ne

)2

. (2.4)

For intermediate-strong fields (but still strong enough to ignore Landau exci-

tations), Z2N−2/3
e � b � 2Z2Ne, many ν > 0 states of the inner Landau orbitals

(states with relatively small m) are populated by the electrons. In this regime

a Thomas-Fermi type model for the atom is appropriate, i.e., the electrons can

be treated as a one-dimensional Fermi gas in a more or less spherical atomic cell

(see, e.g., Kadomtsev 1970; Mueller, Rau, & Spruch 1971). The electrons oc-

cupy the ground Landau level, with the z momentum up to the Fermi momentum

pF ∼ n/b, where n is the number density of electrons inside the atom (recall

that the degeneracy of a Landau level is eB/hc ∼ b). The kinetic energy of

electrons per unit volume is εk ∼ b p3
F ∼ n3/b2, and the total kinetic energy is

Ek ∼ R3n3/b2 ∼ N3
e /(b

2R6), where R is the radius of the atom. The potential

energy is Ep ∼ −ZNe/R (for Ne <∼ Z). Therefore the total energy of the atom can

be written as E ∼ N 3
e /(b

2R6) − ZNe/R. Minimizing E with respect to R yields

R ∼ (N2
e /Z)1/5b−2/5, E ∼ −(Z2Ne)

3/5b2/5. (2.5)
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For these relations to be valid, the electrons must stay in the ground Landau level;

this requires Z/R� h̄ωBe = b, which corresponds to b� Z2N−2/3
e .

2.2.2 Molecules

In a strong magnetic field, the mechanism of forming molecules is quite different

from the zero-field case (Ruderman 1974; Lai et al. 1992). Consider hydrogen as

an example. The spin of the electron in a H atom is aligned antiparallel to the

magnetic field (flipping the spin would cost h̄ωBe), therefore two H atoms in their

ground states (m = 0) do not bind together according to the exclusion principle.

Instead, one H atom has to be excited to the m = 1 state. The two H atoms, one

in the ground state (m = 0), another in the m = 1 state then form the ground

state of the H2 molecule by covalent bonding. Since the activation energy for

exciting an electron in the H atom from the Landau orbital m to (m+ 1) is small,

the resulting H2 molecule is stable. Similarly, more atoms can be added to form

H3, H4, . . .. The size of the H2 molecule is comparable to that of the H atom.

The interatomic separation a and the dissociation energy D of the H2 molecule

scale approximately as a ∼ (ln b)−1 and D ∼ (ln b)2, although D is numerically

smaller than the ionization energy of the H atom. (See Fig. 2.2.2 for a sketch of

the formation of H2.)

Consider the molecule ZN , formed out of N neutral atoms Z (each with Z

electrons and nuclear charge Z). For sufficiently large b (see below), the electrons

occupy the Landau orbitals with m = 0, 1, 2, . . . , NZ− 1, and the transverse size

of the molecule is L⊥ ∼ (NZ/b)1/2. Let a be the atomic spacing and Lz ∼ Na the

size of the molecule in the z direction. The energy per “atom” in the molecule,

E = EN/N , can be written as E ∼ Z(Na)−2 − (Z2/a)l, where l ∼ ln(a/L⊥).
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Figure 2.1: Upper panel: A schematic diagram showing the formation of the
ground-state H2 molecule. The ground state of H3 is shown as well. Lower panels:
Longitudinal wave functions for the electron orbitals of the ground state (m = 0)
and first excited state (m = 1) of H at B12 = 1 (left panel); and of the ground state
(m = 0, 1) of H2 at B12 = 1, at equilibrium ion separation (right panel). Only the
z ≥ 0 region is shown. Wave functions are symmetric about z = 0. For the panel
depciting H2 wave functions, the filled circle denotes the ion location.
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Variation of E with respect to a gives

a ∼ (ZN2l)−1, E ∼ −Z3N2l2, with l ∼ ln

(

b

N5Z3

)

. (2.6)

This above scaling behavior is valid for 1 � N � Ns. The “critical saturation

number” Ns is reached when a ∼ L⊥, or when (Lai et al. 1992)

Ns ∼
(

b

Z3

)1/5

. (2.7)

Beyond Ns, it becomes energetically more favorable for the electrons to settle into

the inner Landau orbitals (with smaller m) with nodes in their longitudinal wave

functions (i.e., ν 6= 0). For N >∼ Ns, the energy per atom asymptotes to a value

E ∼ −Z9/5b2/5, and size of the atom scales as L⊥ ∼ a ∼ Z1/5b−2/5, independent of

N — the molecule essentially becomes one-dimensional condensed matter.

The scaling relations derived above are obviously crude — they are expected

to be valid only in the asymptotic limit, ln(b/Z3) � 1. For realistic neutron stars,

this limit is not quite reached. Thus these scaling results should only serve as a

guide to the energies of various molecules. For a given field strength, it is not clear

from the above analysis whether the ZN molecule is bound relative to individual

atoms. To answer this question requires quantitative calculations.

2.3 Density-functional calculations: Methods and equa-

tions

Our calculations will be based on the “adiabatic approximation,” in which all

electrons are assumed to lie in the ground Landau level. For atoms or molecules

with nucleus charge number Z, this is an excellent approximation for b � Z2.
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Even under more relaxed condition, b � Z4/3 (assuming the number of electrons

in each atom is Ne ∼ Z) this approximation is expected to yield a reasonable

total energy of the system and accurate results for the energy difference between

different atoms and molecules; a quantitative evaluation of this approximation in

this regime is beyond the scope of this chapter (but see Ivanov & Schmelcher 2000;

Al-Hujaj & Schmelcher 2004a,b).

In the adiabatic approximation, the one-electron wave function (“orbital”) can

be separated into a transverse (perpendicular to the external magnetic field) com-

ponent and a longitudinal (along the magnetic field) component:

Ψmν(r) = Wm(r⊥)fmν(z) . (2.8)

Here Wm is the ground-state Landau wave function (Landau & Lifshitz 1977) given

by

Wm(r⊥) =
1

ρ0

√
2πm!

(

ρ√
2ρ0

)m

exp

(

−ρ2

4ρ2
0

)

exp(−imφ) , (2.9)

where ρ0 = (h̄c/eB)1/2 is the cyclotron radius (or magnetic length), and fmν is the

longitudinal wave function which must be solved numerically. We normalize fmν

over all space:
∫ ∞

−∞
dz |fmν(z)|2 = 1 , (2.10)

so that
∫

dr |Ψmν(r)|2 = 1. The density distribution of electrons in the atom or

molecule is

n(r) =
∑

mν

|Ψmν(r)|2 =
∑

mν

|fmν(z)|2|Wm|2(ρ) , (2.11)

where the sum is over all the electrons in the atom or molecule, with each electron

occupying an (mν) orbital. The notation |Wm|2(ρ) = |Wm(r⊥)|2 is used here

because Wm is a function of ρ and φ but |Wm|2 is a function only of ρ.
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In an external magnetic field, the Hamiltonian of a free electron is

Ĥ =
1

2me

(

p +
e

c
A
)2

+
h̄eB

2mec
σz , (2.12)

where A = 1
2
B × r is the vector potential of the external magnetic field and σz

is the z component Pauli spin matrix. For electrons in Landau levels, with their

spins aligned parallel/antiparallel to the magnetic field, the Hamiltonian becomes

Ĥ =
p̂2

z

2me

+
(

nL +
1

2

)

h̄ωBe ±
1

2
h̄ωBe , (2.13)

where nL = 0, 1, 2, · · · is the Landau level index; for electrons in the ground Landau

level, with their spins aligned antiparallel to the magnetic field (so nL = 0 and

σz → −1),

Ĥ =
p̂2

z

2me
. (2.14)

The total Hamiltonian for the atom or molecule then becomes

Ĥ =
∑

i

p̂2
z,i

2me
+ V , (2.15)

where the sum is over all electrons and V is the total potential energy of the atom

or molecule. From this we can derive the total energy of the system.

Note that we use nonrelativistic quantum mechanics in our calculations, even

when h̄ωBe >∼ mec
2 or B >∼ BQ = B0/α

2 = 4.414 × 1013 G (where alpha = e2/(h̄c)

is the fine structure constant). This is valid for two reasons: (i) The free-electron

energy in relativistic theory is

E =

[

c2p2
z +m2

ec
4

(

1 + 2nL
B

BQ

)]1/2

. (2.16)

For electrons in the ground Landau level (nL = 0), Eq. (2.16) reduces to E '

mec
2 + p2

z/(2me) for pzc � mec
2; the electron remains nonrelativistic in the z

direction as long as the electron energy is much less than mec
2; (ii) Eq. (2.9)
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indicates that the shape of Landau transverse wave function is independent of

particle mass, and thus Eq. (2.9) is valid in the relativistic theory. Our calculations

assume that the longitudinal motion of the electron is nonrelativistic. This is valid

at all field strengths and for all elements considered with the exception of iron at

B >∼ 1015 G. Even at B = 2×1015 G (the highest field considered in this chapter),

however, we find that the most-bound electron in any Fe atom or molecule has

a longitudinal kinetic energy of only ∼ 0.2mec
2 and only the three most-bound

electrons have longitudinal kinetic energies >∼ 0.1mec
2. Thus relativistic corrections

are small in the field strengths considered in this chapter. Moreover, we expect

our results for the relative energies between Fe atoms and molecules to be much

more accurate than the absolute energies of either the atoms or the molecules.

Consider the molecule ZN , consisting of N atoms, each with an ion of charge

Z and Z electrons. In the lowest-energy state of the system, the ions are aligned

along the magnetic field. The spacing between ions, a, is chosen to be constant

across the molecule. In the density functional theory, the total energy of the system

can be represented as a functional of the total electron density n(r):

E [n] = EK[n] + EeZ [n] + Edir[n] + Eexc[n] + EZZ[n] . (2.17)

Here EK[n] is the kinetic energy of a system of noninteracting electrons, and EeZ ,

Edir, and EZZ are the electron-ion Coulomb energy, the direct electron-electron

interaction energy, and the ion-ion interaction energy, respectively,

EeZ [n] = −
N
∑

j=1

Ze2
∫

dr
n(r)

|r − zj|
, (2.18)

Edir[n] =
e2

2

∫ ∫

dr dr′
n(r)n(r′)

|r− r′| , (2.19)

EZZ[n] =
N−1
∑

j=1

(N − j)
Z2e2

ja
. (2.20)
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The location of the ions in the above equations is represented by the set {zj}, with

zj = (2j −N − 1)
a

2
ẑ . (2.21)

The term Eexc represents exchange-correlation energy. In the local approximation,

Eexc[n] =
∫

drn(r) εexc(n) , (2.22)

where εexc(n) = εex(n)+εcorr(n) is the exchange and correlation energy per electron

in a uniform electron gas of density n. For electrons in the ground Landau level,

the (Hartree-Fock) exchange energy can be written as follows (Danz & Glasser

1971):

εex(n) = −πe2ρ2
0nF (t) , (2.23)

where the dimensionless function F (t) is

F (t) = 4
∫ ∞

0
dx
[

tan−1
(

1

x

)

− x

2
ln
(

1 +
1

x2

)]

e−4tx2

, (2.24)

and

t =
(

n

nB

)2

= 2π4ρ6
0n

2, (2.25)

[nB = (
√

2π2ρ3
0)

−1 is the density above which the higher Landau levels start to

be filled in a uniform electron gas]. For small t, F (t) can be expanded as follows

(Fushiki et al. 1989):

F (t) ' 3−γ−ln 4t+
2t

3

(

13

6
− γ − ln 4t

)

+
8t2

15

(

67

30
− γ − ln 4t

)

+O(t3 ln t), (2.26)

where γ = 0.5772 · · · is Euler’s constant. We have found that the condition t� 1 is

well satisfied everywhere for almost all molecules in our calculations. The notable

exceptions are the carbon molecules at B = 1012 G and the iron molecules at

B = 1013 G, which have t <∼ 1 near the center of the molecule. These molecules

are expected to have higher t values than the other molecules in our calculations,

as they have large Z and low B.2

2For the uniform gas model, t ∝ Z6/5N
−2/5
e B−3/5.
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The correlation energy of uniform electron gas in strong magnetic fields has

not be calculated in general, except in the regime t � 1 and Fermi wavenumber

kF = 2π2ρ2
0n � 1 [or n � (2π3ρ2

0a0)
−1]. Skudlarski and Vignale (1993) use the

random-phase approximation to find a numerical fit for the correlation energy in

this regime (see also Steinberg & Ortner 1998):

εcorr = −e
2

ρ0

[0.595(t/b)1/8(1 − 1.009t1/8)] . (2.27)

In the absence of an “exact” correlation energy density we employ this strong-

field-limit expression. Fortunately, because we are concerned mostly with finding

energy changes between different states of atoms and molecules, the correlation

energy term does not have to be exact. The presence or the form of the correlation

term has a modest effect on the atomic and molecular energies calculated but has

very little effect on the energy difference between them (see Appendix A.2 for more

details on various forms of the correlation energy and comparisons).

Variation of the total energy with respect to the total electron density, δE [n]/δn =

0, leads to the Kohn-Sham equations:
[

− h̄2

2me
∇2 + Veff(r)

]

Ψmν(r) = εmνΨmν(r) , (2.28)

where

Veff(r) = −
N
∑

j=1

Ze2

|r− zj|
+ e2

∫

dr′
n(r′)

|r − r′| + µexc(n), (2.29)

with

µexc(n) =
∂(nεexc)

∂n
. (2.30)

Averaging the Kohn-Sham equations over the transverse wave function yields a set

of one-dimensional equations:


− h̄2

2me

d2

dz2
−

N
∑

j=1

Ze2
∫

dr⊥
|Wm|2(ρ)
|r − zj|

+ e2
∫ ∫

dr⊥ dr
′ |Wm|2(ρ)n(r′)

|r − r′|

+
∫

dr⊥ |Wm|2(ρ)µexc(n)
)

fmν(z) = εmνfmν(z) . (2.31)
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These equations are solved self-consistently to find the eigenvalue εmν and the

longitudinal wave function fmν(z) for each orbital occupied by the ZN electrons.

Once these are known, the total energy of the system can be calculated using

E [n] =
∑

mν

εmν −
e2

2

∫ ∫

drdr′
n(r)n(r′)

|r − r′|

+
∫

drn(r)[εexc(n) − µexc(n)] +
N−1
∑

j=1

(N − j)
Z2e2

ja
. (2.32)

Details of our method used in computing the various integrals and solving the

above equations are given in Appendix A.1.

Note that for a given system, the occupations of electrons in different (mν)

orbitals are not known a priori, and must be determined as part of the procedure

of finding the minimum energy state of the system. In our calculation, we first guess

n0, n1, n2, . . ., the number of electrons in the ν = 0, 1, 2, . . . orbitals, respectively

(e.g., the electrons in the ν = 0 orbitals have m = 0, 1, 2, . . . , n0 − 1). Note that

n0 + n1 + n2 + · · · = NZ. We find the energy of the system for this particular

set of electron occupations. We then vary the electron occupations and repeat the

calculation until the true minimum energy state is found. Obviously, in the case of

molecules, we must vary the ion spacing a to determine the equilibrium separation

and the the ground-state energy of the molecule. Graphical examples of how the

ground state is chosen are given in Section 2.4.

2.4 Results

In this section we present our results for the parallel configuration of HN (up to

N = 10), HeN (up to N = 8), CN (up to N = 5), and FeN (up to N = 3)

at various magnetic field strengths between B = 1012 G and 2 × 1015 G. For
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each molecule (or atom), data is given in tabular form on the molecule’s ground-

state energy, the equilibrium separation of the ions in the molecule, and its orbital

structure (electron occupation numbers n0, n1, n2, . . .). In some cases the first-

excited-state energies are given as well, when the ground-state and first-excited-

state energies are similar in value. We also provide the ground-state energies for

selected ionization states of C and Fe atoms; among other uses, these quantities

are needed for determining the ion emission from a condensed neutron star surface

(Medin & Lai 2006a). All of the energies presented in this section are calculated

to better than 0.1% numerical accuracy (see Appendix A.1).

For each of the molecules and ions presented in this section we provide numer-

ical scaling relations for the ground-state energy as a function of magnetic field, in

the form of a scaling exponent β with EN ∝ Bβ
12. We have provided this informa-

tion to give readers easy access to energy values for fields in between those listed

in the tables. The ground-state energy is generally not well fit by a constant β

over the entire magnetic field range covered by this work, so we have provided β

values over several different magnetic field ranges. Note that the theoretical value

β = 2/5 (see Section 2.2) is approached only in certain asymptotic limits.

We discuss here briefly a few trends in the data: All of the molecules listed

in the following tables are bound. The Fe2 and Fe3 molecules at B12 = 5 are not

bound, so we have not listed them here, but we have listed the Fe atom at this field

strength for comparison with other works. All of the bound molecules listed below

have ground-state energies per atom that decrease monotonically with increasing

N , with the exception of HN at B12 = 1, which has a slight upward glitch in energy

at H4 (see Table 2.1). Additionally, these energies approach asymptotic values for

large N — the molecule essentially becomes one-dimensional condensed matter
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(Medin & Lai 2006a). The equilibrium ion separations also approach asymptotic

values for large N , but there is no strong trend in the direction of approach:

sometimes the equilibrium ion separations increase with increasing N , sometimes

they decrease, and sometimes they oscillate back and forth.

In general, we find that for a given molecule (e.g., Fe3), the number of electrons

in ν > 0 states decreases as the magnetic field increases. This is because the

characteristic transverse size ρ0 ∝ B−1/2 decreases, so the electrons prefer to stay

in the ν = 0 states. For a given field strength, as the number of electrons in the

system NNe increases (e.g., from Fe2 to Fe3), more electrons start to occupy the

ν > 0 states since the average electron-nucleus separation ρm ∝ (2m + 1)1/2B−1/2

becomes too large for large m. For large enough N the value of n0, the number of

electrons in ν = 0 states, levels off, approaching its infinite chain value (see Medin

& Lai 2006a). Similar trends happen with n1, n2, etc., though much more slowly.

There are two ways that we have checked the validity of our results by compar-

ison with other works. First, we have repeated several of our atomic and molecu-

lar calculations using the correlation energy expression empirically determined by

Jones (1985):

εcorr = −e
2

ρ0
(0.0096 ln ρ3

0n + 0.122) . (2.33)

The results we then obtain for the atomic ground-state energies agree with those

of Jones (1985, 1986). For example, for Fe at B12 = 5 we find an atomic energy of

−108.05 eV and Jones gives an energy of −108.18 eV. The molecular ground-state

energies per atom are of course not the same as those for the infinite chain from

Jones’s work, but they are comparable, particularly for the large molecules. For

example, we find for He8 at B12 = 5 that the energy per atom is −1242 eV and

Jones finds for He∞ that the energy per cell is −1260 eV. (See Appendix A.2 for a

23



brief discussion of why in our calculations we chose to use the Skudlarski-Vignale

correlation energy expression over that of Jones.)

Second, we have compared our hydrogen, helium, and carbon molecule results

to those of Demeur et al. (1994); Lai et al. (1992). Because these works use

the Hartree-Fock method, we cannot compare absolute ground-state energies with

theirs, but we can compare energy differences. We find fair agreement, though

the Hartree-Fock results are consistently smaller. Some of these comparisons are

presented in the following subsections.

2.4.1 Hydrogen

Our numerical results for H are given in Table 2.1 and Table 2.2. Note that at

B12 = 1, H4 is less bound than H3, and thus E = EN/N is not a necessarily a mono-

tonically decreasing function of N at this field strength. For the H4 molecule, two

configurations, (n0, n1) = (4, 0) and (3, 1), have very similar equilibrium energies

(see Fig. 2.2), although the equilibrium ion separations are different. The real

ground state may therefore be a “mixture” of the two configurations; such a state

would presumably give a lower ground-state energy for H4, and make the energy

trend monotonic.

Hartree-Fock results for H molecules are given in (Lai et al. 1992). For H2, H3,

and H4, the energies (per atom) are, respectively: −184.3, −188.7, −185.0 eV at

B12 = 1; −383.9, −418.8, −432.9 eV at B12 = 10; and −729.3, −847.4, −915.0 eV

at B12 = 100. Thus, our density-functional-theory calculation tends to overesti-

mate the energy |E| by about 10%. Note that the Hartree-Fock results also reveal

a non-monotonic behavior of E at N = 4 for B12 = 1, in agreement with our
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Figure 2.2: Molecular energy per atom versus ion separation for various hydrogen
molecules at B12 = 1. The energy of the H atom is shown as a horizontal line
at −161.4 eV. The two lowest-energy configurations of H4 have nearly the same
minimum energy, so the curves for both configurations are shown here.

density-functional result. Demeur et al. (1994) calculated the energies of H2–H5

at B12 = 2.35; their results exhibit similar trends.

2.4.2 Helium

Our numerical results for He are given in Table 2.3 and Table 2.4.

The energies (per atom) of He and He2 based on Hartree-Fock calculations

(Lai 2001) are, respectively: −575.5, −601.2 eV at B12 = 1; −1178, −1364 eV at

B12 = 10; −2193, −2799 eV at B12 = 100; and −3742, −5021 eV at B12 = 1000.

At B12 = 2.35, Demeur et al. (1994) find that the energies (per atom) of He, He2,
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Table 2.1: Ground-state energies, ion separations, and electron configurations of hydrogen molecules, over a range of magnetic
field strengths. In some cases the first-excited-state energies are also listed. Energies are given in units of eV, separations in
units of a0 (the Bohr radius). For molecules (HN) the energy per atom is given, E = EN/N . All of the H and H2 molecules
listed here have electrons only in the ν = 0 states. For the H3 and larger molecules here, however, the molecular structure is
more complicated, and is designated by the notation (n0, n1, . . .), where n0 is the number of electrons in the ν = 0 orbitals,
n1 is the number of electrons in the ν = 1 orbitals, etc.

H H2 H3 H4 H5

B12 E E a E a (n0, n1) E a (n0, n1) E a (n0, n1)
1 -161.4 -201.1 0.25 -209.4 0.22 (3,0) -208.4 0.21 (4,0) -213.8 0.23 (4,1)

-191.1 0.34 (2,1) -207.9 0.26 (3,1) -203.1 0.200 (5,0)
10 -309.5 -425.8 0.125 -469.0 0.106 (3,0) -488.1 0.096 (4,0) -493.5 0.090 (5,0)

-478.9 0.112 (4,1)
100 -540.3 -829.5 0.071 -961.2 0.057 (3,0) -1044.5 0.049 (4,0) -1095.5 0.044 (5,0)
1000 -869.6 -1540.5 0.044 -1818.0 0.033 (3,0) -2049 0.028 (4,0) -2222 0.024 (5,0)

H6 H8 H10

B12 E a (n0, n1) E a (n0, n1, n2) E a (n0, n1, n2)
1 -214.1 0.23 (4,2) -215.8 0.23 (5,2,1) -216.2 0.22 (6,3,1)

-213.4 0.21 (5,1) -215.3 0.25 (4,3,1) -216.0 0.23 (5,3,2)
10 -496.5 0.101 (5,1) -507.1 0.095 (8,2,0) -509.3 0.091 (7,3,0)

-490.8 0.86 (6,0) -504.1 0.089 (7,1,0) -506.8 0.087 (8,2,0)
100 -1125.0 0.041 (6,0) -1143.0 0.038 (8,0,0) -1169.5 0.038 (9,1,0)

-1139.5 0.043 (7,1,0) -1164.0 0.042 (8,2,0)
1000 -2351 0.22 (6,0) -2518 0.0190 (8,0,0) -2600 0.0170 (10,0,0)

-2542 0.0200 (9,1,0)
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Table 2.2: Fit of the ground-state energies of hydrogen molecules to the scaling
relation E ∝ Bβ

12. The scaling exponent β is fit for each molecule HN over three
magnetic field ranges: B12 = 1 − 10, 10 − 100, and 100 − 1000.

β
B12 H H2 H3 H4 H5 H6 H8 H10

1-10 0.283 0.326 0.350 0.370 0.363 0.365 0.371 0.372
10-100 0.242 0.290 0.312 0.330 0.346 0.355 0.353 0.361

100-1000 0.207 0.269 0.277 0.293 0.307 0.320 0.343 0.347

He3, and He4 are, respectively: −753.4, −812.6, −796.1, −805.1 eV. Using our

scaling relations, we find for that same field that the energies of He, He2, He3,

and He5 (we do not have an He4 result) are: −791, −871, −889, −901 eV. Thus,

our density-functional theory calculation tends to overestimate the energy |E| by

about 10%.

Figure 2.3 gives some examples of the longitudinal electron wave functions.

One wave function of each node type in the molecule (ν = 0 to 3) is represented.

Note that on the atomic scale each wave function is nodeless in nature; that is,

there are no nodes at the ions, only in between ions. This is not surprising when

one considers that all of the electrons in atomic helium at this field strength are

nodeless. The entire molecular wave function can be thought of as a string of

atomic wave functions, one around each ion, each modified by some phase factor

to give the overall nodal nature of the wave function. Indeed, for atoms at field

strengths that are low enough to allow ν > 0 states, we find that their correspond-

ing molecules have electron wave functions with nodes at the ions. Atomic Fe at

B12 = 10, for example, has an electron wave function with one node at the ion,

and Fe2 at B12 = 10 has an electron wave function with a node at each ion.
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Table 2.3: Ground-state energies, ion separations, and electron configurations of helium molecules, over a range of magnetic
field strengths. In some cases the first-excited-state energies are also listed. Energies are given in units of eV, separations in
units of a0 (the Bohr radius). For molecules (HeN ) the energy per atom is given, E = EN/N . All of the He and He2 molecules
listed here have electrons only in the ν = 0 states. For the He3 and larger molecules here, however, the molecular structure
is more complicated, and is designated by the notation (n0, n1, . . .), where n0 is the number of electrons in the ν = 0 orbitals,
n1 is the number of electrons in the ν = 1 orbitals, etc.

He He2 He3 He5 He8

B12 E E a E a (n0, n1) E a (n0, n1, n2) E a (n0, n1, n2, n3)
1 -603.5 -641.2 0.25 -647.3 0.28 (5,1) -653.1 0.29 (6,3,1) -656.7 0.28 (7,5,3,1)

-633.0 0.32 (4,2) -649.4 0.28 (7,2,1) -656.5 0.27 (8,5,2,1)
10 -1252.0 -1462.0 0.115 -1520.0 0.105 (6,0) -1553.5 0.110 (8,2,0) -1574.5 0.110 (10,5,1,0)

-1462.0 0.125 (5,1) -1547.5 0.105 (9,1,0) -1574.0 0.105 (11,4,1,0)
100 -2385 -3039 0.060 -3370 0.050 (6,0) -3573 0.044 (10,0,0) -3694 0.045 (13,3,0,0)

-3140 0.054 (5,1) -3543 0.049 (9,1,0) -3690 0.043 (14,2,0,0)
1000 -4222 -5787 0.036 -6803 0.028 (6,0) -7887 0.022 (10,0,0) -8406 0.0200 (15,1,0,0)

-8357 0.0180 (16,0,0,0)
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Table 2.4: Fit of the ground-state energies of helium molecules to the scaling
relation E ∝ Bβ

12. The scaling exponent β is fit for each molecule HeN over three
magnetic field ranges: B12 = 1 − 10, 10 − 100, and 100 − 1000.

β
B12 He He2 He3 He5 He8

1-10 0.317 0.358 0.371 0.376 0.380
10-100 0.280 0.318 0.346 0.362 0.370

100-1000 0.248 0.280 0.305 0.344 0.357
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Figure 2.3: Longitudinal wave functions for selected electron orbitals of He8 at
B12 = 1, at the equilibrium ion separation. Different orbitals are labeled by (m, ν).
Only the z ≥ 0 region is shown. Wave functions with even ν are symmetric about
z = 0, and those with odd ν are antisymmetric about z = 0. The filled circles
denote the ion locations.
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2.4.3 Carbon

Our numerical results for C are given in Table 2.5, Table 2.6, and Table 2.7.

The only previous result of C molecules is that by Demeur et al. (1994), who

calculated C2 only at B12 = 2.35. At this field strength, our calculation shows

that C2 is bound relative to C atom (E = −5994, −6017 eV for C, C2), whereas

Demeur et al. find no binding (E = −5770, −5749 eV for C, C2). Thus our result

differs qualitatively from (Demeur et al. 1994). We also disagree on the ground-

state occupation at this field strength: we find (n0, n1) = (9, 3) while Demeur et

al. find (n0, n1) = (7, 5). We suggest that if Demeur et al. used the occupation

(n0, n1) = (9, 3) they would obtain a lower-energy for C2, though whether C2

would then be bound remains uncertain. Since the numerical accuracy of our

computation is 0.1% of the total energy (thus, about 6 eV for B12 = 2.35), our

results for B12 <∼ a few should be treated with caution.

Figure 2.4 gives some examples of the longitudinal electron wave functions.

One wave function of each node type in the molecule (ν = 0 to 4) is represented.

Note that on the atomic scale each wave function is nodeless in nature (as is the

case for the wave functions in Fig. 2.3). The exception to this is at the central

ion, where due to symmetry considerations the antisymmetric wave functions must

have nodes. [The nodes for (m, ν) = (0, 2) are near, but not at, the ions j = 2 and

j = 4. This is incidental.]
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Table 2.5: Ground-state energies, ion separations, and electron configurations of carbon molecules, over a range of magnetic
field strengths. In some cases the first-excited-state energies are also listed. Energies are given in units of eV, separations in
units of a0 (the Bohr radius). For molecules (CN) the energy per atom is given, E = EN/N . All of the C atoms listed here
have electrons only in the ν = 0 orbitals. For the C2 and larger molecules here, however, the molecular structure is more
complicated, and is designated by the notation (n0, n1, . . .), where n0 is the number of electrons in the ν = 0 orbitals, n1 is
the number of electrons in the ν = 1 orbitals, etc.

C C2 C3

B12 E E a (n0, n1) E a (n0, n1, n2)
1 -4341 -4351 0.53 (8,4) -4356 0.52 (9,6,3)

-4349 0.46 (9,3) -4354 0.50 (10,5,3)
10 -10075 -10215 0.150 (11,1) -10255 0.175 (13,4,1)

-10200 0.180 (10,2) -10240 0.185 (14,3,1)
100 -21360 -23550 0.054 (12,0) -24060 0.055 (17,1,0)

-23960 0.058 (16,2,0)
1000 -41330 -50760 0.027 (12,0) -54870 0.024 (18,0,0)

C4 C5

B12 E a (n0, n1, n2, n3) E a (n0, n1, n2, n3, n4)
1 -4356 0.52 (10,7,4,3) -4358 0.48 (11,8,6,3,2)

-4354 0.56 (9,7,5,3) -4357 0.47 (12,8,5,3,2)
10 -10255 0.180 (15,6,2,1) -10275 0.150 (18,8,3,1)

-10250 0.185 (14,7,2,1) -10270 0.155 (17,9,3,1)
100 -24350 0.054 (21,3,0,0) -24470 0.057 (23,6,1,0,0)

-24300 0.056 (20,4,0,0) -24460 0.056 (24,5,1,0,0)
1000 -56500 0.024 (23,1,0,0) -57640 0.022 (28,2,0,0,0)

-56190 0.022 (24,0,0,0) -57520 0.023 (27,3,0,0,0)
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Table 2.6: Ground-state energies of ionized carbon atoms over a range of magnetic
field strengths. Energies are given in units of eV. For these field strengths, the
electron configuration of C atoms is such that all of their electrons lie in the ν = 0
orbitals; therefore the ionized atoms have all electrons in the ν = 0 orbitals as
well. The ionization state is designated by the notation, “Cn+,” where n is the
number of electrons that have been removed from the atom. The entry “C5+,” for
example, is a carbon nucleus plus one electron.

B12 C C+ C2+ C3+ C4+ C5+

1 -4341 -4167 -3868 -3411 -2739 -1738.0
10 -10075 -9644 -8917 -7814 -6213 -3877
100 -21360 -20370 -18730 -16300 -12815 -7851
1000 -41330 -39210 -35830 -30920 -24040 -14425

Table 2.7: Fit of the ground-state energies of neutral and ionized carbon atoms
and carbon molecules to the scaling relation E ∝ Bβ

12. The scaling exponent β is
fit over three magnetic field ranges: B12 = 1 − 10, 10 − 100, and 100 − 1000.

β
B12 C5+ C4+ C+ C C2 C3 C4 C5

1-10 0.348 0.356 0.364 0.366 0.371 0.372 0.372 0.372
10-100 0.306 0.314 0.325 0.326 0.363 0.370 0.376 0.377

100-1000 0.264 0.273 0.284 0.287 0.334 0.358 0.366 0.372
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Figure 2.4: Longitudinal wave functions for selected electron orbitals of C5 at
B12 = 1, at the equilibrium ion separation. Different orbitals are labeled by (m, ν).
Only the z ≥ 0 region is shown. Wave functions with even ν are symmetric about
z = 0, and those with odd ν are antisymmetric about z = 0. The filled circles
denote the ion locations.
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2.4.4 Iron

Our numerical results for Fe are given in Table 2.8, Table 2.9, and Table 2.10. The

energy curves for B12 = 500 are shown in Fig. 2.5, and some results for B12 = 100

are shown in Fig. 2.6.

There is no previous quantitative calculation of Fe molecules in strong magnetic

fields that we are aware of. The most relevant work is that of Abrahams & Shapiro

(1991), who use a Thomas-Fermi type model to calculate Fe and Fe2 energies for

magnetic fields up to B12 = 30. Unfortunately, a comparison of our results with

those of this work is not very useful, as Thomas-Fermi models are known to give

inaccurate energies and in particular large overestimates of binding and cohesive

energies. As an example, from Abrahams & Shapiro (1991) the energy difference

between Fe and Fe2 at B12 = 30 is 1.7 keV, which is twice as large as our result at

B12 = 100.

In Table 2.8 we have not provided results for the Fe2 and Fe3 molecules at

B12 = 5, as these molecules are not bound relative to the Fe atom. We have not

provided results for the Fe3 molecule at B12 = 10 because the energy difference

(per atom) between Fe3 and the Fe atom at this field strength is smaller than the

error in our calculation, 0.1% of |E| or 140 eV. The energy difference (per atom)

between the Fe2 molecule and the Fe atom at B12 = 10 is also smaller than the

error in our calculation (indeed, the difference should be less than that between

Fe3 and Fe at this field strength), but we have redone the calculation using more

grid and integration points such that the energy values reported here for these two

molecules are accurate numerically to 0.01% (see Appendix A.1). At this accuracy,

our results indicate that Fe2 is bound over Fe at B12 = 10 with a energy difference

per atom of 30 eV.
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Figure 2.5: Molecular energy per atom versus ion separation for Fe2 and Fe3

molecules at B12 = 500. The energy of the Fe atom is shown as a horizontal
line at −637.8 keV.

Figure 2.6 illustrates how the ground-state electron configuration is found for

each molecule. The configuration with the lowest equilibrium energy is chosen as

the ground-state configuration. In the case depicted in Fig. 2.6, Fe2 at B12 = 100,

there are actually two such configurations. Within the error of our calculation, we

cannot say which one represents the ground state. Note that the systematic error

seen in the minimization curves of the various Fe2 configurations is much smaller

than our target 0.1% error for the total energy (the sinusoidal error in the figure

has an amplitude of ≈ 30 eV, or around 0.01% of the total energy).
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Table 2.8: Ground-state energies, ion separations, and electron configurations of iron molecules, over a range of magnetic
field strengths. In some cases the first-excited-state energies are also listed. Energies are given in units of keV, separations
in units of a0 (the Bohr radius). For molecules (FeN) the energy per atom is given, E = EN/N . The electron configuration
is designated by the notation (n0, n1, . . .), where n0 is the number of electrons in the ν = 0 orbitals, n1 is the number of
electrons in the ν = 1 orbitals, etc. Note that no information is listed for the Fe2 and Fe3 molecules at B12 = 5, as we have
found that these molecules are not bound at this field strength. Also note that there are two lowest-energy states for Fe2 at
B12 = 100; within the error of our calculation, the two states have the same minimum eneriges.

Fe Fe2 Fe3

B12 E (n0, n1) E a (n0, n1) E a (n0, n1, n2)
5 -107.20 (24,2) - - - - - -
10 -142.15 (25,1) -142.18 0.30 (32,19,1) - - -
100 -354.0 (26,0) -354.9 0.107 (39,13) -355.2 0.107 (47,21,10)

-354.9 0.103 (40,12) -355.1 0.108 (46,22,10)
500 -637.8 (26,0) -645.7 0.048 (45,7) -648.1 0.048 (58,16,4)

-645.4 0.050 (44,8) -648.0 0.050 (57,16,5)
1000 -810.6 (26,0) -828.8 0.035 (47,5) -834.1 0.035 (62,13,3)

-828.4 0.034 (48,4) -834.0 0.036 (61,14,3)
2000 -1021.5 (26,0) -1061.0 0.025 (49,3) -1073.0 0.025 (67,10,1)

-1056.0 0.023 (50,2) -1072.5 0.025 (66,11,1)
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Table 2.9: Ground-state energies of ionized iron atoms over a range of magnetic field strengths. Energies are given in units
of keV. For B12 ≥ 100, the electron configuration of Fe atoms is such that all of their electrons lie in the ν = 0 orbitals;
therefore for these field strengths the ionized atoms have all electrons in the ν = 0 orbitals as well. The ionization state is
designated by the notation, “Fen+,” where n is the number of electrons that have been removed from the atom. The entry
“Fe25+,” for example, is an iron nucleus plus one electron.

B12 Fe Fe+ Fe2+ Fe3+ Fe4+ Fe5+ Fe10+ Fe15+ Fe20+ Fe25+

100 -354.0 -352.8 -351.2 -349.0 -346.4 -343.2 -318.3 -273.8 -199.65 -59.01
500 -637.8 -635.3 -632.0 -627.8 -622.7 -616.6 -569.4 -486.5 -350.2 -99.48
1000 -810.6 -807.2 -802.8 -797.2 -790.7 -782.5 -715.8 -602.0 -439.6 -122.70
2000 -1021.5 -1016.0 -1008.5 -999.8 -989.1 -976.7 -905.4 -768.6 -546.8 -150.10
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Table 2.10: Fit of the ground-state energies of neutral and ionized iron atoms and
iron molecules to the scaling relation E ∝ Bβ

12. The scaling exponent β is fit over
three magnetic field ranges: B12 = 100 − 500, 500 − 1000, and 1000 − 2000.

β
B12 Fe25+ Fe20+ Fe10+ Fe+ Fe Fe2 Fe3

100-500 0.324 0.349 0.361 0.365 0.366 0.372 0.374
500-1000 0.303 0.328 0.330 0.345 0.346 0.359 0.364
1000-2000 0.291 0.315 0.339 0.332 0.334 0.358 0.363
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Figure 2.6: Molecular energy per atom versus ion separation for various configura-
tions of electrons in the Fe2 molecule at B12 = 100. The configurations are labeled
using the notation (n0, n1), where n0 is the number of electrons with ν = 0 and n1

is the number with ν = 1. The energy of the Fe atom is shown as a horizontal line
at −354.0 keV. The states “(40, 12)” and “(39, 13)” have the lowest equilibrium
energies of all possible configurations and within the numerical accuracy of our
calculation have the same equilibrium energies. The wavy structure of the curves
gives an indication of the numerical accuracy of our code. Note that states with
electrons in the ν = 2 orbitals [for example, (39, 12, 1)] have energies higher than
the atomic energy and are therefore unbound.
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2.5 Conclusions

We have presented density-functional-theory calculations of the ground-state ener-

gies of various atoms and molecular chains (HN up to N = 10, HeN up to N = 8,

CN up to N = 5, and FeN up to N = 3) in strong magnetic fields ranging from

B = 1012 G to 2×1015 G. These atoms and molecules may be present in the surface

layers of magnetized neutron stars, such as radio pulsars and magnetars. While

previous results (based on Hartree-Fock or density-functional-theory calculations)

are available for some small molecules at selected field strengths (e.g., Lai et al.

1992; Lai 2001; Demeur et al. 1994) many other systems (e.g., larger C molecules

and Fe molecules) are also computed in this chapter. We have made an effort

to present our numerical results systematically, including fitting formulae for the

B-dependence of the energies. Comparison with previous results (when available)

show that our density-functional calculations tend to overestimate the binding en-

ergy |EN | by about 10%. Since it is advantageous to use the density functional

theory to study systems containing large number of electrons (e.g., condensed

matter; see 3), it would be useful to find ways to improve upon this accuracy.

At B12 ≥ 1, hydrogen, helium, and carbon molecules are all more energetically

favorable than their atomic counterparts (although for carbon, the relative binding

between the atom and molecule is rather small), but iron is not. Iron molecules

start to become bound at B12 >∼ 10, and are not decidedly more favorable than

isolated atoms until about B12 = 100.

For the bound molecules considered here, the ground-state energy per atom

approaches an asymptotic value as N gets large. The molecule then essentially

becomes a one-dimensional infinite chain. We will study such condensed matter in

Chapter 3.
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CHAPTER 3

DENSITY-FUNCTIONAL-THEORY CALCULATIONS OF

MATTER IN STRONG MAGNETIC FIELDS: INFINITE CHAINS

AND CONDENSED MATTER

3.1 Introduction

Young neutron stars (ages <∼ 107 years) are observed to have surface magnetic

fields in the range of 1011-1015 G (Mészáros 1992; Reisenegger 2005; Woods &

Thompson 2005; Harding & Lai 2006), far beyond the reach of terrestrial lab-

oratories (Wagner et al. 2004). It is well known that the properties of matter

can be drastically modified by such strong magnetic fields. The natural atomic

unit for the magnetic field strength, B0, is set by equating the electron cyclotron

energy h̄ωBe = h̄(eB/mec) = 11.577B12 keV, where B12 = B/(1012 G), to the

characteristic atomic energy e2/a0 = 2 × 13.6 eV (where a0 is the Bohr radius):

B0 =
m2

ee
3c

h̄3 = 2.3505 × 109 G. (3.1)

For b = B/B0 >∼ 1, the usual perturbative treatment of the magnetic effects on

matter (e.g., Zeeman splitting of atomic energy levels) does not apply. Instead, in

the transverse direction (perpendicular to the field) the Coulomb forces act as a

perturbation to the magnetic forces, and the electrons in an atom settle into the

ground Landau level. Because of the extreme confinement of the electrons in the

transverse direction, the Coulomb force becomes much more effective in binding

the electrons along the magnetic field direction. The atom attains a cylindrical

structure. Moreover, it is possible for these elongated atoms to form molecular

chains by covalent bonding along the field direction. Interactions between the
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linear chains can then lead to the formation of three-dimensional condensed matter

(Ruderman 1974; Ruder et al. 1994; Lai 2001).

This chapter is the second in a series where we present calculations of matter

in strong magnetic fields using density functional theory. In Chapter 2, we studied

various atoms and molecules in magnetic fields ranging from 1012 G to 2× 1015 G

for H, He, C, and Fe, representative of the most likely neutron star surface com-

positions. Numerical results and fitting formulae of the ground-state energies were

given for HN (up to N = 10), HeN (up to N = 8), CN (up to N = 5), and FeN

(up to N = 3), as well as for various ionized atoms. It was found that as B in-

creases, molecules become increasingly more bound relative to individual atoms,

and that the binding energy per atom in a molecule, |EN |/N , generally increases

and approaches a constant value with increasing N . In this chapter, we present

density-functional-theory calculations of infinite chains of H, He, C, and Fe. Our

goal is to obtain the cohesive energy of such one-dimensional (1D) condensed mat-

ter relative to individual atoms for a wide range of field strengths. We also carry

out approximate calculations of the relative binding energy between 1D chains and

three-dimensional (3D) condensed matter at zero pressure.

The cohesive property of matter in strong magnetic fields is a fundamental

quantity characterizing magnetized neutron star surface layers, which play a key

role in many neutron star processes and observed phenomena. The cohesive energy

refers to the energy required to pull an atom out of the bulk condensed matter

at zero pressure. Theoretical models of pulsar and magnetar magnetospheres de-

pend on the cohesive properties of the surface matter in strong magnetic fields

(Ruderman & Sutherland 1975; Arons & Scharlemann 1979; Usov & Melrose 1996;

Harding & Muslimov 1998; Beloborodov & Thompson 2007; Gil et al. 2003). For
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example, depending on the cohesive energy of the surface matter, an acceleration

zone (“polar gap”) above the polar cap of a pulsar may or may not form, and this

will affect pulsar radio emission and other high-energy emission processes. Also,

while a hot or warm neutron star most certainly has a gaseous atmosphere that

mediates its thermal emission, condensation of the stellar surface may occur at suf-

ficiently low temperatures (Lai & Salpeter 1997; Lai 2001). For example, radiation

from a bare condensed surface (with no atmosphere above it) has been invoked

to explain the nearly perfect blackbody emission spectra observed in some nearby

isolated neutron stars (Burwitz et al 2003; Mori & Ruderman 2003; van Adelsberg

et al. 2005; Turolla et al. 2004; Perez-Azorin et al. 2006). However, whether surface

condensation actually occurs depends on the cohesive energy of the surface matter.

There have been few quantitative studies of infinite chains and zero-pressure

condensed matter in strong magnetic fields. Earlier variational calculations (Flow-

ers et al. 1977; Müller 1984) as well as calculations based on Thomas-Fermi type

statistical models (Abrahams & Shapiro 1991; Fushiki et al. 1992; Lieb et al.

1994a,b), while useful in establishing scaling relations and providing approximate

energies of the atoms and the condensed matter, are not adequate for obtaining

reliable energy differences (cohesive energies). Quantitative results for the ener-

gies of infinite chains of hydrogen molecules H∞ in a wide range of field strengths

(B � B0) were presented in both Lai et al. (1992) (using the Hartree-Fock method

with the plane-wave approximation; see also Lai (2001) for some results of He∞)

and Relovsky & Ruder (1996) (using density functional theory). For heavier ele-

ments such as C and Fe, the cohesive energies of 1D chains have only been cal-

culated at a few magnetic field strengths in the range of B = 1012-1013 G, using

Hartree-Fock models (Neuhauser et al. 1987) and density functional theory (Jones

1985). There were discrepancies between the results of these works, and some
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(e.g., Neuhauser et al. 1987) adopted a crude treatment for the band structure

(see Section 3.3.3). An approximate calculation of 3D condensed matter based on

density functional theory was presented in Jones (1986).

Our calculations of atoms and small molecules (Chapter 2) and of infinite chains

and condensed matter (this chapter) are based on density functional theory (Ho-

henberg & Kohn 1964; Kohn & Sham 1965; Vignale & Rasolt 1987, 1988; Jones

& Gunnarsson 1989). In the strong field regime where the electron spins are

aligned with each other, the Hartree-Fock method is expected to be highly accu-

rate (Neuhauser et al. 1987; Schmelcher et al. 1999). However, in dealing with

systems with many electrons, it becomes increasingly impractical as the magnetic

field increases, since more and more Landau orbitals (even though electrons remain

in the ground Landau level) are occupied and keeping track of the direct and ex-

change interactions between electrons in various orbitals becomes computationally

rather tedious. Our density-functional calculations allow us to obtain the energies

of atoms and small molecules and the energy of condensed matter using the same

method, thus providing reliable cohesive energy values for condensed surfaces of

magnetic neutron stars, a main goal of our study. Compared to previous density-

functional theory calculations (Jones 1985, 1986; Kössl et al. 1988; Relovsky &

Ruder 1996), we use an improved exchange-correlation function appropriate for

highly magnetized electron gases, we calibrate our density-functional code with

previous results (when available) based on other methods, and (for calculations of

condensed matter) adopt a more accurate treatment of the band structure. More-

over, our calculations extend to the magnetar-like field regime (B ∼ 1015 G).

This chapter is organized as follows. After briefly summarizing the approximate

scaling relations for linear chains and condensed matter in strong magnetic fields
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in Section 3.2, we describe our method and the basic equations in Section 3.3.

Numerical results (tables and fitting formulae) for linear chains are presented in

Section 3.4. In Section 3.5 we describe our approximate calculation and results for

the relative energy between 1D chain and 3D condensed matter. We conclude in

Section 3.6. Some technical details are given Appendix B.

This chapter is based on the published paper by Medin & Lai 2006 [Medin

Z., Lai D., 2006, Physical Review A, 74, 062508; c©2006. The American Physical

Society. All rights reserved]. It is reprinted here with minor changes, based on

rights retained by the author.

3.2 Basic scaling relations for linear chains and 3D con-

densed matter in strong magnetic fields

The simplest model for the linear chain is to treat it as a uniform cylinder of

electrons, with ions aligned along the magnetic field axis. The radius of the cylinder

is R and the length of a unit cell is a (which is also the atomic spacing along the

z axis). The electrons lie in the ground Landau level, but can occupy different

Landau orbitals with the radius of guiding center ρm = (2m+ 1)1/2ρ0, where m =

0, 1, 2, . . . , mmax and ρ0 = (h̄c/eB)1/2 = b−1/2 (in atomic units).1 The maximum

Landau orbital number mmax is set by ρmmax
= R, giving mmax ' πR2eB/(hc) =

R2b/2 (this is the Landau degeneracy in area πR2). For a uniform electron density

n = Z/(πR2a), the Fermi wave number (along z) kF is determined from n =

bkF/(2π
2), and the kinetic energy of the electrons in a cell is Ek = (Z/3)ε′F , with

1Unless otherwise specified, we use atomic units, in which the length in a0 (Bohr radius),
mass in me, energy in e2/a0 = 2 Ry, and magnetic field strength in units of B0.
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ε′F = k2
F/2 the Fermi kinetic energy. The total energy per atom (unit cell) in the

chain can be written as (Ruderman 1971, 1974)

E∞ =
2π2Z3

3b2R4a2
− Z2

a

[

ln
2a

R
−
(

γ − 5

8

)]

, (3.2)

where γ = 0.5772 . . . is Euler’s constant. In Eq. (3.2), the first term is the elec-

tron kinetic energy Ek and the second term is the (direct) Coulomb energy (the

Madelung energy for the one-dimensional uniform lattice). Minimizing E∞ with

respect to R and a gives

R = 1.65Z1/5b−2/5, a/R = 2.14,

E∞ = −0.354Z9/5b2/5. (3.3)

Note that the energy (3.2) can be written as E∞ = −ZV0 + (Z/3)ε′F , where V0 is

the depth of the potential well relative to the continuum. In equilibrium E∞ =

−5Ek = −(5/3)Zε′F , and thus V0 = 2ε′F . The Fermi level energy of the electrons

in the chain relative to the continuum is then εF = ε′F − V0 = −ε′F = 3E∞/(5Z),

i.e.,

εF (1D) = −0.212Z4/5b2/5 a.u. = −65.1Z4/5B
2/5
12 eV. (3.4)

Alternatively, if we identify the number of electrons in a cell, Ne, as an independent

variable, we find R = 1.65 (N 2
e /Z)1/5b−2/5 and E∞ = −0.354 (Z2Ne)

3/5b2/5. The

chemical potential (which includes potential energy) of electrons in the chain is

simply µ = εF = ∂E∞/∂Ne, in agreement with Eq. (3.4). The electron work

function is W = |εF |.

A linear 1D chain naturally attracts neighboring chains through the quadrupole-

quadrupole interaction. By placing parallel chains close together (with spacing of

order b−2/5), we obtain three-dimensional condensed matter (e.g., a body-centered

tetragonal lattice) (Ruderman 1971).
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The binding energy of the 3D condensed matter at zero pressure can be esti-

mated using the uniform electron gas model. Consider a Wigner-Seitz cell with

radius ri = Z1/3rs (rs is the mean electron spacing); the mean number density

of electrons is n = Z/(4πr3
i /3). When the Fermi energy p2

F/(2me) is less than

the electron cyclotron energy h̄ωBe, or when the electron number density satisfies

n ≤ nB = (
√

2π2ρ3
0)

−1 = 0.0716 b3/2 (or ri ≥ riB = 1.49Z1/3b−1/2), the electrons

only occupy the ground Landau level. The energy per cell can be written

Es(ri) =
3π2Z3

8b2r6
i

− 0.9Z2

ri
, (3.5)

where the first term is the kinetic energy and the second term is the Coulomb

energy. For a zero-pressure condensed matter, we require dEs/dri = 0, and the

equilibrium ri and energy are then given by

ri ' 1.90Z1/5b−2/5, (3.6)

Es ' −0.395Z9/5b2/5. (3.7)

The corresponding zero-pressure condensation density is

ρs ' 561AZ−3/5B
6/5
12 g cm−3. (3.8)

The electron Fermi level energy is

εF (3D) =
3

5Z
Es = −0.237Z4/5b2/5 a.u. = −72.7Z4/5B

2/5
12 eV. (3.9)

The uniform electron gas model can be improved by incorporating the Coulomb

exchange energy and Thomas-Fermi correction due to nonuniformity of the electron

gas (Lai 2001; Fushiki et al. 1989).

Although the simple uniform electron gas model and its Thomas-Fermi type

extensions give a reasonable estimate for the binding energy for the condensed
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state, they are not adequate for determining the cohesive property of the con-

densed matter. Also, as we shall see, Eq. (3.4) or Eq. (3.9) does not give a good

scaling relation for the electron work function when detailed electron energy lev-

els (bands) in the condensed matter are taken into account. The cohesive energy

Qs = Ea − Es is the difference between the atomic ground-state energy Ea and the

condensed matter energy per cell Es. In principle, a three-dimensional electronic

band structure calculation is needed to solve this problem. However, for sufficiently

strong magnetic fields, such that a0/Z �
√

2Z + 1ρ0 or B12 � 100 (Z/26)3, a lin-

ear 1D chain is expected to be strongly bound relative to individual atoms (i.e., the

cohesive energy of the chain, Q∞ = Ea − E∞, is significantly positive) (Lai 2001).

For such strong fields, the binding of 3D condensed matter results mainly from the

covalent bond along the magnetic axis, rather than from chain-chain interactions;

in another word, the energy difference |∆Es| = |Es −E∞| is small compared to Q∞.

In the magnetic field regime where Q∞ is small or even negative, chain-chain inter-

actions are important in deciding whether 3D condensed matter is bound relative

to individual atoms. In this chapter we will concentrate on calculating E∞ and Q∞

for linear chains (Sections 3 and 4). In Section 5 we shall quantify the magnitude

of ∆Es for different elements and field strengths.

3.3 Density-functional-theory calculations of 1D chains:

Methods and equations

Our calculations of 1D infinite chains are based on density functional theory, which

is well established in the strong magnetic field regime (B � B0) of interest here

(Vignale & Rasolt 1987, 1988). Extensive comparisons of our density-functional-
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theory results for atoms and finite molecules with previous results (when available)

based on different methods were given in Chapter 2; such comparisons established

the validity and calibrate the systematic error of our approach. As we discuss be-

low, for infinite chains considered in the present chapter, it is important to calcu-

late the band structure of electrons (for different Landau orbitals) self-consistently,

rather than using certain approximate ansätze as adopted in some previous works

(Neuhauser et al. 1987).

3.3.1 Basic equations and concepts

Our calculations will be based on the “adiabatic approximation,” in which all

electrons are assumed to lie in the ground Landau level. For elements with nuclear

charge number Z, this is an excellent approximation for b � Z2. Even under

the more relaxed condition b � Z4/3, this approximation is expected to yield

a reasonable total energy and accurate results for the energy difference between

different electronic systems (atoms and chains) (see Chapter 2). Also, we use

nonrelativisitc quantum mechanics in our calculations, even when h̄ωBe >∼ mec
2 or

B >∼ BQ = B0/α
2 = 4.414 × 1013 G (where alpha = e2/(h̄c) is the fine structure

constant). As discussed in Chapter 2, this is accurate as long as the electrons stay

in the ground Landau level.

In a 1D chain, the ions form a periodic lattice along the magnetic field axis.

The number of cells (“atoms”) in the chain is N → ∞ and the ions are equally

spaced with lattice spacing a. In the adiabatic approximation, the one-electron

wave function (“orbital”) can be separated into a transverse (perpendicular to the

external magnetic field) component and a longitudinal (along the magnetic field)

48



component:

Ψmνk(r) =
1√
N
Wm(r⊥)fmνk(z) . (3.10)

Here Wm is the ground-state Landau wave function (Landau & Lifshitz 1977) given

by

Wm(r⊥) =
1

ρ0

√
2πm!

(

ρ√
2ρ0

)m

exp

(

−ρ2

4ρ2
0

)

exp(−imφ) , (3.11)

which is normalized as
∫

d2r⊥|Wm|2 = 1. The longitudinal wave function fmνk must

be solved numerically, and we choose to normalize it over a unit cell of the lattice:

∫ a/2

−a/2
|fmνk(z)|2 dz = 1, (3.12)

so that normalization of Ψmνk is
∫

d3r |Ψmνk|2 = 1 (here and henceforth, the general

integral sign
∫

d3r refers to integration over the whole chain, with z from −Na/2

to Na/2). The index ν = 0, 1, 2, . . . labels the different bands of the electron (see

below), rather than the number of nodes in the longitudinal wave function as in

the atom or molecule case.

The quantum number k is not present for atoms or finite molecules, but enters

here because of the periodic nature of the electrons in the longitudinal direction.

By Bloch’s theorem, the electrons satisfy the periodicity condition

fmνk(z + a) = eikafmνk(z) , (3.13)

and k is the Bloch wave number. Note that the longitudinal wave functions are

periodic in k with period ∆k = 2π/a; i.e., fmν,k+K(z) = fmνk(z) with K being any

reciprocal vector (number, in one dimension) of the lattice, K = 2πn/a (n is an

integer). Because of this, to ensure that each wave function fmνk is unique, we

restrict k to the first Brillouin zone, k ∈ [−π/a, π/a]. The electrons fill each (mν)

band, with spacing ∆k = π/(Na), and thus the maximum number of electrons in a

given band is N (out of the total ZN electrons in the chain). In another word, the

number of electrons per unit cell in each (mν) band is σmν ≤ 1 (see Section 3.3.2).
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The density distribution of electrons in the chain is given by

n(r) =
∑

mνk

|Ψmνk(r)|2 =
a

2π

∑

mν

|Wm|2(ρ)
∫

Imν

dk |fmνk(z)|2 , (3.14)

where the sum/integral is over all electron states, each electron occupying an (mνk)

orbital. The notation |Wm|2(ρ) = |Wm(r⊥)|2 is used here because Wm is a function

of ρ and φ but |Wm|2 is a function of ρ only. The notation
∫

Imν
in the k integral

refers to the fact that the region of integration depends on the (mν) level; we will

discuss this interval and electron occupations in Section 3.3.2. To simplify the

appearance of the electron density expression, we define the function

f̄mν(z) =

√

a

2π

∫

Imν

dk |fmνk(z)|2 , (3.15)

so that

n(r) =
∑

mν

|Wm|2(ρ)f̄ 2
mν(z) . (3.16)

In an external magnetic field, the Hamiltonian of a free electron is

Ĥ =
1

2me

(

p +
e

c
A
)2

+
h̄eB

2mec
σz , (3.17)

where A = 1
2
B × r is the vector potential of the external magnetic field and σz

is the z-component Pauli spin matrix. For electrons in Landau levels, with their

spins aligned parallel/antiparallel to the magnetic field, the Hamiltonian becomes

Ĥ =
p̂2

z

2me
+
(

nL +
1

2

)

h̄ωBe ±
1

2
h̄ωBe , (3.18)

where nL = 0, 1, 2, . . . is the Landau level index; for electrons in the ground Landau

level, with their spins aligned antiparallel to the magnetic field (so nL = 0 and

σz → −1),

Ĥ =
p̂2

z

2me
. (3.19)

The total Hamiltonian for the atom or molecule then becomes

Ĥ =
∑

i

p̂2
z,i

2me
+ V , (3.20)
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where the sum is over all electrons and V is the total potential energy of the atom

or molecule.

In the density functional formalism, the total energy per cell of the chain is

expressed as a functional of the total electron density n(r):

E [n] = EK[n] + EeZ [n] + Edir[n] + Eexc[n] + EZZ[n] . (3.21)

Here EK[n] is the kinetic energy of the system of non-interacting electrons, and

EeZ , Edir and EZZ are the electron-ion Coulomb energy, the direct electron-electron

interaction energy and the ion-ion interaction energy, respectively:

EeZ [n] = −
N/2
∑

j=−N/2

Ze2
∫

|z|<a/2
dr

n(r)

|r− zj|
, (3.22)

Edir[n] =
e2

2

∫ ∫

|z|<a/2
dr dr′

n(r)n(r′)

|r − r′| , (3.23)

EZZ[n] =
N/2
∑

j=1

Z2e2

ja
. (3.24)

The location of the ions in the above equations is represented by the set {zj}, with

zj = jaẑ, j = (−N/2), (−N/2 + 1), . . . , 0, . . . , N/2. (3.25)

The term Eexc represents the exchange-correlation energy. In the local approxima-

tion,

Eexc[n] =
∫

|z|<a/2
drn(r) εexc(n) , (3.26)

where εexc(n) = εex(n)+εcorr(n) is the exchange and correlation energy per electron

in a uniform electron gas of density n. For electrons in the ground Landau level,

the (Hartree-Fock) exchange energy can be written as (Danz & Glasser 1971)

εex(n) = −πe2ρ2
0nF (t) , (3.27)

where the dimensionless function F (t) is

F (t) = 4
∫ ∞

0
dx
[

tan−1
(

1

x

)

− x

2
ln
(

1 +
1

x2

)]

e−4tx2

, (3.28)
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and

t =
(

n

nB

)2

= 2π4ρ6
0n

2, (3.29)

[nB = (
√

2π2ρ3
0)

−1 is the density above which the higher Landau levels start to be

filled in a uniform electron gas]. For small t, F (t) can be expanded as (Fushiki et

al. 1989)

F (t) ' 3−γ−ln 4t+
2t

3

(

13

6
− γ − ln 4t

)

+
8t2

15

(

67

30
− γ − ln 4t

)

+O(t3 ln t), (3.30)

where γ = 0.5772 . . . is Euler’s constant. We have found that the condition t� 1

is well satisfied everywhere for almost all infinite chains in our calculations. The

notable exceptions are the carbon chains at B = 1012 G and the iron chains at

B ≤ 1013 G, which have t <∼ 1 near the center of each cell. These chains are

expected to have higher t values than the other chains in our calculations, as they

have large Z and low B 2.

The correlation energy of uniform electron gas in strong magnetic fields has

not be calculated in general, except in the regime t � 1 and Fermi wave number

kF = 2π2ρ2
0n � 1 [or n � (2π3ρ2

0a0)
−1]. Skudlarski and Vignale (1993) use the

random-phase approximation to find a numerical fit for the correlation energy in

this regime (see also Steinberg & Ortner 1998):

εcorr = −e
2

ρ0
[0.595(t/b)1/8(1 − 1.009t1/8)] . (3.31)

In the absence of an “exact” correlation energy density we employ this strong-field-

limit expression. Fortunately, because we are concerned mostly with finding the

energy difference between atoms and chains, the correlation energy term does not

have to be exact. The presence or the form of the correlation term has a modest

effect on the atomic and chain energies calculated but has very little effect on the

2For the uniform gas model, t ∝ Z4/5B−3/5.
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energy difference between them (see Chapter 2 for more details on various forms

of the correlation energy and comparisons).

Variation of the total energy with respect to the electron density, δE [n]/δn = 0,

leads to the Kohn-Sham equation:

[

− h̄2

2me

∇2 + Veff(r)

]

Ψmνk(r) = εmν(k)Ψmνk(r) , (3.32)

where

Veff(r) = −
N/2
∑

j=−N/2

Ze2

|r − zj|
+ e2

∫

dr′
n(r′)

|r− r′| + µexc(n), (3.33)

with

µexc(n) =
∂(nεexc)

∂n
. (3.34)

Averaging the Kohn-Sham equation over the transverse wave function yields a set

of one-dimensional equations:

[

− h̄2

2me

d2

dz2
+ V̄eff(z)

]

fmνk(z) = εmν(k)fmνk(z) . (3.35)

where

V̄eff(z) = −Ze2
N/2
∑

j=−N/2

∫

dr⊥
|Wm|2(ρ)
|r− zj|

+ e2
∫ ∫

dr⊥ dr
′ |Wm|2(ρ)n(r′)

|r− r′|

+
∫

dr⊥ |Wm|2(ρ)µexc(n). (3.36)

This set of equations are solved self-consistently to find the eigenvalue εmν(k) and

the longitudinal wave function fmνk(z) for each orbital occupied by the electrons.

Once these are known, the total energy per cell of the infinite chain can be calcu-

lated using

E∞ =
a

2π

∑

mν

∫

Imν

dk εmν(k) −
e2

2

∫ ∫

|z|<a/2
drdr′

n(r)n(r′)

|r − r′|

+
∫

|z|<a/2
drn(r)[εexc(n) − µexc(n)] +

N/2
∑

j=1

Z2e2

ja
, (3.37)
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where the interval Imν is the same as in the electron density expression, Eq. (3.16).

Note that the electron-ion, direct electron-electron, and ion-ion interaction en-

ergy terms given above formally diverge forN → ∞. These terms must be properly

combined to yield a finite net potential energy. Note that for an electron in the

“primary” unit cell (−a/2 ≤ z ≤ a/2), the potential generated by a distant cell

(centered at zj = ja) can be well approximated by the quadrupole potential:

VQ(ρ, z; ja) =
3e2

2

Qzz

|ja|5
(

2z2 − ρ2
)

, (3.38)

where Qzz is the quadrupole moment of a unit cell

Qzz =
∫

|z|<a/2
dr
(

2z2 − ρ2
)

n(ρ, z) . (3.39)

The Coulomb (quadrupole-quadrupole) energy between the primary cell and the

distant cell is simply

EQQ(ja) =
∫

|z|<a/2
drn(r)VQ(ρ, z; ja) =

3e2

2

Q2
zz

|ja|5 . (3.40)

In our calculations, we treat distant cells with |j| > NQ using the quadrupole

approximation, while treating the nearby cells (|j| ≤ NQ) exactly. Thus the (av-

eraged) effective potential, Eq. (3.36), becomes

V̄eff(z) = −Ze2
NQ
∑

j=−NQ

∫

dr⊥
|Wm|2(ρ)
|r− zj|

+e2
∫ ∫

|z′|<a(NQ+1/2)
dr⊥ dr

′ |Wm|2(ρ)n(r′)

|r − r′| +
∫

dr⊥ |Wm|2(ρ)µexc(n)

+





∞
∑

j=NQ+1

1

j5





3e2Qzz

a5

∫

dr⊥ |Wm|2(ρ)
(

2z2 − ρ2
)

. (3.41)

The total energy per unit cell [see Eq. (3.37)] is given by

E∞ =
a

2π

∑

mν

∫

Imν

dk εmν(k) −
e2

2

∫ ∫

|z|<a/2, |z′|<a(NQ+1/2)
drdr′

n(r)n(r′)

|r − r′|
+
∫

|z|<a/2
drn(r)[εexc(n) − µexc(n)]

+
NQ
∑

j=1

Z2e2

ja
−




∞
∑

j=NQ+1

1

j5





3e2

2

Q2
zz

a5
. (3.42)
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In practice, we have found that accurate results are obtained for the energy of the

chain even with NQ = 1 (i.e., only the primary cell and its nearest neighbors are

treated exactly and more distant cells are treated using quadrupole approxima-

tion).

Details of our method used in computing the various integrals above and solving

the Kohn-Sham equations self-consistently are given in Appendix B.

3.3.2 The electron band structure shape and occupations

As discussed above, the electron orbitals in the chain are specified by three quan-

tum numbers: m, ν, k. While m, ν are discrete, k is continuous. In the ground

state, the electrons will occupy the (mνk) orbitals with the lowest energy eigenval-

ues εmν(k). To determine the electron occupations and the total chain energy, it

is necessary to calculate the εmν(k) energy curves. Here we discuss the qualitative

property of these energy curves (i.e., the electron band structure) using the theory

of one-dimensional periodic potentials (see, e.g., Ashcroft & Mermin 1976).

Like the wave functions, the energy curves are periodic, with εmν(k + K) =

εmν(k), where K is 2π/a multiplied by any integer. The energy curves are also

symmetric about the Bragg “planes” (“points” in 1D) of the reciprocal lattice,

εmν(K − k) = εmν(k). Thus we can determine the entire band structure of the

electrons by calculating it between any two Bragg points. Since we have chosen to

limit our calculation to the first Brillouin zone k ∈ [−π/a, π/a], we only need to

consider the domain k ∈ [0, π/a].

For a given m, the energy curves lie in bands which do not overlap and increase

in energy with increasing ν (see Fig. 3.1). These bands are bounded by the energy
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values at the Bragg points, such that in each band the energy increases/decreases

monotonically between the two points. The direction of this growth alternates

with ν: For the ν = 0 band, the energy is at a minimum for k = 0 and increases

to a local maximum at k = π/a; for the ν = 1 band, the energy curve is at a

minimum for k = π/a and grows to a maximum at k = 0, etc. These properties

are depicted in Fig. 3.1.

Also shown in the figure is the Fermi level energy εF of the electrons in the

infinite chain. The electrons occupy all orbitals (mνk) with energy less than εF .

For each (mν) band, we define the occupation parameter σmν , which gives the

number of electrons that occupy this band per unit cell [i.e., the number of electrons

that occupy the (mν) band in the whole chain is σmνN ]. Since the maximum

possible number of electrons in each (mν) band is N , we have σmν ≤ 1. Because

there are ZN electrons total in the chain, these occupation numbers are subject

to the constraint
∑

mν

σmν = Z . (3.43)

It is also useful to define for each (mν) level the Fermi wave number kmν
F , such

that the electrons fill up all allowed orbitals between the minimum-energy Bragg

point (k = 0 for even ν and k = π/a for odd ν) and kmν
F . The occupied k’s are

therefore

k ∈
[

0, σmν
π

a

]

≡ [0, kmν
F ] (3.44)

for even ν, and

k ∈
[

(1 − σmν)
π

a
,
π

a

]

≡
[

kmν
F ,

π

a

]

(3.45)

for odd ν, plus the corresponding reflection about the Bragg point k = 0. For a

completely filled band (as illustrated in Fig. 3.1 for the ν = 0 band), σmν = 1 and

kmν
F = π/a (for ν = even) or 0 (for ν = odd); for a partially filled band (the ν = 1
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Figure 3.1: A schematic diagram showing the electron band structure for a partic-
ular m value. In this example, the first band (ν = 0) is fully occupied (σm0 = 1)
while the second band (ν = 1) is partially filled (σm1 < 1).
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band in Fig. 3.1),

εmν(k
mν
F ) = εF . (3.46)

With the allowed k values specified, the k integration domain in Eqs. (3.14), (3.15),

(3.37) and (3.42) is given by

∫

Imν

dk ⇒















2
∫ kmν

F
0 dk, ν even,

2
∫ π/a
kmν

F
dk , ν odd.

(3.47)

Note that the Fermi level energy εF and various occupation numbers σmν must

be calculated self-consistently. In principle, they should be determined by mini-

mizing the total energy with respect to σmν subject to the constraint Eq. (3.43),

i.e.,

δ

δσmν

[

E [n; σmν ] − εF

(

∑

mν

σmν − Z

)]

= 0 . (3.48)

Since

∂n(r)

∂σmν

= ±π
a

∂n(r)

∂kmν
F

= |Wm|2(ρ)|fmνkmν
F

(z)|2, (3.49)

Eq. (3.48) yields

[

− h̄2

2me

d2

dz2
+ V̄eff(z)

]

fmνkmν
F

(z) = εFfmνkmν
F

(z) . (3.50)

Comparing this to Eq. (3.35), we find εmν(k
mν
F ) = εF , which is Eq. (3.46). This

shows that using Eq. (3.46) to find εF minimizes the total energy of the system.

3.3.3 The complex longitudinal wave functions

The longitudinal electron wave function fmνk(z) satisfies the Kohn-Sham equations

(3.35) subject to the periodicity condition Eq. (3.13), or equivalently, the cell

boundary condition

fmνk(a/2) = eikafmνk(−a/2) . (3.51)

58



Figure 3.2: A schematic diagram showing the shapes of the longitudinal wave
functions of electrons in different bands at k = 0 and k = π/a.
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Since the electron density distribution n(r) is periodic across each cell and sym-

metric about each ion, the following boundary condition is also useful:

|fmνk(z)|′|z=a/2 = |fmνk(z)|′|z=−a/2 = 0. (3.52)

Due to the complex boundary condition Eq. (3.51), the wave function fmνk is

complex for general k’s. The exceptions are k = 0 and k = π/a: For k = 0, the

boundary condition becomes fmνk(a/2) = fmνk(−a/2), and for k = π/a we have

fmνk(a/2) = −fmνk(−a/2). Thus for k = 0 and π/a, we can choose the longitudinal

wave functions to be real. The general shapes of these wave functions (for different

bands) are sketched out in Fig. 3.2. We see that at the Bragg points, between the

two states with the same number of nodes, the one that is more concentrated near

the ion has lower energy than the other state; this difference gives rise to the band

gap. The k = 0, π/a eigenvalues εmν and eigenfunctions can be calculated in the

domain 0 < z < a/2 with the boundary condition fmνk(0) = 0 or f ′
mνk(0) = 0.

The electron wave functions for general k’s are more difficult to compute as

they have complex boundary conditions. Our procedure for calculating these wave

functions and their corresponding electron energies is as follows: For each energy

band (mν), the electron eigenstates at k = 0 and k = π/a are first found (see

above). For every energy between εmν(k = 0) and εmν(k = π/a), we find the

wave function that solves the Kohn-Sham equation while satisfying the symmet-

ric/periodic density condition Eq. (3.52). More precisely, we choose f = 1 (up to

a normalization constant) and guess f ′ = i g (where g is a real number) at z = a/2

(thus |f |′ = 0 is satisfied at z = a/2), and then integrate the Kohn-Sham equation

to z = −a/2; we adjust g so that |f |′ = 0 is satisfied at z = −a/2. Example wave

functions for general k’s are shown in Figs. 3.3–3.5. Once the wave function is

obtained, we determine its k value from the Bloch boundary condition Eq. (3.51).
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Figure 3.3: The longitudinal wave function for the (m, ν, k) = (0, 0, π/2a) electron
orbital of the carbon infinite chain at B12 = 1. The real and imaginary parts of
the wave function are shown, as well as the magnitude |fmνk|.

Through this method we find εmν(k) as a function of k for each (mν) band.

Some examples of our computed εmν(k) are shown in Figs. 3.6 and 3.7. To

show that our calculations are consistent with theoretical models, we have included

several model fits for the electron energy curves: the tight-binding fit in Fig. 3.6,

which has the form

εmν(k) ' c1 + c2 cos(ka) (3.53)

[see Ashcroft & Mermin 1976, Eq. (10.19)], and the weak-periodic-potential fit in

Fig. 3.7, which has the form

εmν(k) ' c1 +
1

2
[k2/2+(2π/a−k)2/2]− 1

2
{[(2π/a−k)2/2−k2/2]2 + c22}1/2 (3.54)

[see Ashcroft & Mermin 1976, Eq. (9.26)]. The constants c1 and c2 in the for-
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Figure 3.4: The longitudinal wave function for the (m, ν, k) = (0, 1, π/2a) electron
orbital of the iron infinite chain at B12 = 10. The real and imaginary parts of the
wave function are shown, as well as the magnitude |fmνk|.
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Figure 3.5: The magnitudes of the longitudinal wave functions for selected electron
orbitals [with (m, ν) = (0, 0)] of the carbon infinite chain at B12 = 1.
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mulas are fit to the two endpoints of the energy curves, εmν(0) and εmν(π/a).

The tight-binding model fits well for the most-tightly-bound electron bands in our

calculations, while the weak-periodic-potential model fits well for all of the other

bands. Note that for k � π/a, the electron energy can be approximately fit by

εmν(k) = εmν(0)+k2/2, as would be the case if the wave functions were of the form

fmν(z)e
ikz — this is the ansatz adopted by Neuhauser et al. (1987) in their Hartree-

Fock calculations. But obviously for larger k, this is a rather bad approximation.

We suggest that approximate treatment in the band structure may account for a

large part of the discrepancies among cohesive energy results in previous works.

For example, the disagreement between Jones (1985) [where εmν(k) was calculated

for a few values of k and then fit to a simple expression] and Neuhauser et al.

(1987) (where a k2 dependence for the electron energy was assumed) on whether

or not carbon is bound at B12 = 5 is due to the band structure model, not to

the fact the former used the density functional theory while the latter used the

Hartree-Fock method.

3.4 Results: One-dimensional chains

In this section we present our results for hydrogen, helium, carbon, and iron infinite

chains at various magnetic field strengths between B = 1012 G and 2 × 1015 G.

For each chain, data is given in tabular form for the ground-state energy (per unit

cell) E∞, the equilibrium ion separation a, and the electron Fermi level energy εF

(the electron work function is W = |εF |). We provide relevant information for the

electron occupations in different bands, such as the number of Landau orbitals and

the number of fully occupied bands (see below for specific elements). We also give

the ground-state energy of the corresponding atom, Ea, so that the cohesive energy
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Figure 3.6: The electron energy of the (m, ν) = (0, 0) band for the carbon infinite
chain at B12 = 1. The tight-binding model fit for this level is shown as a dashed line
[see Eq. (3.53)], and the dotted line shows the free electron result ε00(k)− ε00(0) =
k2/2.
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Figure 3.7: The electron energy of the (m, ν) = (0, 0) band for the iron infinite
chain at B12 = 2000. The weak-periodic-potential model fit for this level is shown
as a dashed line [see Eq. (3.54)], and the dotted line shows the free electron result
ε00(k) − ε00(0) = k2/2.
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of each chain can be obtained, Q∞ = Ea − E∞.

For each chain and atom we provide numerical scaling relations for the ground-

state energy and Fermi level energy as a function of the magnetic field, in the form

of scaling exponents β and γ, with

Ea, E∞ ∝ Bβ, εF ∝ Bγ . (3.55)

We also give the rescaled, dimensionless energy Ē∞, and equilibrium ion separation

ā defined by [see Eq. (3.3)]

E∞ ' Ē∞Z9/5b2/5 a.u., a ' ā Z1/5b−2/5 a.u.. (3.56)

We shall see that the scaling relations in Eq. (3.56) with Ē∞ ' const. and ā '

const. represent a reasonable approximation to our numerical results, although

such scaling formulae are not accurate enough for calculating the cohesive energy

Q∞ = Ea − E∞. However, Eq. (3.4) or Eq. (3.9) for the Fermi level energy based

on the uniform gas model is not a good representation of our numerical results.

In Chapter 2 we have shown that as N increases, the energy per atom in the HN

(or HeN , CN , FeN) molecule, EN/N , gradually approaches a constant value. The

infinite chain ground-state energy E∞ found in the present chapter is consistent

with the large-N molecule ground-state energy limit EN/N obtained in Chapter 2

(see the related figures in the following subsections). Since finite molecules and

infinite chains involve completely different treatments of the electron states, the

consistency of E∞ and EN/N provides an important check of the validity of our

calculations.

Other comparisons can be made between the infinite chains and finite molecules.

For example, our results of ion separation a and scaling constant β are consistent

between infinite chains and finite molecules. Also, we find that if the isolated atom
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has electrons in ν = 0 and ν = 1 orbitals, then the corresponding infinite chain will

have electrons in ν = 0 and ν = 1 bands; if the isolated atom only has electrons in

ν = 0 orbitals, the corresponding infinite chain will have electrons only in ν = 0

bands.

We have compared our cohesive energy results with those of other work, when-

ever available. These comparisons are presented in the following subsections.

3.4.1 Hydrogen

Our numerical results for H are given in Table 3.1. Examples of the energy curves of

various HN molecules and H∞ at B12 = 1 are depicted in Fig. 3.8. The minimum of

each energy curve determines the equilibrium ion separation in the molecule/chain.

Figure 3.9 compares the molecular and infinite chain energies at various field

strengths, and shows that as N increases, the energy per atom in the HN molecule

asymptotes to E∞. Figure 3.10 gives the occupation number σm0 of different Lan-

dau orbitals at various field strengths. Only the ν = 0 bands are occupied, none of

these are completely filled (σm0 < 1), and the ν ≥ 1 bands are empty (σm1 = 0).

We see that as B increases, the electrons spread into more Landau orbitals, thus the

number of m states occupied by the electrons (nm in Table 3.1) increases. Approx-

imately, since the chain radius R ∝ b−2/5 and R ∼ (2nm − 1)1/2/b1/2 (the electrons

occupy the Landau orbitals with m = 0, 1, 2, . . . , nm − 1), we have nm ∝ b1/5.

Table 3.1 shows that for B12 >∼ 10 our results for E∞ and a are well fit by

E∞ ' −529B0.374
13 eV, a = 0.091B−0.40

13 a0 (3.57)

[where B13 = B/(1013 G)], similar to the scaling of Eq. (3.56). The electron work

function W = |εF | does not scale as Eq. (3.4), but is a fraction of the ionization
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energy of the H atom, |Ea|. Note that |Ea| is not well fit by a power law (∝ Bβ),

but is well described by |Ea| ∝ (ln b)2 (accurate fitting formulae for |Ea| are given

in, e.g., Ho & Lai 2003).

At B12 = 1, 10, 100, we find cohesive energies of Q∞ = Ea − E∞ = 59.6, 219.7,

712.7 eV (see Table 3.1). At those same fields, Lai et al. (1992) find cohesive ener-

gies of 28.9, 141, 520 eV. At B12 = 0.94, Relovsky & Ruder (1996) find a cohesive

energy of 47.1 eV. We expect our H calculation (and that of Relovsky & Ruder

1996) to overestimate the cohesive energy since an exchange-correlation functional

is used in the chain calculation while none is required for the H atom. But we

also expect the result obtained in Lai et al. (1992) to somewhat underestimate the

cohesive energy since a uniform (longitudinal) electron density was assumed.

3.4.2 Helium

Our numerical results for He are given in Table 3.2. Figure 3.11 compares the

molecular and infinite chain energies at various field strengths, and shows that as

N increase, the energy per atom in the HeN molecule approaches E∞ for the infinite

chain. Figure 3.12 gives occupation number σm0 of different Landau orbitals at

various field strengths. As in the case of H, only the ν = 0 bands are occupied, and

the number of Landau states required (nm in Table 3.2) increases with increasing

B, with nm ∝ Z2/5b1/5. Table 3.2 shows that for B12 >∼ 10,

E∞ ' −1252B0.382
13 eV, a = 0.109B−0.40

13 a0 , (3.58)

similar to the scaling of Eq. (3.56). The electron work function W = |εF | does not

scale as Eq. (3.4), but is a fraction of the ionization energy: Using a Hartree-Fock

code (e.g., Lai et al. 1992) we find that at B12 = 1, 10, 100, 1000 the He atomic
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Table 3.1: The ground-state energy (per unit cell) E∞ (in units of eV), ion separation a (in units of Bohr radius a0), the
number of occupied Landau levels nm, and the Fermi level energy εF (in eV) of 1D infinite chains of hydrogen, over a range
of magnetic field strengths. The ground-state energy of individual hydrogen atoms, Ea (in units of eV), is also provided for
reference. The dimensionless energy Ē∞ and ion separation ā are calculated using Eq. (3.56). The scaling exponents β and γ,
defined by Ea, E∞ ∝ Bβ, and εF ∝ Bγ , are calculated over the three magnetic field ranges provided in the table: B12 = 1−10,
10 − 100, 100 − 1000 (the exponent in the B12 = 1 row corresponds to the fit over B12 = 1 − 10, etc.). The occupation of
different (mν) bands is designated by the number nm: the electrons occupy Landau orbitals with m = 0, 1, 2, . . . , nm − 1, all
in the ν = 0 band; see Fig. 3.10.

H H∞
B12 Ea β E∞ Ē∞ β a ā nm εF γ
1 -161.4 0.283 -221.0 -0.721 0.379 0.23 2.6 6 -85.0 0.28
10 -309.5 0.242 -529.2 -0.688 0.374 0.091 2.6 10 -165 0.27
100 -540.3 0.207 -1253.0 -0.648 0.374 0.037 2.6 16 -311 0.26
1000 -869.6 - -2962 -0.610 - 0.0145 2.6 26 -571 -
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Figure 3.8: The energies (per atom or cell) of various H molecules and infinite
chain as a function of ion separation a at B12 = 1. The results of finite molecules
are based on Chapter 2. The energy of the H atom is shown as a horizontal line
at −161.4 eV.
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Figure 3.9: The molecular energy per atom, |EN |/N , for the HN molecule, as a
function of N at several different field strengths. The results of finite molecules
are based on Chapter 2. As N increases, EN/N asymptotes to E∞. To facilitate
plotting, the values of |E1| (atom) at different magnetic field strengths are nor-
malized to the value at B12 = 1, 161.4 eV. This means that λ = 1 for B12 = 1,
λ = 161.4/309.5 for B12 = 10, λ = 161.4/540.3 for B12 = 100, and λ = 161.4/869.6
for B12 = 1000.
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Figure 3.10: The occupation numbers of each m level of hydrogen infinite chains,
for various magnetic field strengths. The data points are plotted over the curves
to show the discrete nature of the m levels. Note that only the ν = 0 bands are
occupied by the electrons.
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energies are −575.5, −1178.0, −2193, −3742 eV. The He+ (i.e., once-ionized He)

energies at these field strengths are −416.2, −846.5, −1562.0, −2638 eV. Therefore,

the ionization energies of He at these field strengths are 159.3, 331.5, 631, and

1104 eV, respectively.

At B12 = 1, we find a cohesive energy of 58.9 eV (see Table 3.2). At the same

field, Neuhauser et al. (1987) (based on the Hartree-Fock model) find a cohesive

energy of 25 eV, and Müller (1984) (based on variational methods) gives a cohesive

energy of 50 eV. At B12 = 0.94, Relovsky & Ruder (1996) (based on density

functional theory) find a cohesive energy of 56.6 eV. At B12 = 5 Jones (1985)

finds a cohesive energy of 220 eV, which is close to our value. That our results

agree best with those of Relovsky & Ruder (1996); Jones (1985) is expected, as we

used a similar method to find the ground-state atomic and chain energies. Similar

to the finite He molecules (Chapter 2), we expect our density-functional-theory

calculation to overestimate the cohesive energy, but we also expect the result of

Neuhauser et al. (1987) to underestimate Q∞.

3.4.3 Carbon

Our numerical results for C are given in Table 3.3. Figure 3.13 compares molecular

and infinite chain energies at various field strengths, showing that as N increase,

the energy per atom in the CN molecule approaches E∞ for the infinite chain.

Figure 3.14 gives the occupation number σm0 of different Landau orbitals at various

field strengths. As in the case of H and He, only the ν = 0 bands are occupied,

although for C at B12 = 1, the m = 0 and m = 1 bands (both with ν = 0) are

fully occupied (thus nf = 2 in Table 3.3). The number of Landau states required

(nm in Table 3.3) increases with increasing B, approximately with nm ∝ Z2/5b1/5.
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Table 3.2: The ground-state energy (per unit cell) E∞ (in units of eV), ion separation a (in units of Bohr radius a0), the
number of occupied Landau levels nm, and Fermi level energy εF (in eV) of 1D infinite chains of helium, over a range of
magnetic field strengths. The ground-state energy of individual He atoms, Ea (in units of eV), is also provided for reference
(this is based on the density-functional-theory calculation of Medin & Lai 2006a). The dimensionless energy Ē∞ and ion
separation ā are calculated using Eq. (3.56). The scaling exponents β and γ, defined by Ea, E∞ ∝ Bβ, and εF ∝ Bγ, are
calculated over the three magnetic field ranges provided in the table: B12 = 1 − 10, 10 − 100, 100 − 1000 (the exponent in
the B12 = 1 row corresponds to the fit over B12 = 1− 10, etc.). The occupation of different (mν) bands is designated by the
number nm: the electrons occupy Landau orbitals with m = 0, 1, 2, . . . , nm − 1, all in the ν = 0 band; see Fig. 3.12. Note
that all of the He atoms here also have electrons only in the ν = 0 states.

He He∞
B12 Ea β E∞ Ē∞ β a ā nm εF γ
1 -603.5 0.317 -662.4 -0.621 0.385 0.28 2.7 9 -85.0 0.29
10 -1252.0 0.280 -1608.0 -0.600 0.382 0.109 2.7 14 -167 0.27
100 -2385 0.248 -3874 -0.575 0.382 0.043 2.7 23 -310 0.26
1000 -4222 - -9329 -0.552 - 0.0175 2.7 39 -568 -
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Figure 3.11: The molecular energy per atom, |EN |/N , for the HeN molecule, as a
function of N at several different field strengths. The results of finite molecules
are based on Chapter 2. As N increases, EN/N asymptotes to E∞. To facilitate
plotting, the values of |E1| (atom) at different magnetic field strengths are nor-
malized to the value at B12 = 1, 603.5 eV. This means that λ = 1 for B12 = 1,
λ = 603.5/1252.0 for B12 = 10, λ = 603.5/2385 for B12 = 100, and λ = 603.5/4222
for B12 = 1000.

76



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40

σ m
0

m

B12=1
B12=10
B12=100
B12=1000

Figure 3.12: The occupation numbers of each m level of infinite He chains, for
various magnetic field strengths. Only the ν = 0 bands are occupied by the
electrons. Note that for B12 = 1, the m = 8 orbital has a rather small occupation,
σ80 ' 0.006; if εF were slightly more negative, this orbital would be completely
unoccupied.
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Table 3.3 shows that for B12 >∼ 10,

E∞ ' −10 300B0.387
13 eV, a = 0.154B−0.43

13 a0 . (3.59)

Note that these expressions are more approximate than for H and He. The electron

work function W = |εF | does not scale as Eq. (3.4), but is a fraction of the ioniza-

tion energy: from Chapter 2, the ionization energies of C at B12 = 1, 10, 100, 1000

are 174, 430, 990, and 2120 eV, respectively.

At B12 = 10, we find a cohesive energy of 240 eV (see Table 3.3). At B12 = 8.5,

Relovsky & Ruder (1996) give a cohesive energy of 240 eV. At B12 = 5 Jones (1985)

finds a cohesive energy of 100 eV; at the same field (using our scaling relations),

we find a cohesive energy of 100 eV (±30 eV). Neuhauser et al. (1987), on the

other hand, find that carbon is not bound at B12 = 1 or 5. This is probably due

to the approximate band structure ansatz adopted in Neuhauser et al. (1987) (see

Section 3.3.3): for fully occupied bands, the approximation that εmν(k) increases

as k2/2 is invalid and can lead to large error in the total energy of the chain.

3.4.4 Iron

Our numerical results for Fe are given in Table 3.4. The electron density profile

at various field strengths is shown in Figs. 3.15 and 3.16. As the magnetic field

increases the density goes up, for two reasons. First, the equilibrium ion separation

decreases. Second, the electrons become more tightly bound to each ion, in both

the ρ and z directions (the electrons move closer to each ion faster than the ions

move closer to each other). It is interesting to note that the peak density at a given

z is not necessarily along the centeral axis of the chain (ρ = 0), but gradually moves

outward with increasing z.
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Table 3.3: The ground-state energy (per unit cell) E∞ (in units of eV), ion separation a (in units of Bohr radius a0), electron
occupation numbers (nm, nf), and Fermi level energy εF (in eV) of 1D infinite chains of carbon, over a range of magnetic
field strengths. The ground-state energy of individual C atoms, Ea (in units of eV), is also provided for reference (this is
based on the density-functional-theory calculation of Medin & Lai 2006a). The dimensionless energy Ē∞ and ion separation
ā are calculated using Eq. (3.56). The scaling exponents β and γ, defined by Ea, E∞ ∝ Bβ, and εF ∝ Bγ , are calculated
over the three magnetic field ranges provided in the table: B12 = 1 − 10, 10 − 100, 100 − 1000 (the exponent in the B12 = 1
row corresponds to the fit over B12 = 1 − 10, etc.). The occupation of different (mν) bands is designated by the notation
(nm, nf): the electrons occupy Landau orbitals with m = 0, 1, 2, . . . , nm − 1, all with ν = 0; the number of fully occupied
(σmν = 1) bands is denoted by nf ; see Fig. 3.14. Note that all of the C atoms here also have electrons only in the ν = 0
states.

C C∞
B12 Ea β E∞ Ē∞ β a ā (nm, nf) εF γ
1 -4341 0.366 -4367 -0.567 0.373 0.49 3.9 (12,2) -92.8 0.27
10 -10075 0.326 -10315 -0.533 0.385 0.154 3.1 (23,0) -173 0.25
100 -21360 0.287 -25040 -0.515 0.389 0.056 2.8 (41,0) -306 0.25
1000 -41330 - -61320 -0.502 - 0.022 2.7 (69,0) -539 -
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Figure 3.13: The molecular energy per atom, |EN |/N , for the CN molecule, as a
function of N at several different field strengths. The results of finite molecules are
based on Chapter 2. As N increases, EN/N asymptotes to E∞. To facilitate plot-
ting, the values of |E1| (atom) at different magnetic field strengths are normalized to
the value at B12 = 1, 4341 eV. This means that λ = 1 for B12 = 1, λ = 4341/10 075
for B12 = 10, λ = 4341/21 360 for B12 = 100, and λ = 4341/41 330 for B12 = 1000.
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Figure 3.14: The occupation numbers of each m level of infinite C chains, for
various magnetic field strengths. Only the ν = 0 bands are occupied by the
electrons. Note that for B12 = 1, the m = 0 and m = 1 bands are completely
filled.
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The energy curves for Fe2, Fe3 (calculated in Chapter 2), and Fe∞ at B12 = 500

are shown in Fig. 3.17. Figure 3.18 compares the molecular and infinite chain

energies at various field strengths, showing that asN increases, the energy per atom

in the FeN molecule approaches E∞ for the infinite chain. Figure 3.19 gives the

occupation number σmν of different bands at various field strengths. For B12 >∼ 100,

only the ν = 0 bands are occupied; for such field strengths, the Fe atom also has

all its electrons in the tightly bound ν = 0 states (see Table 3.4). At B12 = 100,

the number of fully occupied bands is n
(0)
f = 7 (m = 0, 1, 2, . . . , 6, all with ν = 0).

As B increases, the electrons spread to more Landau orbitals, and the number

of occupied m-states n(0)
m increases, approximately as n(0)

m ∝ Z2/5b1/5. Note that

at the highest field strength considered, the electrons occupy m = 0, 1, 2, . . . , 156

— keeping track of all these Landau orbitals (n(0)
m = 157) is one of the more

challenging aspects of our computation. Table 3.4 shows that for B12 >∼ 100,

E∞ ' −356B0.374
14 keV, a = 0.107B−0.43

14 a0 (3.60)

[where B14 = B/(1014 G)]. These scaling expressions are more approximate than

for H and He. The electron work function W = |εF | does not scale as Eq. (3.4),

but is a fraction of the ionization energy: from Chapter 2, the ionization energies

of Fe at B12 = 100, 500, 1000, 2000 are 1.2, 2.5, 3.4, and 5.5 keV, respectively.

Note that at B12 = 5 and 10, the cohesive energy (Q∞ = Ea − E∞) of the

iron chain is rather small compared to the absolute value of the ground-state

energy of the atom (|Ea|) or chain (|E∞|). For these field strengths, our formal

numerical result for the cohesive energy is at or smaller than the standard error of

our computations (0.1% of |Ea| or |E∞|), so we have redone the calculations using

more grid and integration points such that the atomic and chain energies reported

here for these field strengths are accurate to at least 0.02% of |Ea| or |E∞| (see

Appendix B). Although these more-accurate cohesive energies are (barely) larger
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than the error in our calculations, there are of course systematic errors introduced

by using density functional theory which must be considered. It is very possible

that a similar, full-band-structure calculation using Hartree-Fock theory would find

no binding. In any case, for such “low” field strengths (B12 <∼ 10) the exact result

of our one-dimensional calculation is not crucial, since in the three-dimensional

condensed matter the additional cohesion resulting from chain-chain interactions

dominates over Q∞, as we will show in Section 3.5.

At B12 = 5, Neuhauser et al. (1987) and Jones (1985) found that iron is not

bound, while we find that it is barely bound. At B12 = 10, Jones (1986) calculated

the cohesive energy for three-dimensional condensed matter, so we compare our re-

sults with those of Jones (1986) in Section 3.5. We have not found any quantitative

calculations of cohesive energies for iron at field strengths larger than 1013 G.

3.5 Calculations of three-dimensional condensed matter

For the magnetic field strengths considered in this chapter (B >∼ 1012 G), H and

He infinite chains are significantly bound relative to individual atoms. Additional

binding energy between 3D condensed matter and 1D chain is expected to be small

(Lai et al. 1992) (see below). Thus the cohesive energy of the 3D condensed H or

He, Qs = Ea − Es (where Es is the energy per cell in the 3D condensed matter), is

close to Q∞ = Ea − E∞, the cohesive energy of the 1D H or H chain. For C and

Fe at relatively low magnetic fields (e.g., C at B12 <∼ 10 and Fe at B12 <∼ 100), 1D

chains are not significantly bound relative to atoms and additional cohesion due

to chain-chain interactions is important in determining the true cohesive energy

of the 3D condensed matter. Indeed, for Fe at B12 = 5, 10, our calculations of 1D
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Table 3.4: The ground-state energy (per unit cell) E∞ (in units of keV), ion separation a (in units of the Bohr radius a0),

electron occupation numbers (n(0)
m , n

(0)
f ;n(1)

m , n
(1)
f ), and Fermi level energy εF (in eV) of 1D infinite iron chains, over a range of

magnetic field strengths. The ground-state energy of individual Fe atoms, Ea (in units of keV), is also provided for reference
(this is based on the density-functional-theory calculation of Medin & Lai 2006a). The dimensionless energy Ē∞ and ion
separation ā are calculated using Eq. (3.56). The scaling exponents β and γ, defined by Ea, E∞ ∝ Bβ, and εF ∝ Bγ, are
calculated over the three magnetic field ranges provided in the table: B12 = 1 − 10, 10 − 100, 100 − 1000 (the exponent in
the B12 = 1 row corresponds to the fit over B12 = 1 − 10, etc.). For atoms the electron configuration is specified by the
notation (n0, n1) (with n0 + n1 = Z = 26), where n0 is the number of electrons in the ν = 0 orbitals and n1 is the number
of electrons in the ν = 1 orbitals. For infinite chains, the occupation of different (mν) bands is designated by the notation

(n(0)
m , n

(0)
f ;n(1)

m , n
(1)
f ), where n(0)

m is the total number of occupied ν = 0 orbitals (from m = 0 to m = n(0)
m − 1), and n(1)

m the

corresponding number for the ν = 1 orbitals; n
(0)
f (n

(1)
f ) is the number of fully occupied (σmν = 1) ν = 0 (ν = 1) orbitals.

Note that for B12 >∼ 100, only the ν = 0 states are occupied in the Fe atom, and only the ν = 0 bands are occupied in the
Fe chain; see Fig. 3.19.

Fe Fe∞
B12 Ea (keV) (n0, n1) β E∞ (keV) Ē∞ β a ā (n(0)

m , n
(0)
f ;n(1)

m , n
(1)
f ) εF (eV) γ

5 -107.23 (24,2) 0.407 -107.31 0.522 0.407 0.42 4.7 (35,15;3,1) -161 0.27
10 -142.15 (25,1) 0.396 -142.30 0.525 0.398 0.30 4.4 (42,13;2,0) -194 0.30

100 -354.0 (26,0) 0.366 -355.8 0.522 0.376 0.107 4.0 (69,7) -384 0.26
500 -637.8 (26,0) 0.346 -651.9 0.503 0.371 0.050 3.5 (105,2) -583 0.12
1000 -810.6 (26,0) 0.334 -842.8 0.493 0.372 0.035 3.3 (130,1) -635 0.12
2000 -1021.5 (26,0) - -1091.0 0.483 - 0.025 3.1 (157,0) -690 -
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Figure 3.15: The density distribution of electrons in the iron infinite chain at four
different magnetic field strengths (labeled on the graphs). The density is shown as
a function of ρ for five equally spaced z points from the center of a cell (z = 0) to
the edge of that cell (z = a/2).
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Figure 3.16: The density distribution of electrons in the iron infinite chain at four
different magnetic field strengths (labeled on the graphs). The density is shown
as a function of z for five equally spaced ρ points from the center of a cell (ρ = 0)
to the guiding center radius of the highest occupied m level (ρ = ρmmax

). The ρ
points are given in units of a0.
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Figure 3.17: The energy per cell as a function of the ion separation for an infinite
Fe chain at B12 = 500. The molecular energy per atom versus ion separation for
the Fe2 and Fe3 molecules at the same field strength (based on calculations in
Chapter 2) are also shown. The energy of the Fe atom is shown as a horizontal
line at −637.8 keV.
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Figure 3.18: The molecular energy per atom, |EN |/N , for the FeN molecule, as a
function of N at several different field strengths. The results of finite molecules
are based on Chapter 2. As N increases, EN/N asymptotes to E∞. To facili-
tate plotting, the values of |E1| (atom) at different magnetic field strengths are
normalized to the value at B12 = 100, 354.0 keV. This means that λ = 1 for
B12 = 100, λ = 354.0/637.8 for B12 = 500, λ = 354.0/810.6 for B12 = 1000, and
λ = 354.0/1021.5 for B12 = 2000.
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Figure 3.19: The occupation numbers of each m level of infinite Fe chains, for
various magnetic field strengths. For B12 >∼ 100, only the ν = 0 bands are occupied
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(lower panel).
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Figure 3.20: A schematic diagram showing the body-centered tetragonal structure
of the lattice, with only the ions displayed (left panel) and with the ions and the
surround electron orbitals displayed (right panel).

chains give such a small Q∞ (see Table 3.4) that it is somewhat ambiguous as to

whether the Fe condensed matter is truly bound relative to individual atoms. In

these cases, calculations of 3D condensed matter is crucial (Jones 1986).

In this section, we present an approximate calculation of the relative binding

energy between 3D condensed matter and 1D chains, ∆Es = Es − E∞.

3.5.1 Method

To form 3D condensed matter we place the infinite chains in parallel bundles along

the magnetic field. We consider a body-centered tetragonal lattice structure; i.e.,

the chains are uniformly spaced over a grid in the xy plane (perpendicular to the

magnetic axis), with every other chain in the grid shifted by half a cell (∆z = a/2)

in the z direction (see Fig. 3.20). The transverse separation between two nearest

neighboring chains is denoted by 2R, with R to be determined.
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To calculate the ground-state energy of this 3D condensed matter, we assume

that the electron density calculated for an individual 1D chain is not modified

by chain-chain interactions, thus we do not solve for the full electron density in

the 3D lattice self-consistently. In reality, for each Landau orbital the transverse

wave function of an electron in the 3D lattice is no longer given by Eq. (3.11)

(which is centered at one particular chain), but is given by a superposition of

many such Landau wave functions centered at different lattice sites and satisfies

the periodic (Bloch) boundary condition. The longitudinal wave function fmνk(z)

will be similarly modified. Our calculations show that the equilibrium separation

(2R) between chains is large enough that there is little overlap in the electron

densities of any two chains, so we believe that our approximation is reasonable.

Using this approximation, the electron density in the 3D lattice is simply the

sum of individual infinite chain electron densities:

n3D(r) =
∑

ij

n(r − rij) , (3.61)

where n(r) are the electron density in the 1D chain (as calculated in Sections 3.3-

3.4), the sum over ij spans all positive and negative integers, and

rij = 2Ri x̂ + 2Rj ŷ +
a

2
[i, j] ẑ (3.62)

represents the location of the origin of each chain (the notation [i, j] = 1 when

i+ j = odd, and [i, j] = 0 when i+ j = even). In practice, the chain-chain overlap

is so small that we only need to consider neighboring chains. The density at a

point in the positive xyz octant of a 3D unit cell is approximately given by

n3D(r) ' n(r)+n(r−2Rx̂−a/2ẑ)+n(r−2Rŷ−a/2ẑ)+n(r−2Rx̂−2Rŷ) . (3.63)

The energy (per unit cell) ∆E3D(R) of the 3D condensed matter relative to

the 1D chain consists of the chain-chain interaction Coulomb energy ∆ECoul and
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the additional electron kinetic energy ∆EK and exchange-correlation energy ∆Eexc

due to the (slight) overlap of different chains. The dominant contribution to the

Coulomb energy comes from the interaction between nearest-neighboring cells. For

a given cell in the matter, each of the eight nearest-neighboring cells contributes

an interaction energy of

Enn = EeZ,nn + Edir,nn + EZZ,nn , (3.64)

where

EeZ,nn = −Ze2
∫

|z|<a/2
dr

n(r)

|r − rnn|
, (3.65)

Edir,nn[n] =
e2

2

∫ ∫

|z|<a/2, |z′|<a/2
dr dr′

n(r)n(r′)

|r− (r′ + rnn)|
(3.66)

EZZ,nn =
1

2

Z2e2

|rnn|
=

1

2

Z2e2
√

(a/2)2 + (2R)2
, (3.67)

and rnn is the location of the ion in a nearest-neighboring cell, for example

rnn = 2Rx̂ +
a

2
ẑ. (3.68)

More distant cells contribute to the Coulomb energy through their quadrupole

moments. The classical quadrupole-quadrupole interaction energy between two

cells separated by a distance d is

EQQ(d, θ) =
3e2

16

Q2
zz

d5
(3 − 30 cos2 θ + 35 cos4 θ) , (3.69)

where Qzz is given by Eq. (3.39) and θ is the angle between the line joining the

two quadrupoles and the z axis. The total contribution from all nonneighboring

cells to the Coulomb energy is then

1

2

∑

(ijk)

EQQ(rijk), (3.70)

where

rijk = rij + a k ẑ, d = |rijk|, cos θ =
k + [i, j]/2

d/a
, (3.71)
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and the sum in Eq. (3.70) spans over all positive and negative integers except those

corresponding to the nearest neighbors.

In the density functional theory, the kinetic and exchange-correlation ener-

gies depend entirely on the electron density. These energies differ in the 3D con-

densed matter from the 1D chain because the overall electron density n3D(r) [see

Eq. (3.61)] within each 3D cell is (slightly) larger than n(r) due to the overlap

of the infinite chains. Since we do not solve for the electron density in the 3D

condensed matter self-consistently, we calculate the kinetic energy difference using

the local (Thomas-Fermi) approximation:

∆EK(R) =
∫

|z|<a/2; |x|,|y|<R
drn3D(r) εK(n3D) −

∫

|z|<a/2
drn(r) εK(n) . (3.72)

Here εK(n) is the (Thomas-Fermi) kinetic energy (per electron) for an electron gas

at density n, and is given by (e.g., Lai 2001)

εK(n) =
h̄2(2π2ρ2

0n)2

6me

=
e2

3ρ0

b1/2 t , (3.73)

where t is given by Eq. (3.29). Note that the regions of integration in the xy

direction are different for the two terms in Eq. (3.72), as in the 1D chain the unit

cell extends over all ρ space, while in the 3D condensed matter the cell is restricted

to x, y ∈ [−R,R].

Similar to ∆EK, in the local approximation, the change in exchange-correlation

energy per unit cell is

∆Eexc(R) =
∫

|z|<a/2; |x|,|y|<R
drn3D(r) εexc(n3D) −

∫

|z|<a/2
drn(r) εexc(n) , (3.74)

where εexc(n) is the exchange-correlation energy (per electron) at density n (see

Section 3.3.1).

Combining the Coulomb energy, the kinetic energy, and the exchange-correlation

energy, the total change in the energy per unit cell when 3D condensed matter is
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formed from 1D infinite chains can be written

∆E3D(R) = ∆ECoul + ∆EK + ∆Eexc , (3.75)

where

∆ECoul(R) = 8Enn +
1

2

∑

(ijk)

EQQ(rijk) . (3.76)

We calculate ∆E3D(R) as a function of R and locate the minimum to determine

the equilibrium chain-chain separation 2R and the equilibrium energy of the 3D

condensed matter. Our method for evaluating various integrals is described in

Appendix B.

3.5.2 Results: 3D condensed matter

Table 3.5 presents our numerical results for the equilibrium chain-chain separation

2R = 2Req and the energy difference (per cell) between the 3D condensed matter

and 1D chain, ∆Es = Es −E∞ = ∆E3D(R = Req), for C and Fe at various magnetic

field strengths. A typical energy curve is shown in Fig. 3.21. We see that it

is important to include the kinetic energy contribution ∆EK to the 3D energy;

without ∆EK, the energy curve would not have a local minimum at a finite R.

A comparison of the R values in Table 3.5 with various iron chain electron

densities in Fig. 3.15 shows that our assumption of small electron density overlap

between chains is indeed a good approximation. The electron densities are slowly-

varying at the overlapping region, so using the local (Thomas-Fermi) model to

calculate the kinetic energy difference is also consistent with the results of our

model. Our equilibrium R is within about 15% of the value predicted in the

uniform cylinder model [see Eq. (3.3)].
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Table 3.5: The energy difference (per unit cell) between the 3D condensed matter
and 1D chain, ∆Es = Es − E∞, for carbon and iron over a range of magnetic field
strengths. Energies are given in units of eV for C and keV for Fe. The equilibrium
chain-chain separation is 2Req (in units of the Bohr radius a0).

C Fe
B12 ∆Es Req ∆Es Req

(eV) ( keV)
1 -30 0.200
5 -40 0.110 -0.6 0.150
10 -20 0.094 -0.6 0.115
100 -20 0.041 -2.2 0.054
500 -30 0.022 -2.1 0.025
1000 -10 0.017 -1.3 0.021
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Figure 3.21: The energy (per cell) of 3D condensed matter relative to 1D chain as a
function of R, for carbon at B12 = 1. The nearest-neighbor chain-chain separation
in the 3D condensed matter is 2R. The solid curve gives ∆E3D(R) [Eq. (3.75)] and
the dashed curve gives only the Coulomb energy ∆ECoul [Eq. (3.76)].
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Figure 3.22: The cohesive energy as a function of B, for H (dotted line) and He
(short-dashed line) infinite chains and C (long-dashed lines) and Fe (solid lines)
infinite chains (lighter lines) and 3D condensed matter (heavier lines).

Given our results for ∆Es and the cohesive energy of 1D chains, Q∞ = Ea−E∞,

we can obtain the cohesive energy of 3D condensed matter from

Qs = Ea − Es = Ea − (E∞ + ∆Es) = Q∞ − ∆Es . (3.77)

For H and He, we find that |∆Es| is small compared to Q∞ and thus Qs ' Q∞.

Figure 3.22 depicts Qs and Q∞ as a function of B for H, He, C, and Fe.

The only previous quantitative calculation of 3D condensed matter is that

by Jones (1986), who finds cohesive energies of Qs = 0.60, 0.92 keV for iron at

B12 = 5, 10. At these field strengths, our calculation (see Tables 3.4 and 3.5) gives

Qs = Ea − Es = Q∞ − ∆Es = 0.08 + 0.6 ' 0.7 keV and 0.15 + 0.6 ' 0.75 keV,

respectively.
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Note that our calculations and the results presented here assume that the ion

spacing along the magnetic axis in 3D condensed matter, a, is the same as in

the 1D chain. We have found that if both a and R are allowed to vary, the 3D

condensed matter energy can be lowered slightly. This correction is most important

for relatively low field strengths. For example, in the case of Fe at B12 = 10, if we

increase a from the 1D chain value by 10%, then Q∞ decreases by about 50 eV,

but |∆Es| increases by about 200 eV, so that Qs is increased to ∼ 0.9 keV. Given

the approximate nature of our 3D calculations, we do not explore such refinement

in detail in this chapter.

3.6 Discussions

Using density functional theory, we have carried out extensive calculations of the

cohesive properties of 1D infinite chains and 3D zero-pressure condensed matter in

strong magnetic fields. Our results, presented in various tables, figures, and fitting

formulae, show that hydrogen, helium, and carbon infinite chains are all bound

relative to individual atoms for magnetic fields B ≥ 1012 G, but iron chains are not

(significantly) bound until aroundB ∼ 1014 G. For a given zero-pressure condensed

matter system, the cohesion along the magnetic axis (chain axis) dominates over

chain-chain interactions across the magnetic axis at sufficiently strong magnetic

fields. But for relative low field strengths (e.g. Fe at B <∼ 1014 G and C at B <∼
a few× 1012 G), chain-chain interactions play an important role in the cohesion of

3D condensed matter. Our calculations show that for the field strengths considered

in this chapter (B >∼ 1012 G), 3D condensed H, He, C and Fe are all bound relative

to individual atoms: For C, the cohesive energy Qs = Ea −Ec ranges from ∼ 50 eV

at B = 1012 G to 20 keV at 1015 G; for Fe, Qs ranges from ∼ 0.8 keV at 1013 G to
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33 keV at 1015 G.

Our result for the 1D infinite chain energy (per cell), E∞, is consistent with the

energies of finite molecules obtained in Chapter 2 (Medin & Lai 2006a), where we

showed that the binding energy (per atom) of the molecule, |EN |/N (where EN is

the ground-state energy and N is the number of atoms in the molecule), increases

with increasing N , and asymptotes to a constant value. The values of |EN |/N for

various molecules obtained in Medin & Lai (2006a) are always less than |E∞|. Since

the electron energy levels in a finite molecule and those in an infinite chain are

quite different (the former has discrete states while the latter has band structure),

and the computations involved are also different, the consistency between the finite

molecule results and 1D chain results provides an important check for the validity

of our calculations.

It is not straightforward to assess the accuracy of our density-functional-theory

calculations of infinite chains compared to the Hartree-Fock method. For finite

molecules with small number of electrons, using the available Hartree-Fock results,

we have found that density functional theory tends to overestimate the binding

energy by about 10%, although this does not translate into an appreciable error

in the molecular dissociation energy (Medin & Lai 2006a). For infinite chains, the

only previous calculation using the Hartree-Fock method (Neuhauser et al. 1987)

adopted an approximate treatment for the electron band structure (e.g., assuming

that the electron energy increases as k2/2 as the Bloch wave number k increases),

which, as we showed in this chapter (Section 3.3.3), likely resulted in appreciable

error to the total chain energy. Since the cohesive energy Q∞ of the chain involves

the difference in the binding energy the 1D chain and the atom, and because

of the statistical nature of density functional theory, we expect that our result
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for Q∞ is more accurate for heavy elements (C and Fe) than for light elements

(H and He). We note that it is very difficult (perhaps impractical) to carry out

ab initio Hartree-Fock calculations of infinite chains if no approximation is made

about the electron band structure. This is especially the case in the superstrong

magnetic field regime where many Landau orbitals are populated. For example,

for the Fe chain at B = 1015 G, one must be dealing with 130 Landau orbitals (see

Table 3.4), each with its own band structure — this would be a formidable task

for any Hartree-Fock calculation.

We also note that our conclusion about 3D condensed matter is not based

on fully self-consistent calculations and uses several approximations (Section 3.5).

Although we have argued that the approximations we adopted are valid and our

calculation gave reasonable values for the relative binding energies between 1D

chains and 3D condensed matter, it would be desirable to carry out more definitive

calculations of 3D condensed matter.

Our computed binding energies and equilibrium ion separations of infinite

chains and condensed matter agree approximately with the simple scaling rela-

tions (e.g., E∞ and a as a function of B) derived from the uniform gas model

(Section 3.2). We have provided more accurate fitting formulae which will allow

one to obtain the cohesive energy at various field strengths. Our result for the elec-

tron work function (W = |εF |), however, does not agree with the simple scaling

relation derived for the uniform electron gas model. For example, we found that

W scales more slowly with B (γ is significantly smaller than than 2/5) and does

not depend strongly on Z (as opposed to the Z4/5 dependence for the uniform gas

model); see Tables 3.1–3.4. This “discrepancy” is understandable since, unlike the

B = 0 case, in strong magnetic fields the ionization of an atom and binding energy
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of condensed matter can be very different in values and have different dependences

on B: for sufficiently large B, the former scales roughly as (ln b), while the later

scales as ∼ b0.4. Our computed electron work function is of order (and usually a

fraction of) the ionization energy of the corresponding atom, which is generally

much smaller than the estimate of W based on uniform gas model. We also found

that the ionization energy of successively larger (finite) molecules (Medin & Lai

2006a) approaches our calculated work function for the infinite chain — thus we

believe our result for W is reliable. Note that Jones (1986) also found that the

work function W is almost independent of Z, but his W values scale as B0.5 and

are much larger than our results for the same field strengths. His W values are

also larger than the ionization energies of the corresponding atoms.

Our results for the cohesive energy and work function of condensed matter in

strong magnetic fields have significant implications for the physical conditions of

the outermost layers of magnetized neutron stars and the possible existence of

“vacuum gap” accelerators in pulsars. We investigate these issues in Chapters 5

and 6.
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CHAPTER 4

RADIATIVE TRANSITIONS OF THE HELIUM ATOM IN HIGHLY

MAGNETIZED NEUTRON STAR ATMOSPHERES

4.1 Introduction

An important advance in neutron star astrophysics in the last few years has been

the detection and detailed studies of surface emission from a large number of iso-

lated neutron stars (NSs), including radio pulsars, magnetars, and radio-quiet NSs

(e.g., Kaspi et al. 2006; Harding & Lai 2006). This was made possible by X-ray

telescopes such as Chandra and XMM-Newton. Such studies can potentially pro-

vide invaluable information on the physical properties and evolution of NSs (e.g.,

equation of state at super-nuclear densities, cooling history, surface magnetic field

and composition). Of great interest are the radio-quiet, thermally emitting NSs

(e.g., Haberl 2006): they share the common property that their spectra appear

to be entirely thermal, indicating that the emission arises directly from the NS

surfaces, uncontaminated by magnetospheric emission. The true nature of these

sources, however, is unclear at present: they could be young cooling NSs, or NSs

kept hot by accretion from the ISM, or magnetar descendants. While some of

these NSs (e.g., RX J1856.5−3754) have featureless X-ray spectra remarkably well

described by blackbodies (e.g., Burwitz et al 2003) or by emission from a con-

densed surface covered by a thin atmosphere (Ho et al. 2007), a single or multiple

absorption features at E ' 0.2–1 keV have been detected from several sources (see

van Kerkwijk & Kaplan 2007): e.g., 1E 1207.4−5209 (0.7 and 1.4 keV, possibly

also 2.1, 2.8 keV; Sanwal et al. 2002; De Luca et al. 2004; Mori et al. 2005), RX

J1308.6+2127 (0.2–0.3 keV; Haberl et al. 2003), RX J1605.3+3249 (0.45 keV; van
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Kerkwijk et al. 2004), RX J0720.4−3125 (0.27 keV; Haberl et al. 2006), and possi-

bly RBS 1774 (∼ 0.7 keV; Zane et al. 2005). The identifications of these features,

however, remain uncertain, with suggestions ranging from proton cyclotron lines to

atomic transitions of H, He, or mid-Z atoms in a strong magnetic field (see Sanwal

et al. 2002; Ho & Lai 2004; Pavlov & Bezchastnov 2005; Mori & Ho 2007). Clearly,

understanding these absorption lines is very important as it would lead to direct

measurement of the NS surface magnetic fields and compositions, shedding light on

the nature of these objects. Multiple lines also have the potential of constraining

the mass-radius relation of NSs (through measurement of gravitational redshift).

Since the thermal radiation from a NS is mediated by its atmosphere (if T is

sufficiently high so that the surface does not condense into a solid; see, e.g., van

Adelsberg et al. 2005; Medin & Lai 2006b, 2007), detailed modelling of radiative

transfer in magnetized NS atmospheres is important. The atmosphere composition

of the NS is unknown a priori. Because of the efficient gravitational separation of

light and heavy elements, a pure H atmosphere is expected even if a small amount

of fallback or accretion occurs after NS formation. A pure He atmosphere results

if H is completely burnt out, and a heavy-element (e.g., Fe) atmosphere may be

possible if no fallback/accretion occurs. The atmosphere composition may also be

affected by (slow) diffusive nuclear burning in the outer NS envelope (Chang, Arras

& Bildsten 2004), as well as by the bombardment on the surface by fast particles

from NS magnetospheres (e.g., Beloborodov & Thompson 2007). Fully ionized at-

mosphere models in various magnetic field regimes have been extensively studied

(e.g., Shibanov et al. 1992; Zane et al. 2001; Ho & Lai 2001), including the effect

of vacuum polarization (see Ho & Lai 2003; Lai & Ho 2002, 2003; van Adelsberg &

Lai 2006). Because a strong magnetic field greatly increases the binding energies

of atoms, molecules, and other bound species (for a review, see Lai 2001), these
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bound states may have appreciable abundances in the NS atmosphere, as guessed

by Cohen, Lodenquai, & Ruderman (1970) and confirmed by calculations of Lai

& Salpeter (1997) and Potekhin, Chabrier & Shibanov (1999). Early considera-

tions of partially ionized and strongly magnetized atmospheres (e.g., Rajagopal,

Romani & Miller 1997) relied on oversimplified treatments of atomic physics and

plasma thermodynamics (ionization equilibrium, equation of state, and nonideal

plasma effects). Recently, a thermodynamically consistent equation of state and

opacities for magnetized (B = 1012−1015 G), partially ionized H plasma have been

obtained (Potekhin & Chabrier 2003, 2004), and the effect of bound atoms on the

dielectric tensor of the plasma has also been studied (Potekhin et al. 2004). These

improvements have been incorporated into partially ionized, magnetic NS atmo-

sphere models (Ho et al. 2003, 2007; Potekhin et al. 2004, 2006). Mid-Z element

atmospheres for B ∼ 1012 − 1013 G were recently studied by Mori & Ho (2007).

In this chapter we focus on He atoms and their radiative transitions in magnetic

NS atmospheres. It is well known that for B � Z2B0, where Z is the charge num-

ber of the nucleus andB0 = e3m2
e/h̄

3c = 2.35×109 G, the binding energy of an atom

is significantly increased over its zero-field value. In this strong-field regime the

electrons are confined to the ground Landau level, and one may apply the adiabatic

approximation, in which electron motions along and across the field are assumed to

be decoupled from each other (see Sect. 4.2.1). Using this approximation in com-

bination with the Hartree–Fock method (“1DHF approximation”), several groups

calculated binding energies for the helium atom (Pröschel et al. 1982; Thurner et

al. 1993) and also for some other atoms and molecules (Neuhauser, Langanke &

Koonin 1986; Neuhauser, Koonin & Langanke 1987; Miller & Neuhauser 1991; Lai

et al. 1992). Mori & Hailey (2002) developed a “multiconfigurational perturba-

tive hybrid Hartree–Fock” approach, which is a perturbative improvement of the
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1DHF method. Other methods of calculation include Thomas–Fermi-like models

(e.g., Abrahams & Shapiro 1991), the density functional theory (e.g., Relovsky &

Ruder 1996; Medin & Lai 2006a), variational methods (e.g., Müller 1984; Vincke

& Baye 1989; Jones et al. 1999; Turbiner & Guevara 2006), and 2D Hartree–Fock

mesh calculations (Ivanov 1994; Ivanov & Schmelcher 2000) which do not directly

employ the adiabatic approximation.

In strong magnetic fields, the finite nuclear mass and center-of-mass motion

affect the atomic structure in a nontrivial way (e.g., Lai 2001; see Sect. 4.5). The

stronger B is, the more important the effects of finite nuclear mass are. Apart from

the H atom, these effects have been calculated only for the He atom which rests

as a whole, but has a moving nucleus (Al-Hujaj & Schmelcher 2003a,b), and for

the He+ ion (Bezchastnov, Pavlov & Ventura 1998; Pavlov & Bezchastnov 2005).

There were relatively few publications devoted to radiative transitions of non-

hydrogenic atoms in strong magnetic fields. Several authors (Miller & Neuhauser

1991; Thurner et al. 1993; Jones et al. 1999; Mori & Hailey 2002; Al-Hujaj &

Schmelcher 2003b) calculated oscillator strengths for bound-bound transitions;

Miller & Neuhauser (1991) presented also a few integrated bound-free oscillator

strengths. Rajagopal et al. (1997) calculated opacities of strongly magnetized iron,

using photoionization cross sections obtained by M. C. Miller (unpublished). To

the best of our knowledge, there were no published calculations of polarization-

dependent photoionization cross sections for the He atom in the strong-field regime,

as well as the calculations of the atomic motion effect on the photoabsorption co-

efficients for He in this regime. Moreover, the subtle effect of exchange interac-

tion involving free electrons and the possible role of two-electron transitions (see

Sect. 4.3.2) were not discussed before.
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In this chapter we perform detailed calculations of radiative transitions of the

He atom using the 1DHF approximation. The total error introduced into our cal-

culations by the use of these two approximations, the Hartree-Fock method and

the adiabatic approximation, is of order 1% or less, as can be seen by the following

considerations: The Hartree-Fock method is approximate because electron correla-

tions are neglected. Due to their mutual repulsion, any pair of electrons tend to be

more distant from each other than the Hartree-Fock wave function would indicate.

In zero-field, this correlation effect is especially pronounced for the spin-singlet

states of electrons for which the spatial wave function is symmetrical. In strong

magnetic fields (B � B0), the electron spins (in the ground state) are all aligned

antiparallel to the magnetic field, and the multielectron spatial wave function is

antisymmetric with respect to the interchange of two electrons. Thus the error in

the Hartree-Fock approach is expected to be less than the 1% accuracy charac-

teristic of zero-field Hartree-Fock calculations (Neuhauser et al. 1987; Schmelcher,

Ivanov & Becken 1999; for B = 0 see Scrinzi 1998). The adiabatic approximation is

also very accurate at B � Z2B0. Indeed, a comparison of the ground-state energy

values calculated here to those of Ivanov (1994) (who did not use the adiabatic

approximation) shows an agreement to within 1% for B = 1012 G and to within

0.1% for B = 1013 G.

The chapter is organized as follows. Section 4.2 describes our calculations of

the bound states and continuum states of the He atom, and section 4.3 contains

relevant equations for radiative transitions. We present our numerical results and

fitting formulae in section 4.4 and examine the effects of finite nucleus mass on the

photoabsorption cross sections in section 4.5.

This chapter is based on the published paper by Medin, Lai, & Potekhin 2008
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[Medin Z., Lai D., Potekhin A., 2008, Monthly Notices of the Royal Astronomical

Society, 383, 161; c©2008. Blackwell Publishing. All rights reserved]. It is reprinted

here with minor changes, based on rights retained by the author.

4.2 Bound states and singly-ionized states of helium atoms

in strong magnetic fields

4.2.1 Bound states of the helium atom

To define the notation, we briefly describe 1DHF calculations for He atoms in

strong magnetic fields. Each electron in the atom is described by a one-electron

wave function (orbital). If the magnetic field is sufficiently strong (e.g., B � 1010 G

for He ground state), the motion of an electron perpendicular to the magnetic field

lines is mainly governed by the Lorentz force, which is, on the average, stronger

than the Coulomb force. In this case, the adiabatic approximation can be employed

– i.e., the wave function can be separated into a transverse (perpendicular to the

external magnetic field) component and a longitudinal (along the magnetic field)

component:

φmν(r) = fmν(z)Wm(r⊥) . (4.1)

Here Wm is the ground-state Landau wave function (e.g., Landau & Lifshitz 1977)

given by

Wm(r⊥) =
1

ρ0

√
2πm!

(

ρ√
2ρ0

)m

exp

(

−ρ2

4ρ2
0

)

e−imϕ, (4.2)

where (ρ, ϕ) are the polar coordinates of r⊥, ρ0 = (h̄c/eB)1/2 is the magnetic length

and fmν is the longitudinal wave function which can be calculated numerically. The

quantum number m (≥ 0 for the considered ground Landau state) specifies the
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negative of the z-projection of the electron orbital angular momentum. We restrict

our consideration to electrons in the ground Landau level; for these electrons, m

specifies also the (transverse) distance of the guiding center of the electron from

the ion, ρm = (2m + 1)1/2ρ0. The quantum number ν specifies the number of

nodes in the longitudinal wave function. The spins of the electrons are taken

to be aligned anti-parallel with the magnetic field, and so do not enter into any

of our equations. In addition, we assume that the ion is completely stationary

(the ‘infinite ion mass’ approximation). In general, the latter assumption is not

necessary for the applicability of the adiabatic approximation (see, e.g., Potekhin

1994). The accuracy of the infinite ion mass approximation will be discussed in

Sect. 4.5.

Note that we use non-relativistic quantum mechanics in our calculations, even

when h̄ωBe >∼ mec
2 or B >∼ BQ = B0/α

2 = 4.414 × 1013 G (where alpha = e2/(h̄c)

is the fine structure constant). This is valid for two reasons: (i) The free-electron

energy in relativistic theory is

E =

[

c2p2
z +m2

ec
4

(

1 + 2nL
B

BQ

)]1/2

. (4.3)

For electrons in the ground Landau level (nL = 0), Eq. (4.3) reduces to E '

mec
2 + p2

z/(2me) for pzc � mec
2; the electron remains non-relativistic in the z

direction as long as the electron energy is much less than mec
2; (ii) it is well

known (e.g., Sokolov & Ternov 1986) that Eq. (4.2) describes the transverse motion

of an electron with nL = 0 at any field strength, and thus Eq. (4.2) is valid

in the relativistic theory. Our calculations assume that the longitudinal motion

of the electron is non-relativistic. This is valid for helium at all field strengths

considered in this chapter. Thus relativistic corrections to our calculated electron

wave functions, binding energies, and transition cross sections are all small. Our

approximation is justified in part by Chen & Goldman (1992), who find that the
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relativistic corrections to the binding energy of the hydrogen atom are of order

∆E/E ∼ 10−5.5 − 10−4.5 for the range of field strengths we are considering in this

work (B = 1012 − 1014 G).

A bound state of the He atom, in which one electron occupies the (m1ν1)

orbital, and the other occupies the (m2ν2) orbital, is denoted by |m1ν1, m2ν2〉 =

|Wm1
fm1ν1

,Wm2
fm2ν2

〉 (clearly, |m1ν1, m2ν2〉 = |m2ν2, m1ν1〉). The two-electron

wave function is

Ψm1ν1,m2ν2
(r1, r2) =

1√
2
[Wm1

(r1⊥)fm1ν1
(z1)

×Wm2
(r2⊥)fm2ν2

(z2)

−Wm2
(r1⊥)fm2ν2

(z1)Wm1
(r2⊥)fm1ν1

(z2)] . (4.4)

The one-electron wave functions are found using Hartree–Fock theory, by vary-

ing the total energy with respect to the wave functions. The total energy is given

by (see, e.g., Neuhauser et al. 1987):

E = EK + EeZ + Edir + Eexc , (4.5)

where

EK =
h̄2

2me

∑

mν

∫

dz |f ′
mν(z)|2 , (4.6)

EeZ = −Ze2
∑

mν

∫

dz |fmν(z)|2Vm(z) , (4.7)

Edir =
e2

2

∑

mν,m′ν′

∫ ∫

dzdz′ |fmν(z)|2 |fm′ν′(z′)|2

×Dmm′(z − z′) , (4.8)

Eexc = −e
2

2

∑

mν,m′ν′

∫ ∫

dzdz′ f ∗
m′ν′(z)fmν(z)

×f ∗
mν(z

′)fm′ν′(z′)Emm′(z − z′) ; (4.9)

and

Vm(z) =
∫

dr⊥
|Wm(r⊥)|2

r
, (4.10)
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Dmm′(z − z′) =
∫ ∫

dr⊥dr′⊥
|Wm(r⊥)|2|Wm′(r′⊥)|2

|r′ − r| , (4.11)

Emm′(z − z′) =
∫ ∫

dr⊥dr′⊥
1

|r′ − r|
×W ∗

m′(r⊥)Wm(r⊥)W ∗
m(r′⊥)Wm′(r′⊥) . (4.12)

Variation of Eq. (4.5) with respect to fmν(z) yields

[

− h̄2

2me

d2

dz2
− Ze2Vm(z)

+e2
∑

m′ν′

∫

dz′ |fm′ν′(z′)|2Dmm′(z − z′) − εmν

]

fmν(z)

= e2
∑

m′ν′

∫

dz′ f ∗
mν(z

′)fm′ν′(z′)Emm′(z − z′)fm′ν′(z) .

(4.13)

In these equations, asterisks denote complex conjugates, and f ′
mν(z) ≡ dfmν/dz.

The wave functions fmν(z) must satisfy appropriate boundary conditions, i.e.,

fmν → 0 as z → ±∞, and must have the required symmetry [fmν(z) = ±fmν(−z)]

and the required number of nodes (ν). The equations are solved iteratively until

self-consistency is reached for each wave function fmν and energy εmν. The total

energy of the bound He state |m1ν1, m2ν2〉 can then be found, using either Eq. (4.5)

or

E =
∑

mν

εmν − Edir − Eexc . (4.14)

4.2.2 Continuum states of the helium atom

The He state in which one electron occupies the bound (m3ν3) orbital, and other oc-

cupies the continuum state (m4k) is denoted by |m3ν3, m4k〉 = |Wm3
fm3ν3

,Wm4
fm4k〉.

The corresponding two-electron wave function is

Ψm3ν3,m4k(r1, r2) =
1√
2
[Wm3

(r1⊥)fm3ν3
(z1)
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×Wm4
(r2⊥)fm4k(z2)

−Wm4
(r1⊥)fm4k(z1)Wm3

(r2⊥)fm3ν3
(z2)] . (4.15)

Here fm4k(z) is the longitudinal wave function of the continuum electron, and k is

the z-wavenumber of the electron at |z| → ∞ (far away from the He nucleus).

We can use Hartree–Fock theory to solve for the ionized He states as we did for

the bound He states. Since the continuum electron wave function fm4k(z) is non-

localized in z, while the bound electron wave function fm3ν3
(z) is localized around

z = 0, it is a good approximation to neglect the continuum electron’s influence on

the bound electron. We therefore solve for the bound electron orbital using the

equation
[

− h̄2

2me

d2

dz2
− Ze2Vm3

(z)

]

fm3ν3
(z) = εm3ν3

fm3ν3
(z) . (4.16)

The continuum electron, however, is influenced by the bound electron, and its

longitudinal wave function is determined from

[

− h̄2

2me

d2

dz2
− Ze2Vm4

(z)

+e2
∫

dz′ |fm3ν3
(z′)|2Dm3m4

(z − z′) − εf

]

fm4k(z)

= e2
∫

dz′ f ∗
m4k(z

′)fm3ν3
(z′)Em3m4

(z − z′)fm3ν4
(z) .

(4.17)

where εf = εm4k = h̄2k2/(2me). Here, the bound electron orbital |m3ν3〉 satisfies

the same boundary conditions as discussed in Sect. 4.2.1. The shape of the free

electron wave function is determined by the energy of the incoming photon and

the direction the electron is emitted from the ion. We will discuss this boundary

condition in the next section. The total energy of the ionized He state |m3ν3, m4k〉

is simply

E = εm3ν3
+ εf . (4.18)
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Note that the correction terms Edir and Eexc that appear in Eq. (4.14) do not

also appear in Eq. (4.18). The direct and exchange energies depend on the local

overlap of the electron wave functions, but the non-localized nature of the free

electron ensures that these terms are zero for the continuum states.

4.3 Radiative transitions

We will be considering transitions of helium atoms from two initial states: the

ground state, |00, 10〉, and the first excited state, |00, 20〉.

In the approximation of an infinitely massive, pointlike nucleus, the Hamil-

tonian of the He atom in electromagnetic field is (see, e.g., Landau & Lifshitz

1977)

H =
∑

j=1,2

1

2me

(

pj +
e

c
Atot(rj)

)2

−
∑

j=1,2

2e2

r2
j

+
e2

|r1 − r2|
, (4.19)

where pj = −ih̄∇j is the canonical momentum operator, acting on the jth elec-

tron, rj is the jth electron radius vector, measured from the nucleus, and Atot(r)

is the vector potential of the field. In our case, Atot(r) = AB(r) + Aem(r), where

AB(r) and Aem(r) are vector potentials of the stationary magnetic field and elec-

tromagnetic wave, respectively. The interaction operator is Hint = H −H0, where

H0 is obtained from H by setting Aem(r) = 0. The unperturbed Hamiltonian H0

is responsible for the stationary states of He, discussed in Sect. 4.2. The vector po-

tential and the wave functions may be subject to gauge transformations; the wave

functions presented in Sect. 4.2 correspond to the cylindrical gauge AB(r) = 1
2
B×r.

Neglecting non-linear (quadratic in Aem) term, we have

Hint ≈
e

2mec

∑

j=1,2

[πj · Aem(rj) + Aem(rj) · πj], (4.20)
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where

π = p +
e

c
AB(r). (4.21)

is the non-perturbed kinetic momentum operator: π = meṙ = me(i/h̄)[H0 r−rH0].

For a monochromatic wave of the form Aem(r) ∝ ε eiq·r, where ε is the unit

polarization vector, applying the Fermi’s Golden Rule and assuming the transverse

polarization (ε · q = 0), one obtains the following general formula for the cross

section of absorption of radiation from a given initial state |a〉 (see, e.g., Armstrong

& Nicholls 1972):

σ(ω, ε) =
∑

b

4π2

ωc

∣

∣

∣ε · 〈b|eiq·rj|a〉
∣

∣

∣

2
δ(ω − ωba), (4.22)

where |b〉 is the final state, ω = qc is the photon frequency, ωba = (Eb −Ea)/h̄, and

j is the electric current operator. In our case, j = (−e/me)(π1 + π2).

We shall calculate the cross sections in the dipole approximation – i.e., drop

eiq·r from Eq. (4.22). This approximation is sufficiently accurate for calculation of

the total cross section as long as h̄ω � mec
2 (cf., e.g., Potekhin & Pavlov 1993,

1997 for the case of H atom). In the dipole approximation, Eq. (4.22) can be

written as

σ(ω, ε) =
∑

b

2π2e2

mec
fbaδ(ω − ωba), (4.23)

where

fba =
2

h̄ωbame

|〈b|ε · π|a〉|2 =
2meωba

h̄
|〈b|ε · r|a〉|2 (4.24)

is the oscillator strength. In the second equality we have passed from the ‘velocity

form’ to the ‘length form’ of the matrix element (cf., e.g., Chandrasekhar 1945).

These representations are identical for the exact wave functions, but it is not so

for approximate ones. In the adiabatic approximation, the length representation

[i.e., the right-hand side of Eq. (4.24)] is preferable (see Potekhin & Pavlov 1993;

Potekhin, Pavlov, & Ventura 1997).
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To evaluate the matrix element, we decompose the unit polarization vector ε

into three cyclic components,

ε = ε−ê+ + ε+ê− + ε0ê0, (4.25)

with ê0 = êz along the external magnetic field direction (the z-axis), ê± = (êx ±

iêy)/
√

2, and ελ = êλ · ε (with λ = ±, 0). Then we can write the cross section as

the sum of three components,

σ(ω, ε) = σ+(ω)|ε+|2 + σ−(ω)|ε−|2 + σ0(ω)|ε0|2, (4.26)

where σλ has the same form as Eq. (4.23), with the corresponding oscillator

strength given by

fλ
ba =

2meωbaρ
2
0

h̄
|Mba|2 =

2ωba

ωBe
|Mba|2, (4.27)

with

Mba = 〈b|ê∗
λ · r̄|a〉, (4.28)

where r̄ = r/ρ0 and ωBe = eB/(mec) is the electron cyclotron frequency.

4.3.1 Bound-bound transitions

Consider the electronic transition

|a〉 = |mν,m2ν2〉 = |Wmfmν,Wm2
fm2ν2

〉

−→ |b〉 = |m′ν ′, m2ν2〉 = |Wm′gm′ν′ ,Wm2
gm2ν2

〉. (4.29)

The selection rules for allowed transitions and the related matrix elements are

σ0 : ∆m = 0, ∆ν = odd,

Mba = 〈gmν′|z̄|fmν〉〈gm2ν2
|fm2ν2

〉, (4.30)
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σ+ : ∆m = 1, ∆ν = even,

Mba =
√
m+ 1 〈gm′ν′ |fmν〉〈gm2ν2

|fm2ν2
〉, (4.31)

σ− : ∆m = −1, ∆ν = even,

Mba =
√
m 〈gm′ν′ |fmν〉〈gm2ν2

|fm2ν2
〉, (4.32)

where ∆m = m′ − m, ∆ν = ν ′ − ν. The oscillator strengths for bound-bound

transitions from the states |00, 10〉 and |00, 20〉 are given in Table 4.1.

The selection rules (4.30) – (4.32) are exact in the dipole approximation. The

selection rules in m follow from the conservation of the z-projection of total (for

the photon and two electrons) angular momentum. Technically, in the adiabatic

approximation, they follow from the properties of the Landau functions (e.g.,

Potekhin & Pavlov 1993). The selection rules in ν follow from the fact that the

functions gm′ν′ and fmν have the same parity for even ν ′ − ν and opposite parity

for odd ν ′ − ν.

In addition to these selection rules, there are approximate selection rules which

rely on the approximate orthogonality of functions gm′ν′ and fmν (for general ν 6=

ν ′). Because of this approximate orthogonality, which holds better the larger B is,

we have

〈gm′ν′ |fmν〉〈gm2ν2
|fm2ν2

〉 = δν,ν′ + ε, (4.33)

where |ε| � 1 and ε → 0 as ∆ν → ±∞. Therefore, the oscillator strengths for

transitions with λ = ± and ∆ν = 2, 4, . . . are small compared to those with ∆ν = 0.

The latter oscillator strengths can be approximated, according to Eqs. (4.27),

(4.31), (4.32) and (4.33), by

f+
ba ≈ 2(m+ 1)ωba/ωBe, f−

ba ≈ 2mωba/ωBe (4.34)

(λ = ∆m = ±1, ν ′ = ν).
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The same approximate orthogonality leads to the smallness of matrix ele-

ments for transitions of the type |mν,m2ν2〉 −→ |m′ν ′, m2ν
′
2〉 with ν ′2 6= ν2 for

λ = ± and the smallness of cross terms in the matrix elements of the form

〈gm2ν2
|fmν〉〈gm′ν′ |fm2ν2

〉 when m′ = m2 (i.e., the so-called “one-electron jump

rule”); we have therefore excluded such terms from the selection rule equations

above [Eqs. (4.30) – (4.32)].

4.3.2 Photoionization

The bound-free absorption cross section for the transition from the bound state

|b〉 to the continuum state |f〉 is given by Eq. (4.22) with obvious substitutions

|a〉 → |b〉, |b〉 → |f〉, and
∑

f

→ (Lz/2π)
∫ ∞

−∞
dk, (4.35)

where Lz is the normalization length of the continuum electron [
∫ Lz/2
−Lz/2 dz |gmk(z)|2 =

1] and k is the wave number of the outgoing electron (Sect. 4.2.2). Therefore we

have

σbf(ω, ε) =
2πe2Lz

mech̄
2ωfbk

{ ∣

∣

∣〈fk|eiq·rε · π|b〉
∣

∣

∣

2

+
∣

∣

∣〈f−k|eiq·rε · π|b〉
∣

∣

∣

2 }

, (4.36)

where k =
√

2meεf/h̄ and |f±k〉 represents the final state where the free elec-

tron has wave number ±k (here and hereafter we assume k > 0). The asymp-

totic conditions for these outgoing free electrons are (cf., e.g., Potekhin et al.

1997) gmk(z) ∼ exp[iϕk(z)] at z → ±∞, where ϕk(z) = |kz| + (ka0)
−1 ln |kz| and

a0 = h̄2/mee
2 is the Bohr radius. Since we do not care about direction of the

outgoing electron, we can use for calculations a basis of symmetric and antisym-

metric wave functions of the continuum – that is, in Eq. (4.36) we can replace

115



〈fk| and 〈f−k| by 〈feven| and 〈fodd|. The symmetric state |feven〉 is determined

by the free electron boundary condition g′mk,even(0) = 0 and the antisymmetric

state |fodd〉 is determined by gmk,odd(0) = 0. Since the coefficients in Eq. (4.17)

are real, gmk,even(z) and gmk,odd(z) can be chosen real. At z → ±∞, they be-

have as gmk,(even,odd)(z) ∼ sin[ϕ(z) + constant] (where the value of constant de-

pends on all quantum numbers, including k). We still have the normalization

∫ Lz/2
−Lz/2 dz |gmk,(even,odd)(z)|2 = 1.

Similar to bound-bound transitions, we can decompose the bound-free cross

section into three components, Eq. (4.26). Thus, using the dipole approximation

and the length form of the matrix elements, as discussed above, we have for (λ =

±, 0)-components of the bound-free cross section

σbf,λ(ω) =
3

4
σTh

(

mec
2

h̄ω

)3
√

√

√

√

mec2

2εf

(

Lza0

ρ2
0

)

(

ωρ0

c

)4

× |〈f |ê∗
λ · r̄|b〉|2 , (4.37)

where |f〉 = |feven〉 or |f〉 = |fodd〉 depending on the parity of the initial state

and according to the selection rules, and σTh = (8π/3) (e2/mec
2)2 is the Thomson

cross section. The selection rules and related matrix elements for the bound-free

transitions

|b〉 = |mν,m2ν2〉 = |Wmfmν ,Wm2
fm2ν2

〉

−→ |f〉 = |m′k,m2ν2〉 = |Wm′gm′k,Wm2
gm2ν2

〉 (4.38)

are similar to those for the bound-bound transitions [see Eqs. (4.30) – (4.32)]:

σ0 : ∆m = 0, ∆ν = odd,

Mfb = 〈gmk|z̄|fmν〉〈gm2ν2
|fm2ν2

〉, (4.39)

σ+ : ∆m = 1, ∆ν = even,
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Mfb =
√
m+ 1 (〈gm′k|fmν〉〈gm2ν2

|fm2ν2
〉

−δm′ν,m2ν2
〈gm2ν2

|fmν〉〈gm′k|fm2ν2
〉) , (4.40)

σ− : ∆m = −1, ∆ν = even,

Mfb =
√
m (〈gm′k|fmν〉〈gm2ν2

|fm2ν2
〉

−δm′ν,m2ν2
〈gm2ν2

|fmν〉〈gm′k|fm2ν2
〉) , (4.41)

In this case, the condition ∆ν = odd means that gm′k and fmν must have opposite

parity, and the condition ∆ν = even means that gm′k and fmν must have the same

parity. The oscillator strengths for bound-free transitions from the states |00, 10〉

and |00, 20〉 are given in Table 4.2.

Note that in Eqs. (4.40) and (4.41), the second term in the matrix element (of

the form 〈gm2ν2
|fmν〉〈gm′k|fm2ν2

〉) corresponds to transitions of both electrons. This

appears to violate the “one-electron jump rule” and other approximate selection

rules discussed in Sect. 4.3.1 [see Eq. (4.33)]. In fact, these approximate rules are

not directly relevant for bound-free transitions, since the matrix elements involving

a continuum state are always small: 〈gm′k|fmν〉 → 0 as the normalization length

Lz → ∞. Rather, we use a different set of selection rules to determine which of

these ‘small’ matrix elements are smaller than the rest. The first is that

〈gm′k|fmν〉〈gm2ν2
|fm2ν2

〉 � 〈gm′k|fmν〉〈gm2ν′

2
|fm2ν2

〉,

(4.42)

when ν ′2 6= ν2. This selection rule is similar to the bound-bound transition case

as 〈gm2ν′

2
|fm2ν2

〉 involves a bound electron transition, not a free electron transi-

tion. The second approximate selection rule that applies here is more complicated:

terms of the form 〈gm′ν|fmν〉〈gm2k|fm2ν2
〉 are small, unless m′ = m2 and ν2 = ν.

This exception for m′ = m2 and ν2 = ν is due to the exchange term in the dif-

ferential equation for the free electron wave function [Eq. (4.17)], which strongly
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Figure 4.1: Partial cross sections σ(0,+,−) versus final ionized electron energy for
photoionization of the ground state helium atom ((m1, m2) = (1, 0)). The field
strength is 1012 G. The transition |00, 10〉 → |0k, 20〉 in the bottom left panel
is an example of a ‘weak’ transition. We have ignored these transitions in our
calculations of the total cross sections.
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(anti)correlates the two final wave functions |gm′ν〉 and |gm2k〉. If m′ = m2 and

ν = ν2, then since 〈gm′ν|fm2ν2
〉 is not small (in fact, it is of order 1), 〈gm2k|fm2ν2

〉

will not be small but will be of the same order as other terms involving the free

electron wave function. In particular, the second selection rule means, e.g., that

the matrix element for the transition from |00, 10〉 to |00, 0k〉 is

M00,10→00,0k = 〈g0k|f10〉〈g00|f00〉 − 〈g00|f10〉〈g0k|f00〉, (4.43)

where the second term is non-negligible, but that the matrix element for the tran-

sition from |00, 10〉 to |0k, 20〉, which is

M00,10→0k,20 = 〈g20|f10〉〈g0k|f00〉, (4.44)

is small compared to the other matrix elements and can be ignored (see Fig. 4.1).

We make one final comment here about the effect of exchange interaction on

the free electron state. If the exchange term [the right-hand side of Eq. (4.17)] is

neglected in the calculation of the free electron wave function, then the cross terms

(i.e., those involving two-electron transitions) in the matrix elements of Eqs. (4.40)

and (4.41) are small and can be neglected. One then obtains approximate pho-

toionization cross sections which are within a factor of two of the true values in

most cases and much better for σ0 transitions. If the exchange term is included in

Eq. (4.17) but the cross terms in the matrix elements are ignored, significant errors

in the σ± photoionization cross sections will result. To obtain reliable cross sections

for all cases, both the exchange effect on the free electron and the contribution of

two-electron transitions must be included.
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Table 4.1: Bound-bound transitions |a〉 → |b〉: The photon energy h̄ωba = Eb − Ea

(in eV) and the oscillator strength fλ
ba for different polarization components λ [see

Eq. (4.27)]. All transitions ∆ν ≤ 1 from the initial states |00, 10〉 and |00, 20〉
are listed, for several magnetic field strengths B12 = B/(1012 G). The last two
columns list the transition energies h̄ω∗

ba and oscillator strengths f ∗
ba, corrected for

the finite mass of the nucleus, according to Sect. 4.5.1.

B12 σ |a〉 → |b〉 h̄ωba fba h̄ω∗
ba f ∗

ba

1 0 |00, 10〉 → |00, 11〉 147.5 0.234 – –
→ |10, 01〉 271.8 0.124 – –

+ → |00, 20〉 43.11 0.0147 44.70 0.0153
0 |00, 20〉 → |00, 21〉 104.4 0.312 – –

→ |20, 01〉 277.7 0.115 – –
+ → |00, 30〉 18.01 0.00930 19.60 0.0101

→ |20, 10〉 100.7 0.0170 102.3 0.0172

5 0 |00, 10〉 → |00, 11〉 256.2 0.127 – –
→ |10, 01〉 444.8 0.0603 – –

+ → |00, 20〉 66.95 0.00459 74.89 0.00512
0 |00, 20〉 → |00, 21〉 189.2 0.176 – –

→ |20, 01〉 455.0 0.0537 – –
+ → |00, 30〉 28.94 0.00299 36.88 0.00381

→ |20, 10〉 151.1 0.00512 159.0 0.00539

10 0 |00, 10〉 → |00, 11〉 318.9 0.0974 – –
→ |10, 01〉 540.8 0.0457 – –

+ → |00, 20〉 79.54 0.00273 95.42 0.00327
0 |00, 20〉 → |00, 21〉 239.4 0.136 – –

→ |20, 01〉 553.3 0.0405 – –
+ → |00, 30〉 34.84 0.00179 50.72 0.00261

→ |20, 10〉 177.0 0.00301 192.9 0.00328

50 0 |00, 10〉 → |00, 11〉 510.9 0.0557 – –
→ |10, 01〉 822.2 0.0266 – –

+ → |00, 20〉 114.2 7.85e−4 193.6 0.00133
0 |00, 20〉 → |00, 21〉 396.7 0.0776 – –

→ |20, 01〉 841.1 0.0235 – –
+ → |00, 30〉 51.92 5.37e−4 131.3 0.00136

→ |20, 10〉 246.5 8.41e−4 325.9 0.00111

100 0 |00, 10〉 → |00, 11〉 616.4 0.0452 – –
→ |10, 01〉 971.4 0.0221 – –

+ → |00, 20〉 131.4 4.52e−4 290.2 9.98e−4
0 |00, 20〉 → |00, 21〉 485.0 0.0626 – –

→ |20, 01〉 993.4 0.0195 – –
+ → |00, 30〉 60.57 3.13e−4 219.4 0.00114

→ |20, 10〉 280.7 4.80e−4 439.5 7.51e−4
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Table 4.2: Bound-free transitions |b〉 → |f〉: The threshold photon energy h̄ωthr

(in eV) and the fitting parameters A, B, and C used in the cross section fitting
formulas [Eq. (4.48)]. All transitions from the initial states |00, 10〉 and |00, 20〉
are listed, for several magnetic field strengths B12 = B/(1012 G).

B12 σ |b〉 → |f〉 mi h̄ωthr A B C
1 0 |00, 10〉 → |00, 1k〉 1 159.2 0.96 0.093 1.43e6

→ |10, 0k〉 0 283.2 0.89 0.20 8.83e5
+ → |00, 2k〉 1 159.2 0.70 0.061 7.95e2

→ |10, 1k〉 0 283.2 0.86 0.094 1.30e3
– → |00, 0k〉 1 159.2 0.62 0.030 8.89e2
0 |00, 20〉 → |00, 2k〉 2 116.0 1.00 0.062 1.78e6

→ |20, 0k〉 0 289.2 0.88 0.22 8.71e5
+ → |00, 3k〉 2 116.0 0.66 0.038 3.94e2

→ |20, 1k〉 0 289.2 0.54 0.14 6.48e2
– → |00, 1k〉 2 116.0 0.62 0.029 5.82e2

5 0 |00, 10〉 → |00, 1k〉 1 268.2 0.86 0.061 8.39e5
→ |10, 0k〉 0 456.4 0.69 0.16 4.60e5

+ → |00, 2k〉 1 268.2 0.68 0.036 1.14e2
→ |10, 1k〉 0 456.4 0.83 0.057 1.93e2

– → |00, 0k〉 1 268.2 0.60 0.020 1.36e2
0 |00, 20〉 → |00, 2k〉 2 201.2 0.92 0.039 1.11e6

→ |20, 0k〉 0 466.5 0.65 0.18 4.39e5
+ → |00, 3k〉 2 201.2 0.65 0.021 5.95e1

→ |20, 1k〉 0 466.5 0.54 0.084 9.13e1
– → |00, 1k〉 2 201.2 0.61 0.015 7.82e1

10 0 |00, 10〉 → |00, 1k〉 1 331.1 0.82 0.051 6.58e5
→ |10, 0k〉 0 552.5 0.63 0.15 3.51e5

+ → |00, 2k〉 1 331.1 0.67 0.029 4.94e1
→ |10, 1k〉 0 552.5 0.81 0.046 8.43e1

– → |00, 0k〉 1 331.1 0.59 0.016 6.00e1
0 |00, 20〉 → |00, 2k〉 2 251.6 0.88 0.033 8.77e5

→ |20, 0k〉 0 564.9 0.59 0.16 3.31e5
+ → |00, 3k〉 2 251.6 0.64 0.017 2.64e1

→ |20, 1k〉 0 564.9 0.53 0.069 3.97e1
– → |00, 1k〉 2 251.6 0.61 0.012 3.25e1
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Table 4.2: (continued)

B12 σ |b〉 → |f〉 mi h̄ωthr A B C
50 0 |00, 10〉 → |00, 1k〉 1 523.3 0.73 0.034 3.74e5

→ |10, 0k〉 0 834.2 0.54 0.11 1.96e5
+ → |00, 2k〉 1 523.3 0.63 0.020 7.15e0

→ |10, 1k〉 0 834.2 0.77 0.033 1.22e1
– → |00, 0k〉 1 523.3 0.57 0.012 8.94e0
0 |00, 20〉 → |00, 2k〉 2 409.1 0.79 0.021 5.02e5

→ |20, 0k〉 0 853.0 0.50 0.13 1.83e5
+ → |00, 3k〉 2 409.1 0.62 0.0104 4.04e0

→ |20, 1k〉 0 853.0 *0.52 0.052 5.88e0
– → |00, 1k〉 2 409.1 0.59 0.0058 4.13e0

100 0 |00, 10〉 → |00, 1k〉 1 628.8 0.69 0.029 2.96e5
→ |10, 0k〉 0 983.4 0.51 0.101 1.56e5

+ → |00, 2k〉 1 628.8 0.62 0.019 3.12e0
→ |10, 1k〉 0 983.4 0.75 0.031 5.33e0

– → |00, 0k〉 1 628.8 0.56 0.012 3.94e0
0 |00, 20〉 → |00, 2k〉 2 498.0 0.75 0.018 3.96e5

→ |20, 0k〉 0 1008 0.47 0.12 1.45e5
+ → |00, 3k〉 2 498.0 0.60 0.0092 1.81e0

→ |20, 1k〉 0 1008 *0.50 0.050 2.60e0
– → |00, 1k〉 2 498.0 0.58 0.0042 1.69e0
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4.4 Results

Tables 4.1 and 4.2 give results for transitions of helium atoms from the ground state

(|00, 10〉) and the first excited state (|00, 20〉). Table 4.1 gives results (photon

energies and oscillator strengths) for all possible bound-bound transitions with

∆ν ≤ 1, for the field strengths B12 = 1, 5, 10, 50, 100, where B12 = B/(1012 G).

Transitions |a〉 → |b〉 for λ = − are not listed separately, being equivalent to

transitions |b〉 → |a〉 for λ = +. One can check that the oscillator strengths fba

presented in Table 4.1 for λ = + are well described by the approximation (4.34).

Table 4.2 gives results (threshold photon energies and cross section fitting for-

mulas, see below) for all possible bound-free transitions. Figure 4.1 shows partial

cross section curves for all bound-free transitions from the ground state of helium

for B12 = 1. The transition |00, 10〉 → |0k, 20〉 is an example of a ‘weak’ transition,

whose oscillator strength is small because of the approximate orthogonality of one-

electron wave functions, as discussed at the end of Sect. 4.3.1. It is included in this

figure to confirm the accuracy of our assumption. Figures 4.2 and 4.3 show total

cross section curves for a photon polarized along the magnetic field, for B12 = 1

and 100 respectively. Figures 4.4 and 4.5 show total cross sections for the circular

polarizations, λ = ±, for B12 = 1. Finally, Figs. 4.6 and 4.7 show total cross

sections for λ = ± and B12 = 100.

4.4.1 Fitting Formula

The high-energy cross section scaling relations from Potekhin & Pavlov (1993),

which were derived for hydrogen photoionization in strong magnetic fields, also
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hold for helium:

σbf,0 ∝
(

1

h̄ω

)2mi+9/2

(4.45)

σbf ,± ∝
(

1

h̄ω

)2mi+7/2

, (4.46)

where mi is the m value of the initial electron that transitions to the free state. In

addition, we use similar fitting formulae for our numerical cross sections:

σbf,0 '
C

(1 + Ay)2.5(1 + B(
√

1 + y − 1))4(mi+1)
σTh (4.47)

σbf ,± ' C(1 + y)

(1 + Ay)2.5(1 + B(
√

1 + y − 1))4(mi+1)
σTh (4.48)

where y = εf/h̄ωthr and h̄ωthr is the threshold photon energy for photoionization.

These formulas have been fit to the cross section curves with respect to the free

electron energy εf in approximately the 1 – 104 eV range (the curves are fit up to

105 eV for strong magnetic fields B12 = 50−100, in order to obtain the appropriate

high-energy factor). The data points to be fit are weighted proportional to their

cross section values plus a slight weight toward low-energy values, according to the

formula (error in σ) ∝ σ εf
0.25.

Results for the three fitting parameters, A, B, and C, are given in Table 4.2

for various partial cross sections over a range of magnetic field strengths. For

photoionization in strong magnetic fields (B12 >∼ 50) the cross section curves we

generate for the σ+ and σ− transitions have a slight deficiency at low electron

energies, such that the curves peak at εf ' 10 eV, rather than at threshold as

expected. These peaks do not represent a real effect, but rather reflect the limits

on the accuracy of our code (the overlap of the wave function of the transitioning

electron pre- and post-ionization is extremely small under these conditions). Be-

cause the cross section values are not correct at low energies, our fits are not as

accurate for these curves. In Table 4.2 we have marked with a ‘∗’ those transitions
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which are most inaccurately fit by our fitting formula, determined by cross section

curves with low-energy dips greater than 5% of the threshold cross section value.

4.5 Finite nucleus mass effects

So far we have used the infinite ion mass approximation. In this section we shall

evaluate the validity range of this approximation and suggest possible corrections.

It is convenient to use the coordinate system which contains the center-of-mass

coordinate Rcm and the relative coordinates {rj} of the electrons with respect to

the nucleus. Using a suitable canonical transformation, the Hamiltonian H of an

arbitrary atom or ion can be separated into three terms (Vincke & Baye 1988; Baye

& Vincke 1990; Schmelcher & Cederbaum 1991): H1 which describes the motion

of a free pseudo-particle with net charge Q and total mass M of the ion (atom),

the coupling term H2 between the collective and internal motion, and H3 which

describes the internal relative motion of the electrons and the nucleus. H1 and H2

are proportional to M−1, so they vanish in the infinite mass approximation. It is

important to note, however, that H3 (the only non-zero term in the infinite mass

approximation) also contains a term that depends on M−1
0 , where M0 ≈ M is the

mass of the nucleus. Thus, there are two kinds of non-trivial finite-mass effects:

the effects due to H1 + H2, which can be interpreted as caused by the electric

field induced in the co-moving reference frame, and the effects due to H3, which

arise irrespective of the atomic motion. Both kinds of effects have been included

in calculations only for the H atom (Potekhin 1994; Potekhin & Pavlov 1997 and

references therein) and He+ ion (Bezchastnov et al. 1998; Pavlov & Bezchastnov

2005). For the He atom, only the second kind of effects have been studied (Al-Hujaj
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Figure 4.2: Total cross section σ0 versus photon energy for helium photoionization,
from initial states (m1, m2) = (1, 0) (solid lines) and (2, 0) (dashed lines). The field
strength is 1012 G. The dotted lines extending from each cross section curve rep-
resent the effect of magnetic broadening on these cross sections, as approximated
in Eq. (4.55), for T = 104.5 K (steeper lines) and 106 K (flatter lines).
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Figure 4.3: Total cross section σ0 versus photon energy for helium photoionization,
from initial states (m1, m2) = (1, 0) (solid lines) and (2, 0) (dashed lines). The field
strength is 1014 G. The dotted lines extending from each cross section curve rep-
resent the effect of magnetic broadening on these cross sections, as approximated
in Eq. (4.55), for T = 105.5 K (steeper lines) and 106 K (flatter lines).
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Figure 4.4: Total cross section σ+ versus photon energy for helium photoionization,
from initial states (m1, m2) = (1, 0) (solid lines) and (2, 0) (dashed lines). The field
strength is 1012 G. The dotted lines extending from each cross section curve rep-
resent the effect of magnetic broadening on these cross sections, as approximated
in Eq. (4.55), for T = 106 K.
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Figure 4.5: The same as in Fig. 4.4, but for σ−.
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Figure 4.6: The same as in Fig. 4.4, but for B = 1014 G.
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Figure 4.7: The same as in Fig. 4.6, but for σ−.
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& Schmelcher 2003a,b).

4.5.1 Non-moving helium atom

The state of motion of an atom can be described by pseudomomentum K, which is a

conserved vector since Q = 0 (e.g., Vincke & Baye 1988; Schmelcher & Cederbaum

1991). Let us consider first the non-moving helium atom: K = 0.

According to Al-Hujaj & Schmelcher (2003a), there are trivial normal mass

corrections, which consist in the appearance of reduced masses me/(1 ± me/M0)

in H3, and non-trivial specific mass corrections, which originate from the mass

polarization operator.

The normal mass corrections for the total energy E of the He state |m1ν1, m2ν2〉

can be described as follows:

E(M0, B) =
E(∞, (1 +me/M0)

2B)

1 +me/M0

+ h̄ΩBe

∑

j

mj, (4.49)

where ΩBe = (me/M0)ωBe (for He, h̄ΩBe = 1.588B12 eV). The first term on the

right-hand side describes the reduced mass transformation. The second term rep-

resents the energy shift due to conservation of the total z component of the angular

momentum. Because of this shift, the states with sufficiently large values ofm1+m2

become unbound (autoionizing, in analogy with the case of the H atom considered

by Potekhin et al. 1997). This shift is also important for radiative transitions which

change (m1 +m2) by ∆m 6= 0: the transition energy h̄ωba is changed by h̄ΩBe∆m.

The dipole matrix elements Mba are only slightly affected by the normal mass

corrections, but the oscillator strengths are changed with changing ωba according

to Eq. (4.27). The energy shift also leads to the splitting of the photoionization
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threshold by the same quantity h̄ΩBe∆m, with ∆m = 0,±1 depending on the po-

larization (in the dipole approximation). Clearly, these corrections must be taken

into account, unless ΩBe � ωba or ∆m = 0, as illustrated in the last two columns

of Table 4.1.

The specific mass corrections are more difficult to evaluate, but they can be ne-

glected in the considered B range. Indeed, calculations by Al-Hujaj & Schmelcher

(2003a) show that these corrections do not exceed 0.003 eV at B ≤ 104B0.

4.5.2 Moving helium atom

Eigenenergies and wave functions of a moving atom depend on its pseudomomen-

tum K perpendicular to the magnetic field. This dependence can be described by

Hamiltonian components (e.g., Schmelcher & Cederbaum 1991)

H1 +H2 =
K2

2M
+
∑

j

e

Mc
K · (B × rj), (4.50)

where
∑

j is the sum over all electrons. The dependence on Kz is trivial, but the

dependence on the perpendicular component K⊥ is not. The energies depend on

the absolute value K⊥. For calculation of radiative transitions, it is important to

take into account that the pseudomomentum of the atom in the initial and final

state differ due to recoil: K′ = K+ h̄q. Effectively the recoil adds a term ∝ q into

the interaction operator (cf. Potekhin et al. 1997; Potekhin & Pavlov 1997). The

recoil should be neglected in the dipole approximation.

The atomic energy E depends on K⊥ differently for different quantum states

of the atom. In a real neutron star atmosphere, one should integrate the binding

energies and cross sections over the K⊥-distribution of the atoms, in order to
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obtain the opacities.1 Such integration leads to the specific magnetic broadening

of spectral lines and ionization edges. Under the conditions typical for neutron

star atmospheres, the magnetic broadening turns out to be much larger than the

conventional Doppler and collisional broadenings (Pavlov & Potekhin 1995).

At present the binding energies and cross sections of a moving helium atom

have not been calculated. However, we can approximately estimate the magnetic

broadening for T � |(∆E)min|/kB, where (∆E)min is the energy difference from a

considered atomic level to the nearest level admixed by the perturbation due to

atomic motion, and kB is the Boltzmann constant. In this case, the K⊥-dependence

of E can be approximated by the formula

E(K⊥) = E(0) +
K2

⊥
2M⊥

, (4.51)

where E(0) is the energy in the infinite mass approximation and M⊥ = K⊥

∂E/∂K⊥

is

an effective ‘transverse’ mass, whose value (M⊥ > M) depends on the quantum

state considered (e.g., Vincke & Baye 1988; Pavlov & Mészáros 1993).

Generally, at every value of K⊥ one has a different cross section σ(ω,K⊥).

Assuming the equilibrium (Maxwell–Boltzmann) distribution of atomic velocities,

the K⊥-averaged cross section can be written as

σ(ω) =
∫ ∞

Emin

exp

(

E(0) − E(K⊥)

kBT

)

σ(ω,K⊥)
dE(K⊥)

kBT
, (4.52)

where Emin = −h̄ω.

The transitions that were dipole-forbidden for an atom at rest due to the con-

servation of the total z-projection of angular momentum become allowed for a

moving atom. Therefore, the selection rule ∆m = λ [Eqs. (4.30)–(4.32)] does not

1For the hydrogen atom, this has been done by Pavlov & Potekhin (1995) for bound-bound
transitions and by Potekhin & Pavlov (1997) for bound-free transitions.
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strictly hold, and we must write

σ(ω,K⊥) =
∑

m′

σm′(ω,K⊥), (4.53)

where the sum of partial cross sections is over all final quantum numbers m′ (with

m′ ≥ 0 and m′ 6= m2 for ∆ν = 0) which are energetically allowed. For bound-

bound transitions, this results in the splitting of an absorption line at a frequency

ωba in a multiplet at frequencies ωba +δmΩBe +(M−1
⊥,m′ −M−1

⊥ )K2
⊥/2h̄, where δm ≡

m′−m−λ and M⊥,m′ is the transverse mass of final states. For photoionization, we

have the analogous splitting of the threshold. In particular, there appear bound-

free transitions at frequencies ω < ωthr – they correspond to δm < K2
⊥/(2M⊥h̄ΩBe).

Here, ωthr is the threshold in the infinite ion mass approximation, and one should

keep in mind that the considered perturbation theory is valid for K2
⊥/2M⊥ �

|(∆E)min| < h̄ωthr. According to Eq. (4.53), σ(ω,K⊥) is notched at ω < ωthr, with

the cogs at partial thresholds ωthr + δmΩBe −K2
⊥/(2M⊥h̄) (cf. Fig. 2 in Potekhin

& Pavlov 1997).

Let us approximately evaluate the resulting envelope of the notched photoion-

ization cross section (4.53), assuming that the ‘longitudinal’ matrix elements [〈. . .〉

constructions in Eqs. (4.30)–(4.32)] do not depend on K⊥. The ‘transverse’ matrix

elements can be evaluated following Potekhin & Pavlov (1997): in the perturbation

approximation, they are proportional to |ξ||δm|e−|ξ|2/2, where |ξ|2 = K2
⊥ρ

2
0/(2h̄

2).

Then

σ(ω < ωthr, K⊥) ≈ σ(ωthr, 0) exp
[

−M⊥
M

ωthr − ω

ΩBe

]

×θ
(

K2
⊥

2M⊥
− h̄(ωthr − ω)

)

, (4.54)

where θ(x) is the step function. A comparison of this approximation with numer-

ical calculations for the hydrogen atom (Potekhin & Pavlov 1997) shows that it
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gives the correct qualitative behavior of σ(ω,K⊥). For a quantitative agreement,

one should multiply the exponential argument by a numerical factor ∼ 0.5–2, de-

pending on the state and polarization. This numerical correction is likely due to

the neglected K⊥-dependence of the longitudinal matrix elements. We assume that

this approximation can be used also for the helium atom. Using Eq. (4.52), we

obtain

σ(ω) ≈ σ(ωthr) exp

[

−M⊥
M

ωthr − ω

ΩBe
− h̄(ωthr − ω)

kBT

]

(4.55)

for ω < ωthr. Here the transverse mass M⊥ can be evaluated by treating the

coupling Hamiltonian H2 as a perturbation, as was done by Pavlov & Mészáros

(1993) for the H atom. Following this approach, retaining only the main per-

turbation terms according to the approximate orthogonality relation (4.33) and

neglecting the difference between M and M0, we obtain an estimate

M

M⊥
≈ 1 −

∑

λ=±

λ

2

∑

b(∆m=λ)

ωBef
λ
ba/(2ωba)

1 + ωba/ΩBe
, (4.56)

where |a〉 is the considered bound state (|00, 10〉 or |00, 20〉 for the examples in

Figs. 4.2–4.7) and |b〉 are the final bound states to which λ = ± transitions |a〉 →

|b〉 are allowed. According to Eq. (4.34), the numerator in Eq. (4.56) is close to

m+ 1 for λ = + and to m for λ = −.

For the transitions from the ground state with polarization λ = −, which are

strictly forbidden in the infinite ion mass approximation, using the same approxi-

mations as above we obtain the estimate σ−(ω) ∝ σ+(ω)h̄ΩBekBT/(kBT + h̄ΩBe)
2.

Examples of the photoionization envelope approximation, as described in Eq. (4.55)

above, are shown in Figs. 4.2–4.7. In Figs. 4.6 and 4.7 (for B = 1014 G), in addi-

tion to the magnetic broadening, we see a significant shift of the maximum, which

originates from the last term in Eq. (4.49). Such shift is negligible in Figs. 4.4 and

4.5 because of the relatively small ΩBe value for B = 1012 G.
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Finally, let us note that the Doppler and collisional broadening of spectral fea-

tures in a strong magnetic field can be estimated, following Pavlov & Mészáros

(1993), Pavlov & Potekhin (1995) and Rajagopal et al. (1997). The Doppler spec-

tral broadening profile is

φD(ω) =
1√

π∆ωD

exp

[

−(ω − ω0)
2

∆ω2
D

]

, (4.57)

with

∆ωD =
ω0

c

√

2T

M

[

cos2 θB +
M⊥
M

sin2 θB

]−1/2

, (4.58)

where θB is the angle between the wave vector and B. The collisional broadening

is given by

φcoll(ω) =
Λcoll

2π

1

(ω − ω0)2 + (Λcoll/2)2
, (4.59)

with

h̄Λcoll = 4.8nea0r
2
eff

(

kBT

Ryd

)1/6

= 41.5
ne

1024 cm−3T
1/6
6

(

reff
a0

)2

eV, (4.60)

where ne is the electron number density and reff is an effective electron-atom in-

teraction radius, which is about the quantum-mechanical size of the atom. The

convolution of the Doppler, collisional and magnetic broadening profiles gives the

total shape of the cross section. For bound-free transitions, the Doppler and colli-

sional factors can be neglected, but for the bound-bound transitions they give the

correct blue wings of the spectral features (cf. Pavlov & Potekhin 1995).

4.6 Conclusion

We have presented detailed numerical results and fitting formulae for the dominant

radiative transitions (both bound-bound and bound-free) of He atoms in strong
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magnetic fields in the range of 1012 − 1014 G. These field strengths may be most

appropriate for the identification of spectral lines observed in thermally emitting

isolated neutron stars (see Sect. 4.1).

While most of our calculations are based on the infinite-nucleus-mass approx-

imation, we have examined the effects of finite nucleus mass and atomic motion

on the opacities. We found that for the field strengths considered in this chapter

(B <∼ 1014 G), these effects can be incorporated into the infinite-mass results to ob-

tain acceptable He opacities for neutron star atmosphere modelling. For large field

strengths, more accurate calculations of the energy levels and radiative transitions

of a moving He atom will be needed in order to obtain reliable opacities.
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CHAPTER 5

CONDENSED SURFACES OF MAGNETIC NEUTRON STARS,

THERMAL SURFACE EMISSION, AND PARTICLE

ACCELERATION ABOVE PULSAR POLAR CAPS

5.1 Introduction

Recent observations of neutron stars have provided a wealth of information on

these objects, but they have also raised many new questions. For example, with

the advent of X-ray telescopes such as Chandra and XMM-Newton, detailed ob-

servations of the thermal radiation from the neutron star surface have become

possible. These observations show that some nearby isolated neutron stars (e.g.,

RX J1856.5-3754) appear to have featureless, nearly blackbody spectra (Burwitz

et al 2003; van Kerkwijk & Kaplan 2007). Radiation from a bare condensed surface

(where the overlying atmosphere has negligible optical depth) has been invoked to

explain this nearly perfect blackbody emission (e.g., Burwitz et al 2003; Mori &

Ruderman 2003; Turolla et al. 2004; van Adelsberg et al. 2005; Perez-Azorin et al.

2006; Ho et al. 2007; but see Ruderman 2003 for an alternative view). However,

whether surface condensation actually occurs depends on the cohesive properties

of the surface matter (e.g., Lai 2001).

Equally puzzling are the observations of anomalous X-ray pulsars (AXPs) and

soft gamma-ray repeaters (SGRs) (see Woods & Thompson 2005 for a review).

Though these stars are believed to be magnetars, neutron stars with extremely

strong magnetic fields (B >∼ 1014 G), they mostly show no pulsed radio emission

(but see Camilo et al. 2006, 2007; Kramer et al. 2007) and their X-ray radiation

is too strong to be powered by rotational energy loss. By contrast, several high-B
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radio pulsars with inferred surface field strengths similar to those of magnetars

have been discovered (e.g., Kaspi & McLaughlin 2005; Vranevsevic, Manchester,

& Melrose 2007). A deeper understanding of the distinction between pulsars and

magnetars requires further investigation of the mechanisms by which pulsars and

magnetars radiate and of their magnetospheres where this emission originates.

Theoretical models of pulsar and magnetar magnetospheres depend on the cohe-

sive properties of the surface matter in strong magnetic fields (e.g., Ruderman &

Sutherland 1975; Arons & Scharlemann 1979; Cheng & Ruderman 1980; Usov &

Melrose 1996; Harding & Muslimov 1998; Gil, Melikidze, & Geppert 2003; Mus-

limov & Harding 2003; Beloborodov & Thompson 2007). For example, depending

on how strongly bound the surface matter is, a charge-depleted acceleration zone

(“vacuum gap”) above the polar cap of a pulsar may or may not form, and this

will affect pulsar radio emission and other high-energy emission processes.

The cohesive property of the neutron star surface matter plays a key role in

these and other neutron star processes and observed phenomena. The cohesive

energy refers to the energy required to pull an atom out of the bulk condensed

matter at zero pressure. A related (but distinct) quantity is the electron work

function, the energy required to pull out an electron. For magnetized neutron star

surfaces the cohesive energy and work function can be many times the correspond-

ing terrestrial values, due to the strong magnetic fields threading the matter (e.g.,

Ruderman 1974; Lai 2001).

In Chapters 2 and 3, we carried out detailed, first-principle calculations of

the cohesive properties of H, He, C, and Fe surfaces at field strengths between

B = 1012 G to 2 × 1015 G. The main purpose of this chapter is to investigate

several important astrophysical implications of these results (some preliminary

140



investigations were reported in Medin & Lai 2007). This chapter is organized as

follows. In Section 5.2 we briefly summarize the key results (cohesive energy and

work function values) of ML06a,b used in this chapter. In Section 5.3 we examine

the possible formation of a bare neutron star surface, which directly affects the

surface thermal emission. We find that the critical temperature below which a

phase transition to the condensed state occurs is approximately given by kTcrit ∼

0.08Qs, where Qs is the cohesive energy of the surface. In Section 5.4 we consider

the conditions for the formation of a polar vacuum gap in pulsars and magnetars.

We find that neutron stars with rotation axis and magnetic moment given by

Ω ·Bp > 0 are unable to form vacuum gaps (since the electrons which are required

to fill the gaps can be easily supplied by the surface), but neutron stars with

Ω · Bp < 0 can form vacuum gaps provided that the surface temperature is less

than kTcrit ∼ 0.04Qs (and that particle bombardment does not completely destroy

the gap; see Section 5.5). Implications of our results for recent observations are

discussed in Section 5.5.

This chapter and Chapter 6 are based on the published paper by Medin & Lai

2007 [Medin Z., Lai D., 2007, Monthly Notices of the Royal Astronomical Society,

382, 1833; c©2007. Blackwell Publishing. All rights reserved]. Sections of the

paper are reprinted here and in Chapter 6 with minor changes, based on rights

retained by the author.
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5.2 Cohesive properties of condensed matter in strong mag-

netic fields

It is well-known that the properties of matter can be drastically modified by strong

magnetic fields. The natural atomic unit for the magnetic field strength, B0, is set

by equating the electron cyclotron energy h̄ωBe = h̄(eB/mec) = 11.577B12 keV,

where B12 = B/(1012 G), to the characteristic atomic energy e2/a0 = 2 × 13.6 eV

(where a0 is the Bohr radius):

B0 =
m2

ee
3c

h̄3 = 2.3505 × 109 G. (5.1)

For b = B/B0 >∼ 1, the usual perturbative treatment of the magnetic effects on

matter (e.g., Zeeman splitting of atomic energy levels) does not apply. Instead, the

Coulomb forces act as a perturbation to the magnetic forces, and the electrons in an

atom settle into the ground Landau level. Because of the extreme confinement of

the electrons in the transverse direction (perpendicular to the field), the Coulomb

force becomes much more effective in binding the electrons along the magnetic field

direction. The atom attains a cylindrical structure. Moreover, it is possible for

these elongated atoms to form molecular chains by covalent bonding along the field

direction. Interactions between the linear chains can then lead to the formation

of three-dimensional condensed matter (Ruderman 1974; Ruder et al. 1994; Lai

2001).

The basic properties of magnetized condensed matter can be estimated using

the uniform electron gas model (e.g., Kadomtsev 1970). The energy per cell of a

zero-pressure condensed matter is given by

Es ∼ −120Z9/5B
2/5
12 eV, (5.2)
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and the corresponding condensation density is

ρs ∼ 560AZ−3/5B
6/5
12 g cm−3, (5.3)

where Z, A are the charge number and mass number of the ion (see Lai 2001 and

references therein for further refinements to the uniform gas model). Although this

simple model gives a reasonable estimate of the binding energy for the condensed

state, it is not adequate for determining the cohesive property of the condensed

matter. The cohesive energy is the (relatively small) difference between the atomic

ground-state energy Ea and the zero-pressure condensed matter energy Es, both

increasing rapidly with B. Moreover, the electron Fermi energy (including both

kinetic energy and Coulomb energy) in the uniform gas model,

εF = (3/5Z)Es ∼ −73Z4/5B
2/5
12 eV, (5.4)

may not give a good scaling relation for the electron work function when detailed

electron energy levels (bands) in the condensed matter are taken into account.

There have been few quantitative studies of infinite chains and zero-pressure

condensed matter in strong magnetic fields. Earlier variational calculations (e.g.,

Flowers et al. 1977; Müller 1984) as well as calculations based on Thomas-Fermi

type statistical models (e.g., Abrahams & Shapiro 1991; Fushiki et al. 1992), while

useful in establishing scaling relations and providing approximate energies of the

atoms and the condensed matter, are not adequate for obtaining reliable energy

differences (cohesive energies). Quantitative results for the energies of infinite

chains of hydrogen molecules H∞ over a wide range of field strengths (B � B0)

were presented in Lai et al. (1992) (using the Hartree-Fock method with the plane-

wave approximation; see also Lai 2001 for some results for He∞) and in Relovsky

& Ruder (1996) (using density functional theory). For heavier elements such as

C and Fe, the cohesive energies of one dimensional (1D) chains have only been
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calculated at a few magnetic field strengths in the range of B = 1012–1013 G, using

Hartree-Fock models (Neuhauser et al. 1987) and density functional theory (Jones

1985). There were some discrepancies between the results of these works, and

some adopted a crude treatment for the band structure (Neuhauser et al. 1987).

An approximate calculation of 3D condensed matter based on density functional

theory was presented in Jones (1986).

Our calculations of atoms and small molecules (ML06a) and of infinite chains

and condensed matter (ML06b) are based on a newly developed density functional

theory code. Although the Hartree-Fock method is expected to be highly accurate

in the strong field regime, it becomes increasingly impractical for many-electron

systems as the magnetic field increases, since more and more Landau orbitals are

occupied (even though electrons remain in the ground Landau level) and keeping

track of the direct and exchange interactions between electrons in various orbitals

becomes computationally rather tedious. Compared to previous density-functional

theory calculations, we used an improved exchange-correlation function for highly

magnetized electron gases, and we calibrated our density-functional code with

previous results (when available) based on other methods. Most importantly, in our

calculations of 1D condensed matter, we treated the band structure of electrons in

different Landau orbitals self-consistently without adopting ad-hoc simplifications.

This is important for obtaining reliable results for the condensed matter. Since

each Landau orbital has its own energy band, the number of bands that need to be

calculated increases with Z and B, making the computation increasingly complex

for superstrong magnetic field strengths (e.g., the number of occupied bands for Fe

chains at B = 2×1015 G reaches 155; see Fig. 16 of ML06b). Our density-functional

calculations allow us to obtain the energies of atoms and small molecules and the

energy of condensed matter using the same method, thus providing reliable cohesive
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energy and work function values for condensed surfaces of magnetic neutron stars.

In ML06a, we described our calculations for various atoms and molecules in

magnetic fields ranging from 1012 G to 2×1015 G for H, He, C, and Fe, representa-

tive of the most likely neutron star surface compositions. Numerical results of the

ground-state energies are given for HN (up to N = 10), HeN (up to N = 8), CN

(up to N = 5), and FeN (up to N = 3), as well as for various ionized atoms. In

ML06b, we described our calculations for infinite chains for H, He, C, and Fe in that

same magnetic field range. For relatively low field strengths, chain-chain interac-

tions play an important role in the cohesion of three-dimensional (3D) condensed

matter. An approximate calculation of 3D condensed matter is also presented in

ML06b. Numerical results of the ground-state and cohesive energies, as well as the

electron work function and the zero-pressure condensed matter density, are given

in ML06b for H∞ and H(3D), He∞ and He(3D), C∞ and C(3D), and Fe∞ and

Fe(3D).

Some numerical results from ML06a,b are provided in graphical form in Figs. 5.1,

5.2, 5.3, and 5.4 (see ML06a,b for approximate scaling relations for different field

ranges based on numerical fits). Figure 5.1 shows the cohesive energies of con-

densed matter, Qs = E1 − Es, and the molecular energy differences, ∆EN =

EN/N−E1, for He, Fig. 5.2 for C, and Fig. 5.3 for Fe; here E1 is the atomic ground-

state energy, EN is the ground-state energy of the HeN , CN , or FeN molecule, and

Es is the energy per cell of the zero-pressure 3D condensed matter. Some relevant

ionization energies for the atoms are also shown. Figure 5.4 shows the electron

work functions φ for condensed He, C, and Fe as a function of the field strength.

We see that the work function increases much more slowly with B compared to

the simple free electron gas model [see Eq. (5.4)], and the dependence on Z is also
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Figure 5.1: Cohesive energy Qs = E1 − Es and molecular energy difference ∆EN =
EN/N − E1 for helium as a function of the magnetic field strength.

weak. The results summarized here will be used in Section 5.3 and Section 5.4

below.

5.3 Condensation of neutron star surfaces in strong mag-

netic fields

As seen from Figs. 5.1, 5.2, and 5.3, the cohesive energies of condensed matter

increase with magnetic field. We therefore expect that for sufficiently strong mag-

netic fields, there exists a critical temperature Tcrit below which a first-order phase

transition occurs between the condensate and the gaseous vapor. This has been
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Figure 5.2: Cohesive energy Qs = E1 − Es and molecular energy difference ∆EN =
EN/N − E1 for carbon as a function of the magnetic field strength. The symbol
Q∞ represents the cohesive energy of a one-dimensional chain, and I1 and I2 are
the first and second ionization energies of the C atom.
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Figure 5.3: Cohesive energy Qs = E1 − Es and molecular energy difference ∆EN =
EN/N − E1 for iron as a function of the magnetic field strength. The symbol Q∞
represents the cohesive energy of a one-dimensional chain, and I1 and I2 are the
first and second ionization energies of the Fe atom. Below 5 × 1012 G, our results
for Q∞ and Qs become unreliable as Q∞ and Qs become very small and approach
numerical errors for EN and Es.
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Figure 5.4: Numerical result for the electron work function as a function of the
magnetic field strength, for He, C, and Fe infinite chains.
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investigated in detail for hydrogen surfaces (see Lai & Salpeter 1997; Lai 2001),

but not for other surface compositions. Here we consider the possibilities of such

phase transitions of He, C, and Fe surfaces.

A precise calculation of the critical temperature Tcrit is difficult. We can de-

termine Tcrit approximately by considering the equilibrium between the condensed

phase (labeled “s”) and the gaseous phase (labeled “g”) in the ultrahigh field

regime (where phase separation exists). The gaseous phase consists of a mixture

of free electrons and bound ions, atoms, and molecules. Phase equilibrium requires

the temperature, pressure and the chemical potentials of different species to satisfy

the conditions (here we consider Fe as an example; He and C are similar)

Ps = Pg = [2n(Fe+) + 3n(Fe2+) + · · · + n(Fe) + n(Fe2) + n(Fe3) + · · ·]kT , (5.5)

µs = µe + µ(Fe+) = 2µe + µ(Fe2+) = · · · = µ(Fe) =
1

2
µ(Fe2) =

1

3
µ(Fe3) = · · · ,

(5.6)

where we treat the gaseous phase as an ideal gas. The chemical potential of the

condensed phase is given by

µs = Es + PsVs ' Es,0 , (5.7)

where Es is the energy per cell of the condensate and Es,0 is the energy per cell at

zero-pressure (we will label this simply as Es). We have assumed that the vapor

pressure is sufficiently small so that the deviation from the zero-pressure state

of the condensate is small; this is justified when the saturation vapor pressure

Psat is much less than the critical pressure Pcrit for phase separation, or when the

temperature is less than the critical temperature by a factor of a few.

For nondegenerate electrons in a strong magnetic field the number density is
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related to µe by

ne ' 1

2πρ2
0

eµe/kT
∞
∑

nL=0

gnL
exp

(

−nLh̄ωBe

kT

)

∫ ∞

−∞

dpz

h
exp

(

−p2
z

2mekT

)

(5.8)

' 1

2πρ2
0λTe

eµe/kT tanh−1

(

h̄ωBe

2kT

)

(5.9)

' 1

2πρ2
0λTe

eµe/kT , (5.10)

where gnL
= 1 for nL = 0 and gnL

= 2 for nL > 0 are the Landau degeneracies,

λTe = (2πh̄2/mekT )1/2 is the electron thermal wavelength, and the last equality

applies for kT � h̄ωBe. The magnetic field length is ρ0 = (h̄c/eB)1/2. For atomic,

ionic, or molecular Fe the number density is given by

n(FeA) ' 1

h3
eµA/kT

∑

i

exp
(

−EA,i

kT

) ∫

d3K exp

(

−K2

2MAkT

)

(5.11)

' 1

λ3
TA

exp
(

−EA − µA

kT

)

Zint(FeA) , (5.12)

with the internal partition function

Zint(FeA) =
∑

i

exp
(

−∆EA,i

kT

)

. (5.13)

and ∆EA,i = EA,i − EA. Here, the subscript A represents the atomic, ionic, or

molecular species whose number density we are calculating (e.g., Fe2 or Fe+) and

the sum
∑

i is over all excited states of that species. Also, λTe = (2πh̄2/MAkT )1/2

is the Fe particle’s thermal wavelength, where MA = NAM is the total mass of the

particle (N is the number of “atoms” in the molecule, A is the atomic mass number,

and M = mp + me). The vector K represents the center-of-mass momentum of

the particle. Note that we have assumed here that the FeA particle moves across

the field freely; this is a good approximation for large MA. The internal partition

function Zint represents the effect of all excited states of the species on the total

density; in this work we will use the approximation that this factor is the same for

all species, and we will estimate the magnitude of this factor later in this section.
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The equilibrium condition µs = µ(Fe) for the process Fes,∞ + Fe = Fes,∞+1

yields the atomic density in the saturated vapor:

n(Fe) '
(

AMkT

2πh̄2

)3/2

exp
(

−Qs

kT

)

Zint , (5.14)

where Qs = E1 − Es is the cohesive energy of the condensed Fe. The condition

Nµs = µ(FeN) for the process Fes,∞ +FeN = Fes,∞+N yields the molecular density

in the vapor:

n(FeN) '
(

NAMkT

2πh̄2

)3/2

exp
(

−SN

kT

)

Zint , (5.15)

where

SN = EN −NEs = N [Qs − (E1 − EN/N)] (5.16)

is the “surface energy” and EN/N is the energy per ion in the molecule. The

equilibrium condition µ(Fen+) = µe + µ(Fe(n+1)+) for the process e + Fen+ =

Fe(n+1)+, where Fen+ is the nth ionized state of Fe, yields the vapor densities for

the ions:

n(Fe+)ne '
b

2πa2
0

√

mekT

2πh̄2 exp
(

− I1
kT

)

n(Fe) , (5.17)

n(Fe2+)ne '
b

2πa2
0

√

mekT

2πh̄2 exp
(

− I2
kT

)

n(Fe+) , (5.18)

and so on. Here, b = B/B0 and a0 is the Bohr radius, and In = E(n−1)+ − En+

represents the ionization energy of the nth ionized state of Fe (i.e., the amount

of energy required to remove the nth electron from the atom when the first n− 1

electrons have already been removed). The total electron density in the saturated

vapor is

ne = n(Fe+) + 2n(Fe2+) + · · · . (5.19)

The number densities of electrons [Eq. (5.19)] and ions [e.g., Eqs. (5.17) and (5.18)]

must be found self-consistently, for all ion species that contribute significantly to

the total vapor density. The total mass density in the vapor is calculated from the
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number densities of all of the species discussed above, using the formula

ρg = AM
[

n(Fe) + 2n(Fe2) + · · · + n(Fe+) + n(Fe2+) + · · ·
]

. (5.20)

Figure 5.5 (for Fe) and Fig. 5.6 (for C) show the the densities of different

atomic/molecular species in the saturated vapor in phase equilibrium with the

condensed matter for different temperatures and field strengths. These are com-

puted using the values of EN/N , Es, and En+ presented in ML06a,b and depicted

in Figs. 5.2 and 5.3. As expected, for sufficiently low temperatures, the total gas

density in the vapor is much smaller than the condensation density, and thus phase

separation is achieved. The critical temperature Tcrit, below which phase separa-

tion between the condensate and the gaseous vapor occurs, is determined by the

condition ρs = ρg; the values of ρs we use are given in ML06b. We find that for

Fe:

Tcrit ' 6×105, 7×105, 3×106, 107, 2×107 K for B12 = 5, 10, 100, 500, 1000,

(5.21)

for C:

Tcrit ' 9× 104, 3× 105, 3× 106, 2× 107 K for B12 = 1, 10, 100, 1000. (5.22)

and for He:

Tcrit ' 8× 104, 3× 105, 2× 106, 9× 106 K for B12 = 1, 10, 100, 1000. (5.23)

In terms of the cohesive energy, these results can be approximated by

kTcrit ∼ 0.08Qs . (5.24)

Note that in our calculations for the iron vapor density at B12 = 5-500 we

have estimated the magnitude of the internal partition function factor Zint; the
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modified total density curves are marked on these figures as “ρg×Zint”. To estimate

Zint we use Eq. (5.13) with a cutoff to the summation above some energy. For

B12 = 5, 10, 100, and 500 we calculate or interpolate the energies for all excited

states of atomic Fe with energy below this cutoff, in order to find Zint. The energy

cutoff is necessary because the highly excited states become unbound (ionized) due

to finite pressure and should not be included in Zint (otherwise Zint would diverge).

In principle, the cutoff is determined by requiring the effective size of the excited

state to be smaller than the inter-particle space in the gas, which in turn depends

on density. In practice, we choose the cutoff such that the highest excited state has

a binding energy |EA,i| significantly smaller than the ground-state binding energy

|EA| (typically 30% of it). As an approximation, we also assume that the internal

partitions for FeN molecules and ions have the same Zint as the Fe atom. Despite

the crudeness of our calculation of Zint, we see from Fig. 5.5 that the resulting Tcrit

is only reduced by a few tens of a percent from the Tcrit value assuming Zint = 1.

We note that our calculation of the saturated vapor density is very uncertain

around T ∼ Tcrit, since Eqs. (5.14) – (5.18) are derived for ρg � ρs while the critical

temperature of the saturated vapor density is found by setting ρs = ρg. However,

since the vapor density decreases rapidly as T decreases, when the temperature is

below Tcrit/2 (for example), the vapor density becomes much less than the conden-

sation density and phase transition is unavoidable. When the temperature drops

below a fraction of Tcrit, the vapor density becomes so low that the optical depth

of the vapor is negligible and the outermost layer of the neutron star then consists

of condensed matter. The radiative properties of such condensed phase surfaces

have been studied using a simplified treatment of the condensed matter (see van

Adelsberg et al. 2005 and references therein).
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Here we estimate the critical atmosphere density below which the optical depth

of the vapor is negligible, following the method of Lai (2001). The key parameter is

the photosphere density, the density at which the optical depth τ = 2/3. When the

atmospheric density is much less than this value, the vapor will be negligible and

radiation will freely stream from the condensed surface. The photosphere density

can be estimated by

ρph ' 2/(3hκR) , (5.25)

where h ' kTph/(AMg) is the scale height, g is the gravitational acceleration, and

κR is the Rosseland mean opacity. As a first approximation we will assume that

the opacity is dominated by free-free absorption (in the presence of singly-ionized

atoms), in which case the mean opacity is given by (Silant’ev & Yakovlev 1980)

κR ' 400

(

kT

h̄ωBe

)2

κR(0) , (5.26)

with ωBe the electron cyclotron frequency and κR(0) the zero-field opacity. There-

fore, the critical atmosphere density is

ρcrit � ρph ' 0.9A1/2g
1/2
14 T6B12 g/cm3 , (5.27)

where g14 = g/(1014 cm/s2). Note that for the Fe and C atmospheres represented

in Figs. 5.5 and 5.6, ρg ' ρph when T ' Tcrit/2; therefore, if T <∼ Tcrit/2 the

atmosphere will have negligible optical depth.

5.4 Polar vacuum gap accelerators in pulsars and magne-

tars

A rotating, magnetized neutron star is surrounded by a magnetosphere filled with

plasma. The plasma is assumed to be an excellent conductor, such that the charged

155



-4

-2

 0

 2

 4

 6

 5.4  5.5  5.6  5.7  5.8  5.9  6

lo
g 1

0 ρ
 (g

/c
m

3 ) B12=5

ρ g x
 Z int

ρg
Fe
Fe+

Fe2+

-4

-2

 0

 2

 4

 6

 5.5  5.6  5.7  5.8  5.9  6

lo
g 1

0 ρ
 (g

/c
m

3 ) B12=10

ρ g x
 Z int

ρg
Fe
Fe2
Fe+

Fe2+ -2

 0

 2

 4

 6

 6.2  6.4  6.6  6.8

B12=100

ρ g x
 Z int

ρg
Fe
Fe2
Fe+

Fe2+

Fe3+

 0

 2

 4

 6

 8

 6.6  6.8  7  7.2  7.4

lo
g 1

0 ρ
 (g

/c
m

3 )

log10 T (K)

B12=500

ρ g x
 Z int ρg

Fe
Fe2Fe3
Fe+

Fe2+

Fe≥3+  0

 2

 4

 6

 8

 6.8  7  7.2  7.4  7.6
log10 T (K)

B12=1000
ρg
Fe
Fe2Fe3
Fe+

Fe2+

Fe≥3+

Figure 5.5: The mass densities of various atomic/ionic/molecular species and the
total density (ρg) of the vapor in phase equilibrium with the condensed iron surface.
The five panels are for different field strengths, B12 = 5, 10, 100, 500, 1000. The
horizontal lines give the densities of the condensed phase, ρs (ML06b). All the
vapor density curves are calculated assuming Zint = 1, except for the curve marked
by “ρg×Zint”, for which the total vapor density is calculated taking into account the
nontrivial internal partition functions of various species. The critical temperature
Tcrit for phase separation is set by the condition ρg = ρs (marked on each plot by
a filled circle).
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Figure 5.6: The mass densities of various atomic/ionic/molecular species and the
total density (ρg) of the vapor in phase equilibrium with the condensed carbon
surface. The four panels are for different field strengths, B12 = 1, 10, 100, 1000.
The horizontal lines give the densities of the condensed phase, ρs. All the vapor
density curves are calculated assuming Zint = 1. The critical temperature Tcrit for
phase separation is set by the condition ρg = ρs (marked on each plot by a filled
circle).
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particles move to screen out any electric field parallel to the local magnetic field.

The corresponding charge density is given by (Goldreich & Julian 1969)

ρGJ ' −Ω · B
2πc

(5.28)

where Ω is the rotation rate of the neutron star.

The Goldreich-Julian density assumes that charged particles are always avail-

able. This may not be satisfied everywhere in the magnetosphere. In particular,

charged particles traveling outward along the open field lines originating from the

polar cap region of the neutron star will escape beyond the light cylinder. To

maintain the required magnetosphere charge density these particles have to be re-

plenished by the stellar surface. If the surface temperature and cohesive strength

are such that the required particles are tightly bound to the stellar surface, those

regions of the polar cap through which the charged particles are escaping will not

be replenished. A vacuum gap will then develop just above the polar cap (e.g.,

Ruderman & Sutherland 1975; Cheng & Ruderman 1980; Usov & Melrose 1996;

Zhang, Harding, & Muslimov 2000; Gil, Melikidze, & Geppert 2003). In this vac-

uum gap zone the parallel electric field is no longer screened and particles are

accelerated across the gap until vacuum breakdown (via pair cascade) shorts out

the gap. Such an acceleration region can have an important effect on neutron star

emission processes. We note that in the absence of a vacuum gap, a polar gap

acceleration zone based on space-charge-limited flow may still develop (e.g., Arons

& Scharlemann 1979; Harding & Muslimov 1998; Muslimov & Harding 2003).

In this section we determine the conditions required for the vacuum gap to exist

using our results summarized in Section 5.2. The cohesive energy and electron work

function of the condensed neutron star surface are obviously the key factors. We

examine the physics of particle emission from condensed surface in more detail
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than considered previously.

5.4.1 Particle emission from condensed neutron star sur-

faces

We assume that the NS surface is in the condensed state, i.e., the surface tem-

perature T is less than the critical temperature Tcrit for phase separation (see

Section 5.3). (If T > Tcrit, the surface will be in gaseous phase and a vacuum gap

will not form.) We shall see that in order for the surface not to emit too large a

flux of charges to the magnetosphere (a necessary condition for the vacuum gap to

exist), an even lower surface temperature will be required.

Electron emission

For neutron stars with Ω · Bp > 0, where Bp is the magnetic field at the polar

cap, the Goldreich-Julian charge density is negative at the polar cap, thus surface

electron emission (often called thermionic emission in solid state physics; Ashcroft

& Mermin 1976) is relevant. Let Fe be the number flux of electrons emitted from

the neutron star surface. The emitted electrons are accelerated to relativistic speed

quickly, and thus the steady-state charge density is ρe = −eFe/c. For the vacuum

gap to exist, we require |ρe| < |ρGJ|. (If |eFe/c| > |ρGJ|, the charges will be

rearranged so that the charge density equals ρGJ.)

To calculate the electron emission flux from the condensed surface, we assume

that these electrons behave like a free electron gas in a metal, where the energy

barrier they must overcome is the work function of the metal. In a strong magnetic
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field, the electron flux is given by

Fe =
∫ ∞

pmin

f(ε)
pz

me

1

2πρ2
0

dpz

h
, (5.29)

where pmin =
√

2me|U0|, U0 is the potential energy of the electrons in the metal,

ε = p2
z/(2me) is the electron kinetic energy, and

f(ε) =
1

e(ε−µ′
e)/kT + 1

(5.30)

is the Fermi-Dirac distribution function with µ′
e the electron chemical potential

(excluding potential energy). Integrating this expression gives

Fe =
kT

2πhρ2
0

ln
[

1 + e−φ/kT
]

' kT

2πhρ2
0

e−φ/kT , (5.31)

where φ ≡ |U0| − µ′
e is the work function of the condensed matter and the second

equality assumes φ� kT . The steady-state charge density supplied by the surface

is then

ρe = −e
c
Fe = ρGJ exp (Ce − φ/kT ) , (5.32)

with

Ce = ln

(

e

c

kT

2πhρ2
0|ρGJ |

)

' 31 + ln (P0T6) ∼ 30 , (5.33)

where T6 = T/(106 K) and P0 is the spin period in units of 1 s. For a typical set

of pulsar parameters (e.g., P0 = 1 and T6 = 0.5) Ce ∼ 30, but Ce can range from

23 for millisecond pulsars to 35 for some magnetars. Note that the requirement

φ � kT is automatically satified here when |ρe| is less than |ρGJ |. The electron

work function was calculated in ML06b and is depicted in Fig. 5.4.

Ion emission

For neutron stars with Ω · Bp < 0, the Goldreich-Juliam charge above the polar

cap is positive, so we are interested in ion emission from the surface. Unlike the
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electrons, which form a relatively free-moving gas within the condensed matter,

the ions are bound to their lattice sites.1 To escape from the surface, the ions must

satisfy three conditions. First, they must be located on the surface of the lattice.

Ions below the surface will encounter too much resistance in trying to move through

another ion’s cell. Second, they must have enough energy to escape as unbound

ions. This binding energy that must be overcome will be labeled EB. Third, they

must be thermally activated. The energy in the lattice is mostly transferred by

conduction, so the ions must wait until they are bumped by atoms below to gain

enough energy to escape.

Consider the emission of ions with charge Zne from the neutron star surface

(e.g., Fe+ would have Zn = 1). The rate of collisions between any two ions in the

lattice is approximately equal to the lattice vibration frequency νi, which can be

estimated from

νi =
1

2π

(

Ω2
p + ω2

ci

)1/2
, (5.34)

where Ωp = (4πZ2e2ni/mi)
1/2

is the ion plasma (angular) frequency and ωci =

ZeB/(mic) is the ion cyclotron frequency (mi = Amp). Not all collisions will lead

to ejection of ions from the surface, since an energy barrier EB must be overcome.

Thus each surface ion has an effective emission rate of order

χ = νie
−EB/kT . (5.35)

The energy barrier EB for ejecting ions of charge Zne is equivalent to the energy

required to release a neutral atom from the surface and ionize it, minus the energy

gained by returning the electron to the surface (e.g., Tsong 1990). Thus

EB = Qs +
Zn
∑

i=1

Ii − Znφ , (5.36)

1The freezing condition is easily satisfied for condensed matter of heavy elements (see van
Adelsberg et al. 2005).
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where Qs > 0 is the cohesive energy, Ii > 0 is the ith ionization energy of the atom

(so that
∑Zn

i=1 Ii is the energy required to remove Zn electrons from the atom), and

φ > 0 is the electron work function. The surface density of ions is niri, where ri is

the mean spacing between ions in the solid. Thus the emission flux of Zn-ions is

Fi = νinirie
−EB/kT . (5.37)

The steady-state Zn-ion number density supplied by the surface is then

ρi =
Zne

c
Fi = ρGJ exp(Ci − EB/kT ) , (5.38)

with

Ci = ln

(

Zneνiniri

cρGJ

)

' 34 + ln
{

ZnZA
−1/2n

3/2
28 (ri/a0)B

−1
12 P0

√

1 + 5.2 × 10−3A−1B2
12n

−1
28

}

∼ 27–33 , (5.39)

where n28 = ni/(1028 cm−3). For a typical set of pulsar parameters (e.g., B12 = 1

and P0 = 1) Ci ∼ 27, but Ci can be as large as 33 for magnetars with B12 = 1000

and P0 = 8.

All the quantities in EB were calculated in ML06b (see Figs. 5.2 and 5.3). We

find that the emission of singly-ionized atoms (Zn = 1) is most efficient, as EB is

signficantly lower for Zn = 1 than for Zn > 1 (
∑Zn

i=1 Ii grows much faster with Zn

than Znφ does).

Effect of electric field on charge emission

The discussion in Sections 5.4.1 and 5.4.1 includes only thermal emission of charged

particles from the condensed surface. A strong electric field, of order Es ∼ ΩBR/c,
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may be present. Since this electric field is much less than the characteristic field

∼ e/r2
i inside the condensed matter (where ri is the mean particle separation), this

field cannot directly rip charges off the surface. Nevertheless, the electric field may

enhance the thermal emission of charge particles. We now estimate the magnitude

of this effect.

In the presence of a vacuum gap, the electric field Es at the stellar surface

points outward (Es > 0) for stars with Ω · Bp < 0 and inward (Es < 0) for stars

with Ω ·Bp > 0. A charge Q moved to some small height z above the surface gains

a potential energy given by U = −Q2/(4z) −QEsz, where the first term is due to

the interaction between the charge and the perfectly conducting metal surface, and

the second term is due to the external field.2 The potential reaches a maximum

value

Umax = −|Q|3/2|Es|1/2 (5.40)

at the height z = |Q/4Es|1/2. Thus, compared to the Es = 0 case, the energy

barrier for particle emission is now reduced by the amount Umax.

Combining this consideration with the results of Sections 5.4.1 and 5.4.1, we

find that steady-state charge density due to electron surface emission (for Ω·Bp > 0

stars) is (cf. Jessner et al. 2001)

ρe = ρGJ exp[Ce − (φ− e3/2|Es|1/2)/kT ], (5.41)

and the steady-state charge density due to ion surface emission (for Ω · Bp < 0

stars) is

ρi = ρGJ exp[Ci − (EB − (Zne)
3/2|Es|1/2)/kT ]. (5.42)

2In the vacuum gap, the electric field is not exactly uniform, but since the maximum U is at-
tained at a rather small height compared to the gap thickness, this nonuniformity is unimportant
for our consideration here.
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For Es ∼ ΩBR/c, we have e3/2|Es|1/2 ∼ 10 eV. This is typically much smaller

than either φ or EB.

5.4.2 Conditions for gap formation

No vacuum gap will form if the electrons or ions are able to fill the magnetosphere

region above the polar cap with the required Goldreich-Julian density; i.e., the

vacuum gap will cease to exist when ρe = ρGJ or ρi = ρGJ . From Eqs. (5.42) and

(5.41) we can see that no polar gap will form if

φ− e3/2|Es|1/2 < CekT ∼ 3T6 keV (5.43)

for a negative polar magnetosphere (Ω · Bp > 0), and

EB − (Zne)
3/2|Es|1/2 < CikT ∼ 3T6 keV (5.44)

for a positive polar magnetosphere (Ω ·Bp < 0). [For the exact expressions for Ce

and Ci see Eqs. (5.33) and (5.39).]

For neutron stars in general, the electron work function φ is much less than

CekT ∼ 3T6 keV (see Fig. 5.4), so electrons can easily escape from the condensed

surface. No gap forms for a negative polar magnetosphere under neutron star

surface conditions. (This is contrary to the conclusions of Usov & Melrose 1996

and Gil et al. 2003.) The ion binding energy EB [given by Eq. (5.36)], on the

other hand, can be larger than CikT ∼ 3T6 keV under certain neutron star surface

conditions (see Figs. 5.1, 5.2, and 5.3). Ions can tightly bind to the condensed

surface and a polar gap can form under these conditions. Figure 5.7 shows the

critical temperature (determined by EB = CikT ) below which a vacuum gap can

form for the Fe, C, and He surfaces.
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Figure 5.7: The condition for the formation of a vacuum gap above condensed
helium, carbon, and iron neutron star surfaces, when the magnetosphere is positive
over the poles (Ω · Bp < 0).
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5.5 Discussion

It is well known that a strong magnetic field increases the binding energy of indi-

vidual atom and that of the zero-pressure condensed matter. Very approximately,

for B � B0 [see Eq. (1)], the former increases as (lnB)2 while the latter scales as

B0.4. Therefore one expects that the outermost layer of a neutron star may be in

the condensed state when the magnetic field B is sufficiently strong and/or the sur-

face temperature T is sufficiently low. Exactly under what conditions this occurs

is an important question that entails quantitative calculations. In this chapter, us-

ing our recent results on the cohesive properties of magnetized condensed matter

(Medin & Lai 2006a,b), we have established quantitatively the parameter regime

(in B and T space) for which surface condensation occurs. Our calculations showed

that there are a range of neutron star magnetic field strengths and surface temper-

atures where the condensed surface will have an important effect on radiation from

these stars. For example, if the surface composition is Fe, then strong-field neu-

tron stars (B >∼ 1013 G) with moderate (T <∼ 106 K) surface temperatures should

have atmospheres/vapors that are effectively transparent to thermal radiation, so

that the emission becomes that from a bare condensed surface. This may explain

the nearly blackbody-like radiation spectrum observed from the nearby isolated

neutron star RX J1856.5-3754 (e.g., Burwitz et al 2003; van Adelsberg et al. 2005;

Ho et al. 2007).

We have also examined the conditions for the formation of a vacuum accelera-

tion gap above the polar cap region of the neutron star. The inner acceleration gap

model, first developed by Ruderman & Sutherland (1975), has provided a useful

framework to understand numerous observations of radio pulsars. Most notably,

the model naturally explains the phenomenon of drifting subpulses observed in
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many pulsars (e.g., Backer 1976; Deshpande & Rankin 1999; Weltevrede et al.

2006) in terms of the E × B circulation of plasma filaments produced by vacuum

discharges. Partially screened gaps have also been studied (e.g., Cheng & Ruder-

man 1980; Gil et al. 2003, 2006). However, it has long been recognized that the

original Ruderman & Sutherland model is problematic since the dipole magnetic

field inferred from P, Ṗ may not be strong enough to inhibit charge emission from

the surface. Our calculations described in this chapter quantify the condition for

vacuum gap formation (see Fig. 5.7). While this condition (i.e., T is smaller than

a critical value which depends on B and composition) may not be satisfied for

most pulsars (unless one invokes surface magnetic fields much stronger than that

inferred from P, Ṗ ; see Gil et al. 2006 and references therein), it could well be sat-

isfied for some neutron stars. In particular, the recently discovered high-B radio

pulsars, having dipole surface magnetic fields in excess of 1014 G and temperature

about 106 K (e.g., Kaspi & Gavriil 2004; Kaspi & McLaughlin 2005), may operate

a vacuum gap accelerator. On the other hand, while magnetars have similar mag-

netic field strengths, their surface temperatures are about five times larger than

those of high-B radio pulsars, and therefore may not have a vacuum gap. In this

regard, it is interesting to note that most magnetars do not show radio emission

(though this may be because the radio pulse is beamed away from us or the because

their magnetosphere plasma “overwhelms” the radio pulses), and the two recently

detected radio magnetars have rather different radio emission properties (e.g., the

spectrum extends to high frequency and the radiation shows high degrees of linear

polarization) compared to “normal” radio pulsars. We may therefore speculate

that a key difference between magnetars and high-B radio pulsars is their differ-

ence in surface temperature. In any case, our gap formation condition (Fig. 5.7)

suggests that the radio emission property of neutron stars may depend not only
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on the magnetic field and rotation rate, but also on the surface temperature.

We note that our calculation of the requirements for vacuum gap formation

assumes idealized conditions. A real neutron star polar cap may be immersed in

a strong radiation field and suffer bombardment from high energy particles (e.g.,

Arons 1981; Beloborodov & Thompson 2007). The effective cohesive energy of the

surface may be somewhat smaller than what we used in our chapter due to surface

defects (Arons 2007, private communication). Whether the vacuum gap survives

in realistic situations is unclear. It has been suggested that a partially screened

gap is formed instead (Gil et al. 2003, 2006).
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CHAPTER 6

PAIR CASCADES IN PULSAR MAGNETOSPHERES: POLAR GAP

ACCELERATORS AND THE PULSAR DEATH LINE/BOUNDARY

6.1 Introduction

It has been known for over three decades that the magnetosphere of a pulsar is

the source of its pulsed radio emission (Goldreich & Julian 1969; Sturrock 1971).

What is less clear is how the mechanism for creating this radio emission works and

why it shuts off under certain conditions, such as those in the magnetosphere of a

magnetar. Of the dozen observed magnetars, only two show pulsed radio emission,

and it is of a completely different nature than the emission from “standard” radio

pulsars (e.g., the radio pulsations are transient and appear to be correlated with

strong X-ray outbursts from the magnetars; see Camilo et al. 2007). In contrast,

several radio pulsars with inferred surface field strengths similar to those of mag-

netars have been discovered (e.g., Kaspi & McLaughlin 2005; Vranevsevic et al.

2007). A deeper understanding of the various types of pulsars and their distinction

from magnetars requires further investigation of the neutron star magnetosphere,

where the radio and other pulsed emission originates.

A rotating, magnetized neutron star generates a strong electric field and leads

to large voltage drops across the magnetosphere region. Particles accelerated across

these drops reach energies of 1012 eV or more and initiate cascades of pair produc-

tion. More specifically, initiation of the pair cascade requires: (a) acceleration of

charged particles by an electric field parallel to the magnetic field; (b) gamma ray

emission by the accelerated particles moving along the magnetic field lines (either

by curvature radiation or inverse Compton upscattering of surface photons); (c)
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photon decay into pairs as the angle between the photon and the field line be-

comes sufficiently large. It is generally agreed that the highly-relativistic electron-

positron plasma generated by the pair cascade is an essential ingredient for pulsar

radio emission (e.g., Melrose 2004), though the exact mechanism for converting

this plasma into coherent radio waves is not yet known. The large number of high

energy photons generated by the cascade appear as pulsed emission in gamma-ray

and X-ray pulsars; observations suggest that only the strongest cascades (largest

potential drops) lead to detectable gamma ray pulses (e.g., Thompson 2004).

To initiate the cascade an acceleration region is required; the characteristics

of this particle accelerator determine whether pulsar emission can operate or not

(the so-called “pulsar death line”; e.g., Ruderman & Sutherland 1975; Arons 2000;

Zhang et al. 2000; Hibschman & Arons 2001a). Depending on the boundary con-

dition at the neutron star surface, there are two types of polar (“inner”) gap

accelerators: If charged particles are strongly bound to the neutron star surface

by cohesive forces, a vacuum gap develops directly above the surface, with height

h much less than the stellar radius (Ruderman & Sutherland 1975); if charged

particles can be freely extracted from the surface, a more extended space-charge-

limited-flow (SCLF) type accelerator develops due to field line curvatures (Arons

& Scharlemann 1979) and the relativistic frame dragging effect (e.g., Muslimov

& Tsygan 1992). Because the cohesive strength of matter at B ∼ 1012 G was

thought to be negligible (based on the result of Neuhauser et al. 1987), most the-

oretical works in recent years have focused on the SCLF models (e.g., Arons 2000;

Muslimov & Harding 2003, 2004). However, our results in Chapter 5 show that

for sufficiently strong magnetic fields and/or low surface temperatures, a vacuum

gap accelerator can form. Such a vacuum gap may be particularly relevant for the

so-called high-B radio pulsars, which have inferred magnetic fields similar to those
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of magnetars (e.g., Kaspi & McLaughlin 2005; Burgay et al. 2006). As discussed

in Section 5.4, since electrons are weakly bound to the condensed stellar surface,

such a vacuum gap is possible only for pulsars with Ω ·Bp < 0 (as suggested in the

original Ruderman-Sutherland model). An “outer gap” accelerator can also form,

in regions of the outer magnetosphere where Ω · Bp < 0 changes sign along the

open field lines (Cheng, Ho, & Ruderman 1986; Romani 1996). Charged particles

pulled from the surface will be of the wrong sign to screen the electric field in these

regions of the magnetosphere, so that a vacuum gap forms.

In this chapter we discuss the conditions under which an inner gap accelerator

will be an effective generator of pulsar emission, both for the vacuum gap and SCLF

type models. Here we restrict our analysis to the conditions for gap breakdown,

a necessary but not sufficient ingredient for pair cascading and subsequent pulsar

emission. (The full cascade will be discussed in Chapter 7.) From our analysis

we derive pulsar “death lines”, or more precisely, “death boundaries”, boundaries

in parameter space beyond which a pulsar cannot function. Our study makes two

improvements over previous studies of inner gap accelerators and pulsar death lines

(e.g., Ruderman & Sutherland 1975; Cheng & Ruderman 1980; Usov & Melrose

1996; Zhang et al. 1997 for vacuum gap accelerators; Arons & Scharlemann 1979;

Muslimov & Tsygan 1992; Zhang et al. 2000; Hibschman & Arons 2001a; Harding

& Muslimov 2002 for SCLF accelerators): we extend our discussion of the cascade

physics to the magnetar field regime, and we use a more careful treatment of

photon emission due to inverse Compton scattering in the gap.

This chapter is organized as follows. In Section 6.2 we discuss polar gap radi-

ation mechanisms and the pulsar death line/boundary in the vacuum gap model.

We find that when curvature radiation is the dominant radiation mechanism in the
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gap, vacuum breakdown is possible for a large range of parameter space (in the

P–Ṗ diagram), but when inverse Compton scattering (either resonant or nonreso-

nant) is the dominant radiation mechanism, vacuum breakdown is possible for only

a very small range of parameter values. In Section 6.3 we discuss gap radiation

mechanisms and the death boundary in the SCLF model. As with the vacuum

gap case we find that gap breakdown is possible over a large range of parameter

space when curvature radiation dominates but only a small range of parameter

space when inverse Compton scattering dominates. We discuss our results in Sec-

tion 6.4. Some technical details (on our treatment of inverse Compton scattering

and vacuum gap electrodynamics of oblique rotators) are given in Appendix C.

6.2 Vacuum gap accelerators

6.2.1 Acceleration potential

When the temperature drops below the critical value given in Section 5.4, the

charge density above the polar cap decreases quickly below ρGJ, and a vacuum gap

results. In the vacuum region just above the surface (0 ≤ z � R), the parallel

electric field satisfies the equation dE‖/dz ' −4πρGJ . The height of the gap

h (� R) is determined by vacuum breakdown due to pair cascade, which shorts

out the electric field above the gap (i.e., E‖ = 0 for z ≥ h). Thus the electric field

in the gap is

E‖ '
2ΩBp

c
(h− z), (6.1)
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where Bp = bdB
d
p is the actual magnetic field at the pole, and differs from the

dipole field Bd
p by a factor bd ≥ 1. The potential drop across the gap is then

∆Φ =
ΩBp

c
h2 = bd

ΩBd
p

c
h2. (6.2)

With this potential drop, the electrons and positrons can be accelerated to a

Lorentz factor

γm =
e∆Φ

mec2
= 5.43 × 106βQh

2
3P

−1
0 = 1.23 × 105bdB12h

2
3P

−1
0 , (6.3)

where βQ = Bp/BQ (with BQ = m2
ec

3/eh̄ = 4.414 × 1013 G the QED field),

B12 = Bd
p/(1012 G), h3 = h/(103 cm) and P0 is the spin period in units of 1 s. The

voltage drop across the gap can be no larger than the voltage drop across the polar

cap region ∆Φmax ' (ΩBp/2c)(rp+
)2 = (ΩBd

p/2c)(r
d
p+

)2, where rp+
= rd

p+/b
1/2
d is

the radius of the polar cap through which a net positive current flows:

rd
p+

=
(

2

3

)3/4

R
(

ΩR

c

)1/2

. (6.4)

Thus the gap height is limited from above by

hmax '
rd
p+√
2bd

= 7.54 × 103 b
−1/2
d P

−1/2
0 cm, (6.5)

where we have adopted R = 10 km.

The above equations are for an aligned rotator. For an oblique rotator (where

the magnetic dipole axis is inclined relative to the rotation axis), the voltage drop

across the polar cap region is larger, of order (ΩBp/2c)Rrp+
. But as discussed

in Appendix C.1, the acceleration potential across the vacuum gap is still limited

from above by ∆Φmax ∼ (ΩBp/2c)r
2
p+

.
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6.2.2 Requirements for gap breakdown

There are two requirements for the breakdown of a vacuum gap. First, the photons

must be able to create electron-positron pairs within the gap, i.e., the mean free

path of photon pair-production is less than the gap height:

lph < h . (6.6)

Second, after being accelerated to large Lorentz factors the electrons and positrons

must produce at least a few photons within the gap. If on average only one photon

is emitted with the required energy for each electron-positron pair, for instance,

then the number of charged particles produced in the gap will grow very slowly

and the gap will not break down completely. Therefore, we must have

Nph > λ , (6.7)

where Nph is the number of photons emitted within the gap by each electron or

positron, and λ is a number of order 1–10.

6.2.3 Pair production

The threshold of pair production for a photon with energy ε is

ε

2mec2
sin θ > 1 , (6.8)

where θ is the angle of intersection of the photon and the magnetic field. Suppose

a photon is emitted at an angle θe. After the photon travels a distance z, the

intersection angle will grow as z/Rc, where Rc is the local radius of curvature of

the polar magnetic field line. Thus the typical intersection angle (for a photon

crossing the entire gap) is

sin θ ' θ ' h

Rc
+ θe. (6.9)
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For a pure dipole field, the curvature radius is of order (Rc/Ω)1/2 ' 108P
1/2
0 cm,

but a more complex field topology at the polar cap could reduce Rc to as small as

the stellar radius.

In the weak-field regime, when the threshold condition is well-satisfied (so that

the pairs are produced in highly excited Landau levels), the mean free path is given

by (Erber 1966)

lph ' 4.4a0

βQ sin θ
exp

(

4

3χ

)

, with χ =
ε

2mec2
βQ sin θ , (6.10)

where a0 = h̄2/(mec
2) is the Bohr radius. The condition lph < h implies χ >∼ 1/15

for typical parameters (Ruderman & Sutherland 1975). For stronger magnetic

fields (βQ >∼ 0.1), the pairs tend to be produced at lower Landau levels. Using

the general expression for the pair production rate (e.g., Daugherty & Harding

1983), one can check that if the threshold condition Eq. (6.8) is satisfied, the

pair-production optical depth across the gap would also be greater than unity [for

βQ = 0.1, the optical depth τ is unity when ε/(2mec
2) sin θ > 1.05, and by βQ = 0.2,

τ = 1 when ε/(2mec
2) sin θ > 1 + 10−7]. Thus for arbitrary field strengths, the

condition lph < h leads to the constraint:

ε

2mec2
βQ

(

h

Rc

+ θe

)

>∼
1

15
(1 + 15βQ). (6.11)

6.2.4 Photon emission multiplicity and the pulsar death

boundary

There are several possible photon emission mechanisms operating in the vacuum

breakdown, each leading to a different death boundary. We consider them sepa-

rately.
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Curvature radiation (CR)

The characteristic energy of a photon emitted through curvature radiation is ε ∼

(3/2)γ3h̄c/Rc = 4.74 × 109β3
Qh

6
3P

−3
0 R−1

6 eV, where R6 = Rc/(106 cm), and we

have used γ ∼ γm [Eq. (6.3)]. The emission angle is θe ∼ γ−1, which is typically

much less than h/Rc (this can be easily checked a posteriori). Equation (6.11)

then reduces to

h > hmin,ph = 546P
3/7
0 R2/7

6

(

15βQ + 1

β4
Q

)1/7

cm. (6.12)

The rate of energy loss of an electron or positron emitting curvature radiation is

PCR = 2e2γ4/(3c3)(c2/Rc)
2, thus the number of photons emitted through curvature

radiation by a single electron or positron across the gap is

Nph ' PCR

ε

h

c
' 4

9

e2

h̄c

γh

Rc
= 17.6βQh

3
3P

−1
0 R−1

6 . (6.13)

The condition Nph > λ [Eq. (6.7)] then gives

h >∼ hmin,e = 384λ1/3β
−1/3
Q P

1/3
0 R1/3

6 cm. (6.14)

Thus the minimum gap height required for vacuum breakdown is h ' max(hmin,ph, hmin,e).

Combining Eqs. (6.5), (6.12), and (6.14), we have

max(hmin,ph, hmin,e) < hmax. (6.15)

This gives a necessary condition for pulsar emission and defines the pulsar “death

line”. For all relevant parameter regimes, hmin,ph > hmin,e, and Eq. (6.15) simply

becomes hmin,ph < hmax. The critical pulsar spin period is then

Pcrit = 1.64 b
1/13
d B

8/13
12 R−4/13

6 (1 + 15βQ)−2/13 s, (6.16)

where the dipole polar field is B12 = 2.0(P0Ṗ15)
1/2, with Ṗ15 = Ṗ /(10−15 s s−1).

For βQ <∼ 1/15 this is the same as the result of Ruderman & Sutherland (1975).
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In Fig. 6.1, we show the death lines determined from Eq. (6.15) for the cases

of R6 = 1 and R6 = 100P
1/2
0 (pure dipole field at the polar cap), with bd = 1.

Resonant inverse Compton scattering (RICS)

Here the high-energy photons in the cascade are produced by Compton upscat-

terings of thermal photons from the neutron star surface. Resonant scattering in

strong magnetic fields (e.g., Herold 1979) can be thought of as resonant absorption

(where the electron makes a transition from the ground Landau level to the first ex-

cited level) followed by radiative decay. Resonance occurs when the photon energy

in the electron rest frame satisfies ε′ ' εBe = h̄(eB/mec) = βQmec
2. The resonant

photon energy (in the “lab” frame) before scattering is εi = εBe/[γ(1 − cos θi)],

where θi is the incident angle (the angle between the incident photon momentum

and the electron velocity). After absorbing a photon, the electron Lorentz factor

drops to γe = γ/(1 + 2βQ)1/2, and then radiatively decays isotropically in its rest

frame. The characteristic photon energy after resonant scattering is therefore (e.g.,

Beloborodov & Thompson 2007)

ε = γ



1 − 1
√

1 + 2βQ



mec
2, (6.17)

with typical emission angle θe ∼ 1/γe. The condition lph < h [see Eq. (6.11)]

becomes

γ

2



1 − 1
√

1 + 2βQ



βQ





h

Rc
+

√

1 + 2βQ

γ



 >∼ βQ +
1

15
. (6.18)

For βQ >∼ 4 this condition is automatically satisfied, i.e., resonant ICS photons pair

produce almost immediately upon being upscattered. For βQ < 4, Eq. (6.18) puts

a constraint on the gap height h. As we shall see below, most of the scatterings in

the gap are done by electrons/positrons with γ ∼ min(γc, γm), where γc = εBe/kT
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Figure 6.1: Pulsar death lines/boundaries for the CR and resonant ICS gap
breakdown mechanisms. For curvature radiation, the lower line is for a magnetic
field radius of curvature comparable to the stellar radius (Rc ' R) and the

upper line is for a radius curvature given by the dipole formula (R6 = 100P
1/2
0 ).

For RICS, the large “box” is for λ = 1 and the small box is for λ = 2; both
boxes are for a surface temperature of 5 × 106 K. The unspecified neutron star
parameters are taken to be unity (i.e., we set bd = 1 and for RICS R6 = 1).
The CR mechanism operates (and the pulsar is alive) above and to the left of
the lines, and the RICS mechanism operates within the boxes. Radio/X-ray
pulsars (ATNF catalog, http://www.atnf.csiro.au/research/pulsar/psrcat)
are labeled by crosses, while magnetars (McGill catalog,
http://www.physics.mcgill.ca/∼pulsar/magnetar/main.html) are labeled by
solid circles and the two radio magnetars are labeled by solid triangles.
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(with T the surface blackbody temperature) and γm is the Lorentz factor of a

fully-accelerated electron or positron [Eq. (6.3)]. For γ = γm, Eq. (6.18) yields

h >∼ h
(1)
min,ph = 56.9P

1/3
0 R1/3

6 f(βQ)1/3 cm, (6.19)

where

f(βQ) =

√

1 + 2βQ

βQ





2
√

1 + 2βQ − 1

1 + 15βQ

15βQ

− 1



 . (6.20)

For γ = γc we have

h >∼ h
(2)
min,ph = 169R6T6f(βQ) cm. (6.21)

Combining Eqs. (6.19) and (6.21), we find that the condition lph < h leads to

h >∼ hmin,ph = max(h
(1)
min,ph, h

(2)
min,ph) . (6.22)

The resonant cross section for inverse Compton scattering, in the rest frame of

the electron before scattering, is

σ′
res ' 2π2 e

2h̄

mec
δ(ε′ − εBe), (6.23)

where ε′ ∼ γεi. This cross section is appropriate even for Bp > BQ, since the

resonant condition ε′ = εBe holds regardless of field strength (cf. Gonthier et al.

2000). The ambient spectral photon number number density near the polar cap is

dnph

dεi
=
ε2i /(2π

2h̄3c3)

eεi/kT − 1
(6.24)

(assuming a semi-isotropic distribution of photons). For concreteness, consider a

positron produced at z = 0 with initial Lorentz factor γ = 1 and accelerated to

γ = γm after crossing the full gap.1 Neglecting the radiation reaction (see later),

1We can also consider the general situation where a positron (electron) is created at some
location within the gap with initial Lorentz factor much less than γm, travels upwards (down-
wards) across the gap and get accelerated to a final Lorentz factor of order γm. This would give
a similar result for Nph.
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we have γ − 1 = 2(γm − 1)(z/h − z2/2h2). The number of photons upscattered

through resonant ICS by the positron is given by (see Appendix C.2)

Nph '
∫ h

0
dz

∫ ∞

0
dεi

dnph

dεi
σ′

res

' β2
Q

2(γm − 1)

h

a0

∫ γm

1

dγ

γ3 (eεBe/kTγ − 1)

(

1 − γ − 1

γm − 1

)−1/2

' 1

2γm

(

kT

mec2

)2
h

a0

∫ εBe/(kT )

xm

x dx

(ex − 1)(1 − xm/x)1/2
(6.25)

where we have used γm � 1 and

xm =
εBe

γmkT
=

γc

γm

= 1.09 × 10−3h−2
3 P0T

−1
6 . (6.26)

Note that the second equality of Eq. (6.25) gives

dNph

d ln γ
' β2

Q

h

2γma0
γ−2

(

eγc/γ − 1
)−1

(1 − γ/γm)−1/2 . (6.27)

From this equation we see that for γc = εBe/kT <∼ γm, dNph/d ln γ peaks at

γ ∼ γc, with (dNph/d ln γ)γ=γc ∼ Nph, while for γc < γ <∼ γm, dNph/d ln γ is

of order (γc/γ)Nph; for γc >∼ γm, dNph/d ln γ ∼ (γ/γm)Nph peaks at γ ∼ γm.

Therefore, most of the scatterings in the gap are done by electrons/positrons with

γ ∼ min(γc, γm). Since we are interested in the regime εBe/kT � 1, the integral in

the last equality of Eq. (6.25) depends only on xm, and for our purpose it can be

approximated as (π2/6)xm(exm − 1)−1. This approximation reproduces the exact

integral in the xm → 0 limit. Thus we have

Nph,res ' 2.45 × 10−2β−1
Q T

5/2
6 P

1/2
0 F (xm) , with F (xm) =

x3/2
m

exm − 1
. (6.28)

The function F (xm) peaks at xm = 0.874 with Fmax = 0.585. Thus the condition

Nph > λ necessarily requires 1.43 × 10−2β−1
Q T

5/2
6 P

1/2
0

>∼ λ, or

βQ <∼ βQ,crit = 1.43 × 10−2λ−1T
5/2
6 P

1/2
0 . (6.29)
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For a given βQ < βQ,crit, the conditionNph > λ is equivalent to F (x) > 0.585βQ/βQ,crit,

which limits xm to the range xa < xm < xb, where xa,b are determined by solving

F (xm) = 0.585βQ/βQ,crit. This condition then translates to the constraint on h:

hmin,e < h < hmax,e , (6.30)

where

hmin,e = 33x
−1/2
b P

1/2
0 T

−1/2
6 cm , hmax,e = 33x−1/2

a P
1/2
0 T

−1/2
6 cm. (6.31)

In summary, vacuum breakdown involving RICS requires

βQ < βQ,crit and max(hmin,ph, hmin,e) < min(hmax, hmax,e), (6.32)

where βQ,crit, hmax, hmin,ph, hmin,e, hmax,e are given by Eqs. (6.29), (6.5), (6.22)

(note that hmin,ph = 0 for βQ >∼ 4), and (6.31), respectively. In Fig. 6.1 we show the

pulsar death boundary when RICS is most important for initiating a cascade in

the vacuum gap, for the cases λ = 1 and λ = 2, with bd = 1, R6 = 1, and T6 = 5.

Note that in Fig. 6.1 we have not plotted RICS death boundaries for the case of a

dipole radius of curvature (R6 = 100P
1/2
0 ) or a surface temperature T6 <∼ 1; there

are no regions of the P–Ṗ diagram where vacuum gap pair cascades are possible

under these conditions.

The pulsar death boundary depicted in Fig. 6.1 can be understood as follows:

(i) a) The condition h
(1)
min,ph < hmax gives

(Ia) P <∼ 352 b
−3/5
d R−2/5

6 f(βQ)−2/5 s, (6.33)

where f(βQ) is given by Eq. (6.20). This is shown as the long-dashed line labeled

(Ia) in Fig. 6.2. b) The condition h
(2)
min,ph < hmax gives

(Ib) P <∼ 1.99 × 103 b−1
d R−2

6 T−2
6 f(βQ)−2 s. (6.34)
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This is shown as the short-dashed line labeled (Ib) in Fig. 6.2. This set of condi-

tions, (Ia) and (Ib), is the usual requirement that photons emitted by an acceler-

ated electron or positron in the gap must be able initiate pair production. (ii) a) For

βQ � βQ,crit, we have xa ' 0.342 (βQ/βQ,crit)
2, and the condition h

(1)
min,ph < hmax,e

then yields

(IIa) P >∼ 593λ3/2R1/2
6 T−3

6 β
3/2
Q f(βQ)1/2 s. (6.35)

This is shown as the dotted line labeled (IIa) in Fig. 6.2. b) The condition h
(2)
min,ph <

hmax,e yields

(IIb) P >∼ 210λR6T
−1
6 f(βQ) s. (6.36)

This is shown as the dot-long-dashed line labeled (IIb) in Fig. 6.2. This set of

conditions, (IIa) and (IIb), together with βQ <∼ βQ,crit, come from the requirement

for efficient photon emission by RICS in the gap. (iii) The condition hmin,e < hmax

gives

(III) P <∼ 228 b
−1/2
d T

1/2
6 x

1/2
b s, with xb ∼ 0.874 + ln

βQ,crit

βQ
. (6.37)

This condition is shown as the dot-short-dashed line labeled (III) in Fig. 6.2. (iv)

The condition βQ > βQ,crit gives Eq. (6.29) and is shown as the light solid line

labeled (IV) in Fig. 6.2.

Previous studies of the the pulsar death conditions for vacuum gaps where RICS

is the dominant photon emission mechanism have found that the RICS mechanism

can lead to gap breakdown for a wide range of neutron star parameters (see, e.g.,

Zhang et al. 2000). This is contrary to our results, which show (see Figs. 6.1

and 6.2) that RICS is not a good mechanism for gap breakdown, except under

very specific conditions (e.g., high surface temperatures and long rotation periods).

The discrepancy arises because previous works did not calculate/estimate Nph (the

number of high energy photons produced as a positron/electron crosses the gap)
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correctly. For example, it was implicitly assumed that photon production continues

across the entire gap at the same rate as it does when γ ' γc (i.e., at the point

of maximum RICS power loss) (Zhang et al. 2000). This assumption is invalid for

γ > γc, as is discussed above: dNph/d ln γ grows with increasing Lorentz factor

until γ ∼ γc, and then it decreases [see Eq. (6.27)]; therefore, dNph/dγ (which is

directly related to the photon production rate Ṅph) drops faster than γ−1 above

γ ∼ γc.

Note that the accelerating positron/electron is not radiation-reaction limited

at γ ' γc, since the power loss due to RICS is significantly smaller than the power

gain due to traversal across the potential drop. The power loss due to RICS is

given by

Ploss = c
∫ ∞

0
dεi

dnph

dεi
σ′

res(ε− εi) (6.38)

' β2
Qc

a0



1 − 1
√

1 + 2βQ





mec
2

γ2 (eεBe/kTγ − 1)
. (6.39)

At the point of maximum RICS power loss (when γ = γc = εBe/kT )

Ploss(γ = γc) ' c

a0



1 − 1
√

1 + 2βQ





(

kT

mec2

)2

(e− 1)−1mec
2 (6.40)

' 9.3 × 1010



1 − 1
√

1 + 2βQ



T 2
6 mec

2 s−1 (6.41)

(cf. Dermer 1990). The power gain due to acceleration across the gap is given by

Pgain = eE‖c =
2ΩβQ

αa0
(h− z)mec

2 (6.42)

(where alpha = e2/(h̄c) is the fine structure constant). Thus

Pgain

Ploss

∣

∣

∣

∣

γ=γc

' 340

(

h− z

100 cm

)

P−1
0 T−2

6 βQ



1 − 1
√

1 + 2βQ





−1

. (6.43)

For most pulsar parameters, Pgain � Ploss [e.g., in order for γ to reach γc the

gap height must be at least h = 33P
1/2
0 T

−1/2
6 cm; see Eq. (6.26) with xm = 1].
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Therefore, there is no reason why γ should remain near γc, the point of maximum

RICS photon emission, as was assumed in some earlier papers.

Nonresonant inverse Compton scattering (NRICS)

The characteristic energy of a photon Compton-upscattered by an electron or

positron of Lorenz factor γ is ε ∼ γε′/(1 + x), where x = ε′/mec
2, ε′ ∼ γεi,

and εi is the initial seed photon energy; the pitch angle of the scattered photon

is of order θe ∼ (1 + x)/γ. In the vacuum gap, most the scatterings are by elec-

trons/positrons with γ ∼ γm on seed photons with initial energy εi ∼ 2.82kT (see

below). Substituting

ε ∼ γmε
′
m

1 + xm
, with xm =

ε′m
mec2

=
2.82kTγm

mec2
(6.44)

into Eq. (6.11) (which results from the requirement lph < h), we find

γm

2

(

xm

1 + xm

)

βQ

(

h

Rc
+

1 + xm

γm

)

> βQ +
1

15
. (6.45)

Using Eq. (6.3), this becomes

0.0415β
−1/2
Q P

1/2
0 T

−3/2
6 R−1

6

x5/2
m

1 + xm
+ xm > 2

(

1 +
1

15βQ

)

. (6.46)

The gap height is related to xm by

h = 19.7x1/2
m β

−1/2
Q P

1/2
0 T

−1/2
6 cm. (6.47)

The solution to Eq. (6.46) yields xm > xmin, and thus the constraint on the gap

height from lph < h is

h >∼ hmin,ph = 19.7x
1/2
minβ

−1/2
Q P

1/2
0 T

−1/2
6 cm. (6.48)
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Figure 6.2: The pulsar death boundaries when the resonant ICS mechanism is
most important for initiating a cascade, plotted as a function of the dimensionless
magnetic field strength βQ = B/BQ and the period P . The boundaries are shown
for surface temperature T = 5 × 106 K and parameter λ = 1 (the largest, bold,
enclosed region), T = 5 × 106 K and λ = 2 (the mid-sized enclosed region) and
T = 3× 106 K and λ = 1 (the smallest enclosed region). The critical lines defining
the edges of the region for T6 = 5, λ = 1 are also shown. Each critical line (I)–(IV)
is determined by one of Eqs. (6.33)–(6.37) and (6.29), as discussed in Section 6.2.4.
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The nonresonant part of the ICS cross section, in the rest frame of the electron

before scattering, is approximately given by

σ′(ε′) ' σT

(

ε′

ε′ + εBe

)2

fKN(x) = σT

(

x

x + βQ

)2

fKN(x) , (6.49)

where σT is the Thomson cross-section, x = ε′/(mec
2), and

fKN(x) =
3

4

[

1 + x

x3

{

2x(1 + x)

1 + 2x
− ln(1 + 2x)

}

+
1

2x
ln(1 + 2x) − 1 + 3x

(1 + 2x)2

]

(6.50)

is the Klein-Nishina suppression factor [fKN ' 1 − 2x for x � 1 and fKN '

(3/8x)(ln 2x + 1/2) for x � 1]. This agrees well with the calculated NR cross

sections in strong magnetic fields (e.g., Gonthier et al. 2000).

The number of scatterings per unit length by an electron or positron is

dNph

dz
'
∫ ∞

0
dεi

dnph

dεi
σ′(γεi) ∼ 0.12

(

kT

h̄c

)3

σ′(2.82kTγ), (6.51)

where in the second equality we have used the fact that dnph/d ln εi peaks at

εi = 2.82kT , while σ′(ε′) varies more slowly with ε′. Similar to Section 6.2.4,

consider a positron produced at z = 0 with initial Lorentz factor γ = 1 and

accelerated to γ = γm after crossing the full gap. The number of scatterings

produced by the positron is given by

Nph ' h

2γm

∫ γm

1

dγ
√

1 − γ/γm

dNph

dz
. (6.52)

Clearly, most of the scatterings are by positrons/electrons with γ ∼ γm, producing

photons with energy 2.82kTγ2
m/(1 + xm) [see Eq. (6.44)]. The number of photons

scattered by γ = (0.7–1)γm electrons/positrons is

Nph ∼ h

2

(

dNph

dz

)

γ=γm

' 0.059 h

(

kT

h̄c

)3

σT

(

xm

xm + βQ

)2

fKN(xm)

' 6.6 × 10−5β
−1/2
Q T

5/2
6 P

1/2
0 F (xm, βQ), (6.53)
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where

F (xm, βQ) =
x5/2

m

(xm + βQ)2
fKN(xm). (6.54)

Now consider the vacuum breakdown condition Nph > λ. For a given βQ, the

function F (xm, βQ) has a maximum Fmax(βQ) (this maximum is approximately

achieved at xm ∼ 2.24 + 3βQ). Then Nph > λ requires

P >∼ Pcrit(βQ) = 2.3 × 108λ2T−5
6 βQFmax(βQ)−2 s. (6.55)

When this is satisfied, we additionally require

F (xm, βQ)

Fmax(βQ)
>

[

P

Pcrit(βQ)

]−1/2

, (6.56)

which yields the solution xa < xm < xb. In terms of the gap height, we have

hmin,e < h < hmax,e , (6.57)

where

hmin,e = 19.7x1/2
a β

−1/2
Q P

1/2
0 T

−1/2
6 cm, (6.58)

When the neutron star surface temperature T6 ≤ 5 there are no values of βQ or P

for which NRICS can initiate a cascade in the vacuum gap. (Only when T6 >∼ 9

are there any βQ, P values which permit an NRICS-initiated cascade, and even at

these high temperatures the allowed range of βQ and P values is very small and

atypical of neutron stars.) Therefore, no pulsar death boundaries appear for the

NRICS process in Fig. 6.1.
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6.3 Space-charge-limited flow (SCLF) accelerators

6.3.1 Acceleration potential

If charged particles can be freely extracted from the surface such that a vacuum

gap never forms, a SCLF type accelerator develops. In the SCLF gap zone charged

particles fully screen the parallel electric field at the surface but are prevented from

fully screening the electric field at larger heights, due either to magnetic field line

curvatures (as first discussed by Arons & Scharlemann 1979) or relativistic frame

dragging effects (as first discussed by Muslimov & Tsygan (1992)). In the following

analysis we will only consider the effects of frame dragging on the acceleration

potential, because they are typically 50-100 times stronger than any effects due to

field line curvature. For simplicity we will also assume that the pulsars are oriented

with Ω ·Bp > 0, so that electrons, not ions, are accelerated away from the surface.

A general, approximate solution to the SCLF potential due to frame dragging

was given by Muslimov & Tsygan (1992). We will adopt a simplified potential for

our analysis (cf. Hibschman & Arons 2001a):

At low altitudes the potential as a function of height h is

Φ ' 3κgΩBp

2c

(

ΩR

c

)1/2

h2, (6.59)

where

κg =
2GI

c2R3
' 0.15 . (6.60)

Note that we will use κg = 0.15 throughout this chapter. At high altitudes the

potential becomes

Φ ' κgΩ
2BpR

3

2c2

(

1 − η−3
)

' 3κgΩ
2BpR

2

2c2
h, (6.61)
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where η = r/R and the second equality is valid for h � R. These potentials

intersect at h ' rp ' R
√

ΩR/c, or at a Lorentz factor of

γ1 =
e∆Φ(rp)

mec2
= 3.70 × 106βQP

−5/2
0 . (6.62)

With the high altitude potential, the electrons and positrons can be accelerated to

a Lorentz factor

γ(h) =
e∆Φ

mec2
= 2.56 × 105βQh3P

−2
0 (6.63)

for h� R. The maximum potential drop is

∆Φmax =
κgΩ

2BpR
3

2c2
, (6.64)

and the maximum Lorentz factor is

γmax =
e∆Φ

mec2
= 8.53 × 107βQP

−2
0 . (6.65)

In this chapter we use the following simplified potential model: Φ is given by

Eq. (6.59) for h < rp and given by the second equality of Eq. (6.61) for rp < h <

hmax. Therefore we have

hmax =
R

3
. (6.66)

The above formulae do not take into account the boundary conditions at the

“pair formation front”, the height at which the multiplicity of pairs produced is

enough to screen the potential (the point of gap breakdown). The parallel electric

field must be zero at this height, which can significantly reduce the strength of

the accelerating electric field as a function of height (analogous to Eq. 6.1 of the

vacuum gap case). In the following analysis, we will not consider this complication.
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6.3.2 Requirements for gap breakdown

The requirements for the breakdown of a SCLF gap are the same as for a vacuum

gap [see Eqs. (6.6) and (6.7)], except that the minimum number of photons that

must be produced per particle is approximately 0.1: at large height the charge

deficit between the actual magnetosphere density and the Goldreich-Julian charge

density is of order κg ' 0.15 (see, e.g., Hibschman & Arons 2001b); to screen

the gap enough photons must be created that the charged particles they decay

into can account for this deficit. For our analysis of SCLF death boundaries we

adopt the more stringent requirement λ = 1. In our analysis of the full cascade

(see Chapter 7) we have found that ICS-initiated cascades produce an extremely

low multiplicity of secondary particles, making this more stringent requirement

a necessity [while for curvature radiation-initiated cascades so many photons are

produced per primary particle that Eq. (6.7) is non-binding for either λ = 0.1 or

λ = 1].

6.3.3 Pair production

The physics of photon decay into pairs is independent of the acceleration model

used, and so the pair production equations from our vacuum gap model [Eqs. (6.8)–

(6.11)] apply here as well. Because the relevant heights are restricted to be less

than hmax = R/3, the variation of βQ as a function of height can be neglected here

and in the following analysis.

Note that regardless of photon energy and magnetic field strength, Eq. (6.11)

as written can always be solved with a large enough value of h; but if the equation
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is replaced by its h >∼ R equivalent (with the substitution βQ → βQη
−3)

ε

2mec2
βQ(1 + h/R)−3 h

Rc

>∼
1

15
[1 + 15βQ(1 + h/R)−3] , (6.67)

this does not work — if Eq. (6.67) is not true for h ' R/2, it will not be true

for any value of h (cf. Hibschman & Arons 2001b). This lends validity to our

semi-arbitrary choice of hmax = R/3 [Eq. (6.66)].

6.3.4 Photon emission multiplicity and the pulsar death

boundary

There are several possible photon emission mechanisms operating in the SCLF

breakdown, each leading to a different death boundary. We consider them sepa-

rately.

Curvature radiation (CR)

The characteristic energy of a photon emitted through curvature radiation is

ε ∼ (3/2)γ3h̄c/Rc = 7.95 × 104β3
Qh

3
3P

−6
0 R−1

6 eV, where we have used γ ∼ γ(h)

[Eq. (6.63)]. The low altitude maximum Lorentz factor, γ1 [Eq. (6.62)], is unim-

portant here. The emission angle is θe ∼ γ−1, which is typically much less than

h/Rc (this can be easily checked a posteriori). Equation (6.11) then reduces to

h > hmin,ph = 3.42 × 103P
3/2
0 R1/2

6

(15βQ + 1)1/4

βQ

cm. (6.68)

The rate of energy loss of an electron or positron emitting curvature radiation is

PCR = 2e2γ4/(3c3)(c2/Rc)
2, thus the number of photons emitted through curvature
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radiation by a single electron or positron across the gap is

Nph ' PCR

ε

h

c
' 4

9

e2

h̄c

γh

Rc

= 0.830βQh
2
3P

−2
0 R−1

6 . (6.69)

The condition Nph > λ [Eq. (6.7)] then gives

h >∼ hmin,e = 1.10 × 103λ1/2β
−1/2
Q P0R1/2

6 cm. (6.70)

Thus the minimum gap height required for vacuum breakdown is h ' max(hmin,ph, hmin,e).

Combining Eqs. (6.66), (6.68), and (6.70), we have

max(hmin,ph, hmin,e) < hmax. (6.71)

This gives a necessary condition for pulsar emission and defines the pulsar “death

line”. For all relevant parameter regimes, hmin,ph > hmin,e, and Eq. (6.71) simply

becomes hmin,ph < hmax. The critical pulsar spin period is then

Pcrit = 1.70 b
2/3
d B

2/3
12 R−1/3

6 (1 + 15βQ)−1/6 s, (6.72)

where the dipole polar field is B12 = 2.0(P0Ṗ15)
1/2, with Ṗ15 = Ṗ /(10−15 s s−1).

In Fig. 6.3 we show the pulsar death boundary when curvature radiation is most

important for initiating a cascade in the SCLF gap.

Resonant inverse Compton scattering (RICS)

The characteristic photon energy after resonant scattering is

ε = γ



1 − 1
√

1 + 2βQ



mec
2, (6.73)

with typical emission angle θe ∼ 1/γe. The condition lph < h [see Eq. (6.6)]

becomes

γ

2



1 − 1
√

1 + 2βQ



βQ





h

Rc
+

√

1 + 2βQ

γ



 >∼ βQ +
1

15
. (6.74)
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For βQ >∼ 4 this condition is automatically satisfied, i.e., resonant ICS photons pair

produce almost immediately upon being upscattered. For βQ < 4, Eq. (6.74) puts a

constraint on the gap height h. As we shall see below, most of the scatterings in the

gap are done by electrons/positrons with γ ∼ min(γc, γ(h)), where γc = εBe/kT

(with T the surface blackbody temperature) and γ(h) is the Lorentz factor of

a fully-accelerated electron or positron [Eq. (6.63)]. Note that the low altitude

maximum gamma factor, γ1 [Eq. (6.62)], does not enter here. For γ(h) < γc,

Eq. (6.74) yields

h >∼ h
(1)
min,ph = 62.5P0R1/2

6 f(βQ)1/2 cm, (6.75)

where

f(βQ) =

√

1 + 2βQ

βQ





2
√

1 + 2βQ − 1

1 + 15βQ

15βQ
− 1



 . (6.76)

For γ(h) > γc we have

h >∼ h
(2)
min,ph = 169R6T6f(βQ) cm. (6.77)

Combining Eqs. (6.75) and (6.77), we find that the condition lph < h leads to

h >∼ hmin,ph = max(h
(1)
min,ph, h

(2)
min,ph) . (6.78)

The resonant cross section for inverse Compton scattering, in the rest frame of

the electron before scattering, is

σ′
res ' 2π2 e

2h̄

mec
δ(ε′ − εBe), (6.79)

where ε′ ∼ γεi. This cross section is appropriate even for Bp > BQ, since the

resonant condition ε′ = εBe holds regardless of field strength. The ambient spectral

photon number number density near the polar cap is

dnph

dεi
=
ε2i /(2π

2h̄3c3)

eεi/kT − 1
(6.80)
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(assuming a semi-isotropic distribution of photons). For concreteness, consider an

electron produced at z = 0 with initial Lorentz factor γ = 1 and accelerated to

γ = γmax after reaching height hmax. Neglecting the radiation reaction (see later),

we have

γ − 1 = (γ1 − 1)
h2

h2
1

, h < h1 ≡ rp , (6.81)

γ − γ1 = (γmax − γ1)
h− h1

hmax − h1

, h1 < h < hmax . (6.82)

The number of photons upscattered through resonant ICS by the electron is given

by

Nph '
∫ hmax

0
dz

∫ ∞

0
dεi

dnph

dεi
σ′

res

' β2
Q

2(γ1 − 1)

rp

a0

∫ γ1

1

dγ

γ3 (eεBe/kTγ − 1)

√

γ1 − 1

γ − 1

+
β2

Q

(γmax − γ1)

hmax − h1

a0

∫ γmax

γ1

dγ

γ3 (eεBe/kTγ − 1)
, (6.83)

where we have used γ1, γmax � 1. Defining

x =
εBe

γkT
, (6.84)

x1 =
εBe

γ1kT
=
γc

γ1
= 1.61 × 10−3P

5/2
0 T−1

6 , (6.85)

xm =
εBe

γmaxkT
=

γc

γmax

= 6.97 × 10−5P 2
0 T

−1
6 , (6.86)

we have

Nph ' 1

2γ1
√
x1

(

kT

mec2

)2
rp

a0

∫ εBe/(kT )

x1

x3/2 dx

(ex − 1)
+

1

γmax

(

kT

mec2

)2
hmax

a0

∫ x1

xm

x dx

(ex − 1)
.

(6.87)

Note that only one of these terms will actually matter; if γc <∼ γ1, the first term

will be important, and if γc >∼ γ1 [which only occurs for large periods and low

temperatures; see Eq. (6.85)], the second term will be important. Since we are

interested in the regime γc = εBe/kT � 1, the first integral in Eq. (6.87) depends

only on x1, and for our purpose it can be approximated as 3
√

π
4
ζ
(

5
2

)

x1(e
x1−1)−1 '
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1.783x1(e
x1 − 1)−1. Also, for γc � γ1, the second integral in Eq. (6.87) depends

only on xm, and for our purpose it can be approximated as (π2/6)xm(exm − 1)−1.

These approximations reproduce the exact integrals in the x1, xm → 0 limit. Thus

we have

Nph,res ' 0.465β−1
Q T

5/2
6 P

1/2
0 F (x1)+0.0344β−1

Q T 2
6P

2
0F (xm) , with F (x) =

x

ex − 1
.

(6.88)

Thus the condition Nph > λ necessarily requires

βQ <∼ βQ,crit = 0.465λ−1T
5/2
6 P

1/2
0 F (x1) + 0.0344λ−1T 2

6P
2
0F (xm) . (6.89)

In summary, RICS-initiated cascades are possible only when

βQ < βQ,crit and hmin,ph < hmax, (6.90)

where βQ,crit, hmax, hmin,ph are given by Eqs. (6.89), (6.66), and (6.78) (note that

hmin,ph = 0 for βQ >∼ 4), respectively. In Fig. 6.3 we show the pulsar death boundary

when RICS is most important for initiating a cascade in the SCLF gap.

The pulsar death boundary depicted in Fig. 6.3 can be understood as follows:

(i) a) The condition h
(1)
min,ph < hmax gives

P <∼ 5.33 × 103 R−1/2
6 f(βQ)−1/2 s; (6.91)

for a dipole field curvature (R6 ' 100P
1/2
0 ) this is

(Ia) P <∼ 152 f(βQ)−2/5 s, (6.92)

where f(βQ) is given by Eq. (6.76). This is shown as the short-dashed line labeled

(Ia) in Fig. 6.4. b) The condition h
(2)
min,ph < hmax gives

f(βQ) <∼ 1.97 × 103 R−1
6 T−1

6 ; (6.93)
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for a dipole field curvature this is

(Ib) P <∼ 388T−2
6 f(βQ)−2. (6.94)

This is shown as the dotted line labeled (Ib) in Fig. 6.2. This set of conditions, (Ia)

and (Ib), is the usual requirement that photons emitted by an accelerated electron

or positron in the gap must be able initiate pair production. (ii) The condition

Nph > λ or βQ > βQ,crit gives Eq. (6.89). To show the contribution of the low

altitude region versus the high altitude region to the total photon multiplicity, this

requirement has been divided into two conditions,

(IIa) βQ <∼ βQ,low = 0.465λ−1T
5/2
6 P

3/4
0 F (x1) , (6.95)

which is shown as the light solid line labeled (IIa) in Fig. 6.4, and

(IIb) βQ <∼ βQ,high = 0.0344λ−1T 2
6 P

2
0F (xm) , (6.96)

which is shown as the long-dashed line labeled (IIb) in Fig. 6.4 [see Eq. (6.89)].

Note that in the SCLF model the accelerating electron/positron can be radiation-

reaction limited at γ ' γc for some pulsar parameters: The power loss due to RICS

is given by

Ploss = c
∫ ∞

0
dεi

dnph

dεi
σ′

res(ε− εi) (6.97)

' β2
Qc

a0



1 − 1
√

1 + 2βQ





mec
2

γ2 (eεBe/kTγ − 1)
. (6.98)

At the point of maximum RICS power loss (when γ = γc = εBe/kT )

Ploss(γ = γc) ' c

a0



1 − 1
√

1 + 2βQ





(

kT

mec2

)2

(e− 1)−1mec
2 (6.99)

' 9.3 × 1010



1 − 1
√

1 + 2βQ



T 2
6 mec

2 s−1 . (6.100)
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The power gain due to acceleration across the gap is given by

Pgain = eE‖c =
3κgΩβQ

αa0

√

ΩR

c
z mec

2 (6.101)

for γ < γ1, or

Pgain = eE‖c =
3κgΩRβQ

2αa0

(

ΩR

c

)

mec
2 (6.102)

for γ > γ1. Since z(γc) = x
1/2
1 rp = 788T

−1/2
6 P

3/4
0 cm, we have

Pgain

Ploss

∣

∣

∣

∣

γ=γc

' 8.8P
−3/4
0 T

−5/2
6 βQ



1 − 1
√

1 + 2βQ





−1

, (6.103)

for P0 < 6.96T
1/3
6 , or

Pgain

Ploss

∣

∣

∣

∣

γ=γc

' 80P−2
0 T−2

6 βQ



1 − 1
√

1 + 2βQ





−1

. (6.104)

for P0 > 6.96T
1/3
6 . For most pulsar parameters, Pgain � Ploss. But for large

P, T (P >∼ 5 s or T >∼ 3 × 106 K), Pgain <∼ Ploss. In these cases, the accelerating

particle will be radiation-reaction limited and will remain near the point of max-

imum RICS photon emission for an extended length of time. Incorporating the

radiation-reaction effect into our model would change our results (Fig. 6.3) very

little, however, as most pulsars with parameters conducive to this effect already

satisfy Nph > λ [Eq. (6.7)].

Nonresonant inverse Compton scattering (NRICS)

The characteristic energy of a photon Compton-upscattered by an electron or

positron of Lorenz factor γ is ε ∼ γε′/(1 + x), where x = ε′/mec
2, ε′ ∼ γεi,

and εi is the initial seed photon energy; the pitch angle of the scattered photon

is of order θe ∼ (1 + x)/γ. In the SCLF gap, most the scatterings are by elec-

trons/positrons with γ ∼ γ(h) on seed photons with initial energy εi ∼ 2.82kT .
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Figure 6.3: Death boundaries for the SCLF model, at Rc = R, T6 = 5 and Rc =
108P

1/2
0 , T6 = 1. The upper panel is for cascades initiated by curvature radiation,

the middle for cascades initiated by RICS, and lower for cascades initiated by
NRICS. All boundaries have λ = 1 except the Rc = 108P

1/2
0 , T6 = 1 boundary for

the NRICS (bottom) panel, which has λ = 0.1 (because there are no allowed P–Ṗ
values for λ = 1 in this case).
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Figure 6.4: The pulsar death boundaries for the SCLF model, when the resonant
ICS mechanism is most important for initiating a cascade, plotted as a function
of the dimensionless magnetic field strength βQ = B/BQ and the period P . The
boundaries are shown for surface temperature T = 1 × 106 K, dipole curvature
(R6 = 100P

1/2
0 ), and parameter λ = 1 (the bold, enclosed region). Each critical

line (Ia)–(IIb) is determined by one of Eqs. (6.92), (6.94), and (6.89).
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Substituting

ε ∼ γ(h)ε′m
1 + xm

, with xm =
ε′m
mec2

=
2.82kTγ(h)

mec2
(6.105)

into Eq. (6.6) (which results from the requirement lph < h), we find

γ(h)

2

(

xm

1 + xm

)

βQ

(

h

Rc
+

1 + xm

γ(h)

)

> βQ +
1

15
. (6.106)

Using Eq. (6.63) (again, γ1 doesn’t matter here), this becomes

0.0174β−1
Q P 2

0 T
−2
6 R−1

6

x3
m

1 + xm
+ xm > 2

(

1 +
1

15βQ

)

. (6.107)

The gap height is related to xm by

h = 8.23xmβ
−1
Q P 2

0 T
−1
6 cm. (6.108)

The solution to Eq. (6.107) yields xm > xmin, and thus the constraint on the gap

height from lph < h is

h >∼ hmin,ph = 8.23xmβ
−1
Q P 2

0 T
−1
6 cm. (6.109)

The nonresonant part of the ICS cross section, in the rest frame of the electron

before scattering, is approximately given by

σ′(ε′) ' σT

(

ε′

ε′ + εBe

)2

fKN(x) = σT

(

x

x + βQ

)2

fKN(x) , (6.110)

where σT is the Thomson cross-section, x = ε′/(mec
2), and

fKN(x) =
3

4

[

1 + x

x3

{

2x(1 + x)

1 + 2x
− ln(1 + 2x)

}

+
1

2x
ln(1 + 2x) − 1 + 3x

(1 + 2x)2

]

(6.111)

is the Klein-Nishina suppression factor [fKN ' 1 − 2x for x � 1 and fKN '

(3/8x)(ln 2x + 1/2) for x � 1]. This agrees well with the calculated NR cross

sections in strong magnetic fields.
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The number of scatterings per unit length by an electron or positron is

dNph

dz
'
∫ ∞

0
dεi

dnph

dεi
σ′(γεi) ∼ 0.12

(

kT

h̄c

)3

σ′(2.82kTγ), (6.112)

where in the second equality we have used the fact that dnph/d ln εi peaks at

εi = 2.82kT , while σ′(ε′) varies more slowly with ε′. Similar to the RICS section,

consider a positron produced at z = 0 with initial Lorentz factor γ = 1 and

accelerated to γ = γ(h) after crossing the full gap. The number of scatterings

produced by the positron is given by

Nph ' rp

2γ1

∫ γ1

1

dγ
√

γ/γ1

dNph

dz
+
hmax

γmax

∫ γmax

γ1

dγ
dNph

dz
. (6.113)

As with the vacuum gap case, these integrals are well-fit (i.e., within a factor of

a few) over the relevant γ range (up to ∼ 106) by γ
dNph

dz
. (We can treat

dNph

dz

as approximately constant over the drop.) In this approximation both the low-

altitude and high-altitude terms have the same form, within a factor of two, so

they can be combined. We then have that the number of photons scattered by

high-energy electrons/positrons is

Nph ∼ h

2

(

dNph

dz

)

γ=γ(h)

' 0.059 h

(

kT

h̄c

)3

σT

(

xm

xm + βQ

)2

fKN(xm)

' 2.7 × 10−5β−1
Q T 2

6P
2
0 xmF (xm, βQ), (6.114)

where

F (xm, βQ) =
x2

m

(xm + βQ)2
fKN(xm). (6.115)

Using Nph > λ and

xmax = xm(hmax) = 4.05 × 104βQP
−2
0 T6 (6.116)

(since Nph increases with h), we obtain the photon multiplicity requirement for

NRICS-dominated cascades:

F (xmax, βQ) >∼ 0.914λT−3
6 . (6.117)
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In Fig. 6.3 we show the pulsar death boundary when RICS is most important

for initiating a cascade in the SCLF gap.

The pulsar death boundary depicted in Fig. 6.3 can be understood as follows:

(i) a) Eq. (6.107) places a lower bound on xm, so to obtain a boundary condition

from this equation we can set xm = xmax [Eq. (6.116)]. For xmax � 1 Eq. (6.107)

can be written

0.0174β−1
Q P 2

0 T
−2
6 R−1

6 x2
max

>∼ 2

(

1 +
1

15βQ

)

. (6.118)

The condition hmin,ph < hmax then gives

P <∼ 1.46 × 104 R−1/2
6

βQ
√

15βQ + 1
s; (6.119)

for a dipole field curvature (Rc ' 100P
1/2
0 ) this is

(Ia) P <∼ 340

(

β2
Q

15βQ + 1

)2/5

s. (6.120)

This is shown as the short-dashed line labeled (Ia) in Fig. 6.5. b) For xmax ∼ 1

Eq. (6.107) can be written

xmax >∼ 2

(

1 +
1

15βQ

)

. (6.121)

The condition hmin,ph < hmax then gives

(Ib) P <∼ 551T
1/2
6

βQ
√

15βQ + 1
s, (6.122)

This is shown as the dotted line labeled (Ib) in Fig. 6.5. This set of conditions, (Ia)

and (Ib), is the usual requirement that photons emitted by an accelerated electron

or positron in the gap must be able initiate pair production.

(ii) The condition Nph > λ gives Eq. (6.117). For T6 ∼ 1-5, λ ∼ 0.1-1 we have

F (xmax, βQ) >∼ 0.005–0.05. In this range we can use the approximation fKN(xmax) ∼
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Figure 6.5: The pulsar death boundaries for the SCLF model, when the non-
resonant ICS mechanism is most important for initiating a cascade, plotted as a
function of the dimensionless magnetic field strength βQ = B/BQ and the period
P . The boundaries are shown for surface temperature T = 1 × 106 K, dipole
curvature (R6 = 100P

1/2
0 ), and parameter λ = 0.1 (the bold, enclosed region).

Each critical line (Ia)–(II) is determined by one of Eqs. (6.120), (6.122), and
(6.123). (Note that there are no allowed regions for NRICS-dominated cascades

when T6 = 1,R6 = 100P
1/2
0 for λ >∼ 0.3.)

1.1x−6/7
max . We then have the condition

(II) βQ <∼ 3.06 × 10−5λ−7/6 P 2
0 T

5/2
6

(1 + 2.47 × 10−5P 2
0 T

−1
6 )7/3

. (6.123)

which is shown as the light solid line labeled (II) in Fig. 6.5.

Previous studies of the the pulsar death conditions for SCLF gaps where RICS

or NRICS is the dominant photon emission mechanism have found that these

mechanisms can lead to gap breakdown for a wide range of neutron star parameters

(see, e.g., Zhang et al. 2000; Hibschman & Arons 2001a; Harding & Muslimov

203



2002). This is contrary to our results, which show (see Figs. 6.3, 6.4, and 6.5)

that RICS and NRICS, while more relevant than in the vacuum gap case, are not

good mechanisms for gap breakdown except under specific conditions (e.g., high

surface fields and temperatures for RICS and long rotation periods for NRICS).

There are a variety of reasons for the discrepancies, as no two models take the

same approach or yield the same results; in most cases, however, the discrepancies

can be traced to the previous work ignoring or miscalculating the second gap

breakdown condition, Eq. 6.7. For example, in some works the total number of

photons produced as an electron/positron crosses the gap is greatly overestimated

(as discussed in Section 6.2; see (Zhang et al. 2000; Harding & Muslimov 2002)).

Hibschman & Arons (2001a) find, as we do, that RICS is a very ineffective method

for gap breakdown unless B >∼ 1013 G. However, they find a large region of

effectiveness for NRICS that we do not find, because they rely on the secondary

cascade of synchrotron radiation to provide the necessary photon multiplicity λ.

As we will discuss in Chapter 7, such a cascade will either: result in a very low

final plasma density (as is pointed out in Hibschman & Arons 2001b); or, for

B >∼ 3×1012 G, not occur, because the synchrotron emission process is suppressed.

6.4 Discussion

We have considered the conditions for pair cascades in two inner acceleration gap

models, the vacuum gap model and the space-charge-limited-flow gap model. Our

results from Chapter 5 show that while SCLF accelerators operate in most pulsars,

a vacuum gap may form above the polar caps of some pulsars. In addition, even

if a vacuum gap cannot form due to heavy bombardment of the cap, a partially

screened gap may form instead (Gil et al. 2003, 2006). With small modifications
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[e.g., the potential drop given by Eq. (6.2) is reduced], our discussion of pair

cascades in the vacuum gap can be easily generalized to the case of a partially

screened gap.

In the vacuum gap case (Section 6.2) we find that pair cascades initiated by

curvature radiation can account for most pulsars in the P–Ṗ diagram, but signif-

icant field line curvature near the stellar surface is needed. Although such field

curvature is possible for some pulsars, it is unlikely to occur for all of them. For

a pure dipole magnetic field, only about half of all pulsars can be explained by

a curvature radiation-initiated cascade. Contrary to previous works (e.g., Zhang

et al. 2000), we find that inverse Compton scatterings (resonant or not) are not

efficient in producing vacuum breakdown via pair cascade.

We obtain similar results in the SCLF gap case (Section 6.3). The death lines

for cascades initiated by curvature radiation have nearly the same shape and po-

sition on the P–Ṗ diagram as in the vacuum gap case, both for dipole and for

stronger field line curvatures. While such cascades can account for most pulsars,

cascades initiated by resonant inverse Compton scatterings can only account for

pulsars with high surface fields and temperatures, and cascades initiated by non-

resonant inverse Compton scatterings can only account for the very oldest (non-

recycled) pulsars.

For both our vacuum gap and SCLF gap models there are regions of the P–Ṗ

diagram where gap breakdown via pair cascade is possible but no pulsars have been

observed (see Figs. 6.1 and 6.3). These occur at long rotation periods, for gaps

where RICS or NRICS is the dominant photon emission mechanism. It may be that

pulsars do exist with these parameters (rotation periods longer than 10 seconds),

but that because of their long periods they are too difficult to observe. More likely,
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however, is that gap breakdown occurs but the resulting pair plasma is too diffuse

to generate coherent radio emission; as will be discussed in Chapter 7, cascades

initiated by inverse Compton scatterings produce an extremely low multiplicity of

secondary particles.

The recent detection of the radio emission from two AXPs (Camilo et al. 2006,

2007) is of great interest. The emission appears to be triggered by X-ray outbursts

of usually quiescent magnetars. This may be due to a rearrangement of the surface

magnetic field, which makes pair cascades possible. We note that the occurrence

of pair cascades depends strongly on the field line geometry/curvature; our study

of pair cascades in the context of inner gap accelerators serves as an illustration of

this point.
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CHAPTER 7

PAIR CASCADES IN PULSAR MAGNETOSPHERES: PLASMA

DISTRIBUTIONS AND PHOTON SPECTRA

7.1 Introduction

The pair cascade in the magnetosphere of a pulsar has long been considered an es-

sential ingredient for its nonthermal emission, from radio to gamma ray (Sturrock

1971; Ruderman & Sutherland 1975; Melrose 2004; Thompson 2004; Wang & Lai

2007). The pair cascade involves several steps: (i) acceleration of primary particles

by an electric field parallel to the magnetic field; (ii) gamma ray emission by the

accelerated particles moving along the magnetic field lines (either by curvature

radiation or inverse Compton upscattering of surface photons); (iii) photon decay

into electron-positron pairs as the angle between the photon and the field line be-

comes sufficiently large; (iv) gamma ray emission by the newly-created particles

as they lose their transverse energy through synchrotron emission; (v) further pair

production and gamma ray emission via steps iii and iv. In Chapter 6 we investi-

gated the magnetosphere acceleration zone (“gap”) where the cascade originates,

and derived the conditions of cascade-induced gap breakdown and the related pul-

sar death boundary. In this chapter we present simulations of the full pair cascade

from onset to completion, using the results of Chapter 6 to estimate the inputs

for the cascade simulation (e.g., initial particle energy). We use our simulation

to generate the spectra of the final photons and the energy distribution of the

secondary plasma produced by the cascade. Additionally, we use our simulation

to further constrain the pulsar death boundaries derived in Chapter 6. For exam-

ple, for a particular neutron star enough pairs may be produced in the polar cap
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acceleration zone such that the accelerating electric field is screened (step iii of

the cascade). However, if these pairs are too weak to sustain the cascade through

high-energy synchrotron emission (step iv), the secondary plasma density will be

too small to generate coherent radio emission. According to the gap breakdown

criteria of Chapter 6 only, such a neutron star would be erroneously classified as a

“live” pulsar.

There have been only a few publications devoted to full simulations of the

pair cascade in pulsar magnetospheres. For moderate-strength magnetospheres

(B <∼ 3 × 1012 G), significant progress has been made. Daugherty & Harding

(1982) present numerical simulations of cascades initiated by electrons emitting

photons through curvature radiation, for a dipole magnetic field geometry with

field strengths up to B = 5 × 1012 G and rotation periods P = 0.033-1 s; Daugh-

erty & Harding (1996) present simulations of the gamma ray emission from the

entire pulsar cap, using a simplified acceleration model and for Vela-like pulsar

parameters (B = 3 × 1012 G and P = 0.089 s). Sturner, Dermer, & Michel (1995)

present a similar simulation to that of Daugherty & Harding, but for cascades

initiated by electrons upscattering photons through the inverse Compton process

(again for Vela-like parameters). Hibschman & Arons (2001b) develop a semi-

analytic model of the cascade, both for curvature radiation-initiated and inverse

Compton scattering-initiated cascades, applicable for B <∼ 3 × 1012 G. Cascades

occurring in the outer magnetosphere, due to “outer gap” accelerators (Cheng et

al. 1986), have also been simulated, by Romani (1996) for Vela- and Crab-like

(B = 4 × 1012 G and P = 0.033 s) parameters.

However, for superstrong magnetospheres (B >∼ BQ = 4.414 × 1013 G) only

limited aspects of the full cascades have been studied. For example, Arendt &
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Eilek (2002) simulate the cascade for B ≤ 1013 G and P = 0.033 s (for both

a pure dipole and a more complex field geometry), but with the simplification

that all photons radiated by the primary particle are emitted from the surface.

Baring & Harding (2001) (see also Harding, Baring, & Gonthier 1997) use this

same simplification to study the effects of photon splitting on the cascade for field

strengths up to B = 2 × 1014 G.

Motivated by this lack of full cascade results for the superstrong field regime,

and in light of the unexplained differences between the observed emission prop-

erties of high-field radio pulsars and magnetars (see Chapter 6), we simulate the

full pair cascade for magnetic field strengths up to 1015 G. In our simulation we

consider several important factors that affect high-field cascades, including photon

splitting, pair creation in low Landau levels, photon polarization modes (⊥ or ‖),

and resonant inverse Compton scattering. The outline of the chapter is as follows.

In Section 7.2 we summarize the relevant results of our magnetosphere acceleration

model (see Sections 6.2 and 6.3; see also Medin & Lai 2007b). In Section 7.3 we de-

scribe the numerical simulation we use to generate plasma distributions and photon

spectra. Both electron/positron- and photon-initiated cascades are discussed. In

Section 7.4 we present our results for a wide range of parameters (surface magnetic

fields B = 1012 G, rotation periods 0.033-5 s, surface temperatures T = 106 K and

5×106 K, and pure dipole and more complex field geometries). Our results suggest

that pulsar death boundaries are actually far smaller than derived in Chapter 6,

particularly for cascades initiated by resonant and nonresonant inverse Compton

scattering. Our results also show that photon splitting, while important for the

suppression of synchrotron emission near the stellar surface, has very little effect

on the overall pair cascade. This is a qualitatively different result than was pre-

viously found (e.g., Baring & Harding 2001), which arises because previous works
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ignored the contributions of high-altitude photon emission and pair production to

the final cascade spectra. We conclude this chapter in Section 7.5. Some technical

details (on our treatment of inverse Compton scattering, attenuation coefficients

for pair creation, and electron levels) are given in Appendix D.

7.2 Acceleration models for the primary particle

In Chapter 6 we described the conditions for cascade-induced gap breakdown, both

for vacuum and space-charge-limited-flow (SCLF) accelerators (see Section 6.2 and

Section 6.3, respectively). For each gap model we derived the minimum condition

for initiating pair cascades, when the dominant mechanism for photon emission was

curvature radiation, resonant inverse Compton scattering (RICS), or nonresonant

inverse Compton scattering (NRICS). We adapt these results for use as input

parameters in our cascade simulation.

In our cascade simulation (described in Section 7.3) we do not include an actual

acceleration region. Instead, we model the effect of this region by giving the

primary electron1 (the electron that initiates the cascade) a large initial energy

(Lorentz factor) γ0. Ideally the value we should use for γ0 in our simulation is the

energy the electron would have obtained if it had crossed the entire gap, γm (see

Sections 6.2 and 6.3). This parameter is shown in Fig. 7.1 for SCLF accelerators;

we do not show our results of γm for vacuum gap accelerators, as they are either

within a factor of three of the SCLF values (for curvature radiation-dominated

cascades) or irrelevant (for RICS- and NRICS-dominated cascades, since these

types of cascades lead to few or no “live” pulsars in the vacuum gap model). Note

1For simplicity we will assume that the pulsar is aligned such that Ω ·Bp > 0.
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Figure 7.1: SCLF Lorentz factor contours for cascades initiated by curvature ra-
diation (top), RICS (middle), and NRICS (bottom), for a dipole radius of cur-
vature and warm surface (T6 = 1) (left) and a multipole radius of curvature
(Rc = R ' 10 km) and hot surface (T6 = 5) (right). The light solid lines in
the middle and bottom panels show the RICS and NRICS death boundaries for
the conditions given (as derived in Sections 6.2 and 6.3).
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that we do not always use γ0 = γm in our simulation (we often want to compare

cascade results when only one parameter, such as magnetic field strength, has

changed), but we use γ0 ∼ γm whenever appropriate.

For RICS-initiated cascades, the primary electron makes very little contribution

to the total cascade once it has reached full energy, γm. Instead, most of the

first generation of cascade photons are upscattered by the primary electron when

γ ∼ γc = εBe/kT . Therefore, we get a better picture of the final spectra by

starting the simulation with a single photon rather than a single electron. The

appropriate initial parameter for the simulation of RICS-initiated cascades is the

typical energy of a photon upscattered by the primary electron, given by [Eq. (6.73)

of Section 6.3.4 with γ = γc = εBe/kT ]:

ε0 = βQ



1 − 1
√

1 + 2βQ





(

mec
2

kT

)

mec
2 , (7.1)

where βQ = Bp/BQ. In order to compare the relative strength of this cascade to the

cascade initiated by a single electron (as occurs in the curvature radiation case),

we must multiply the results (the total number and energy distributions of the

photons and electrons) by the number of first-generation photons produced by the

primary electron. This is given by Eqs. (6.85), (6.86), and (6.88) of Section 6.3.4:

Nph,res ' 0.465β−1
Q T

5/2
6 P

1/2
0 F (x1)+0.0344β−1

Q T 2
6P

2
0F (xm) , with F (x) =

x

ex − 1
,

(7.2)

where P0 is the spin period in units of 1 s, T6 = T/(106 K), x1 = 1.61×10−3P
5/2
0 T−1

6 ,

and xm = 6.97 × 10−5P 2
0 T

−1
6 .
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7.3 Simulation of the pair cascade: Physics ingredients and

methods

The general picture of our cascade simulation is sketched in Fig. 7.2. At the start

of the simulation, an electron with initial Lorentz factor γ0 ∼ 107 travels outward

from the stellar surface along the last open field line. As it travels it emits high-

energy photons through curvature radiation or inverse Compton upscattering. The

simulation tracks these photons as they propagate from the point of emission out

through the magnetosphere, until they decay into electron-positron pairs through

magnetic pair production or escape to infinity. In the superstrong field regime, the

photon (if it has the correct polarization; see later) also has a finite probability

of splitting into two photons before pair production, in which case we follow the

two daughter photons in a similar way. The electron-positron pairs created by

these photons are tracked as they radiate away their transverse momenta through

synchrotron radiation and then gradually lose their forward momenta through

inverse Compton scattering (ICS). Subsequent generations of photons and pairs

are also tracked, in a recursive manner, and the total numbers and energies of

photons and pairs that escape the magnetosphere are recorded. We track the pairs

and the photons until they reach a height comparable to the light cylinder radius;

while in general there is no discernible pair production above r ∼ 10R, where r

is the altitude of the cascade (measured from the center of the star) and R is the

stellar radius, curvature radiation continues up to very high altitudes (albeit very

weakly, with ε <∼ 10 MeV near the light cylinder).

Note that we use a simplified treatment of the acceleration region (see Chap-

ter 6) in our simulation, in that the primary electron is imparted with a large

energy at the stellar surface and experiences no further acceleration. This intro-
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Figure 7.2: A schematic diagram showing the magnetosphere pair cascade, from
initiation by a high-energy electron to completion. Photon splitting is also shown.
The inset shows the beginning of a cascade “initiated” by a photon upscattered
through the inverse Compton process.
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duces two errors into the cascade calculation: First, the height at which the full

energy (γ0) cascade begins is lower in our simulation than in reality. This will

tend to overestimate the strength of the cascade, because of the stronger and more

curved field lines near the surface (see Section 7.4). The difference, though, is

small, since at worst the error in height is hmax = R/3 and for most pulsars will

be much smaller than this. Second, the simplification ignores the contribution to

the cascade by photons emitted before the primary electron reaches full energy

(γ < γ0), which will tend to underestimate the strength of the cascade. For pri-

mary electrons emitting photons through curvature radiation the error is small,

as the number and energies of photons emitted grows rapidly with the electron

energy γ (Daugherty & Harding 1982 find similar results). However, for primary

electrons upscattering photons through the ICS process the error can be very large,

since far more photons are upscattered by the electron at energy γ ∼ γc = εBe/KT

(see Sections 6.2 and 6.3) than at full energy γ0. We therefore also run a second

version of the simulation to track and record the cascade of particles initiated by

a primary photon, rather than a primary electron. When combined with the re-

sults from Chapter 6 (see Section 7.2) on the number and peak energy of photons

produced in the inner gap accelerator, this simulation gives a better picture of the

final cascade due to inner accelerators dominated by ICS emission than does our

“full energy” cascade simulation.

The input parameters for our simulation are the initial energy of the electron

(γ0 ∼ 103-107; see Section 7.2), its initial position (in most cases, the intersection

of the last open field line with the stellar surface), the general pulsar parameters

(surface magnetic field strength B = 1012-1015 G, rotation period P = 0.33-5 s, and

surface temperature T = 106 K or 5 × 106 K), and the geometry of the magnetic

field (dipolar or strongly curved). For the second version of the simulation, where
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the cascade is initiated by a photon, the additional parameters are the primary

photon energy (ε0 ∼ 102-106 MeV; Section 7.2) and the emission angle, or the angle

between the photon propagation direction and the magnetic field at the point of

emission (of order 1/γ ∼ 10−7-10−3).

In each run of the simulation, the magnetic field structure is given by one

of two topologies: (i) a pure dipole field geometry; or (ii) a more complex field

geometry near the polar cap which gradually reverts to dipole at higher altitudes (a

“multipole” field geometry). Modeling the dipole field geometry is straightforward

(see, e.g., von Hoensbroech et al. 1998), but there is no obviously correct way

to model the geometry for the multipole field case. There are two features of a

multipole field geometry that have a strong effect on the pair cascade dynamics

and must be incorporated into our model: First, the radius of curvature Rc is

much stronger than dipole (we choose Rc = R, the stellar radius) near the surface

of the star. This leads to a much larger number and peak energy of photons

emitted through curvature radiation than in the dipole field case. Second, as a

photon propagates through the magnetosphere the angle between the photon and

the field grows as ∆θ ∼ s/Rc = s/R, where s is the distance traveled by the

photon from the point of emission. This leads to a much more rapid decay of

photons into pairs than in the dipole case. The integration of these two features

into our model is discussed in the relevant subsections below (Section 7.3.1 and

Section 7.3.2, respectively). Note that Arendt & Eilek (2002) consider the first

aspect of a multipole field geometry in their model (that Rc = R) but ignore the

second. In all of the simulation runs we assume that the magnetic field strength

varies as in the dipole case,

B(r, θ) = Bp

(

R

r

)3 3 cos2 θ + 1

4
, (7.3)

and do not account for any amplification of the field strength near the surface
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caused by the complex topology.

For simplicity we consider an axially symmetric cascade in which all photons

are emitted and travel in the plane defined by the local magnetic field line. Both

the photons and the electrons/positrons are tracked in the “corotating” frame (the

frame rotating with the star), and any bending of the photon path due to rotation

is ignored (this is expected to be valid since the cascade takes place far inside the

light cylinder). With this approximation the particle positions and trajectories are

defined only in terms of r and θ in our simulation. We justify this approximation

below (Sections 7.3.1 and 7.3.2). As an additional simplification we ignore any

effects of general relativity on the photon trajectory.

The cascade simulation can naturally be divided into three parts: (i) the prop-

agation and photon emission of the primary electron; (ii) photon propagation, pair

production, and splitting; and (iii) the propagation and photon emission of the

secondary pairs. Each of these aspects of the simulation is described in a separate

subsection below. At the end of this section, cascades initiated by primary photons

are discussed.

7.3.1 Propagation and photon emission of the primary elec-

tron

The primary electron starts at the position r0, θ0 (typically the location of the last

open field line at the stellar surface, r0 = R and θ0 = θc =
√

R
rLC

) with the initial

energy (Lorentz factor) γ0, and moves outward along the field line in a stepwise

fashion. The lengths of the steps ∆s(r) are chosen so that a uniform amount of
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energy ∆γ (we choose ∼ 0.01γ0) is lost by the electron in each step:

∆s(r) ' ∆γ
dγ

ds
; (7.4)

for an electron emitting curvature radiation,

dγ

ds
=

2

3
γ4α

2a0

R2
c

, (7.5)

where α = e2/(h̄c) is the fine structure constant and a0 is the Bohr radius. Note

that for a multipole radius of curvature we use Rc = R.

As the electron moves a distance ∆s along the field it emits photons with

energies divided into discrete bins (our simulation uses ∼ 50 bins). The energy in

each bin, ε, is a constant multiple of εCR = 3γ3h̄c/(2Rc), the characteristic energy

of curvature photons. The number of photons in a given energy bin emitted in one

step is given by the classical spectrum of curvature radiation (e.g., Jackson 1998),

∆Nε ' ∆ε
dN

dε
'

√
3

2π

α∆s

Rc

γ∆ε

ε
F
(

ε

εCR

)

, (7.6)

where ∆ε is the spacing between energy bins and F (x) = x
∫∞
x K5/3(t)dt (and the

values of Rc and γ used are averages over the interval ∆s).

The photons are emitted in the direction tangent to the field line at the current

location of the electron, (r, θ). For a dipole field geometry the angle betwen the

emitted photon and the magnetic dipole axis is given by

χ(θ) = θ + arctan(tan θ/2) (7.7)

(see Fig. 7.3). There is an additional contribution to the emission angle of ∼ 1/γ,

due to relativistic beaming. In reality this beaming angle is in a random direction;

however, for our two-dimensional approximation it can only be in the plane of the

magnetic field. The actual emission angle is given by the sum of these two angles:

Θph = χ+
1

γ
cosφ (7.8)
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where φ is a random angle between 0 and 2π. We also use Eq. (7.8) for simulation

runs with a multipole field geometry. While technically the direction of photon

emission should change with changing field geometries, in practice the photon

propagation direction has little effect on the overall cascade (as long as it points

generally outward) and so for simplicity we use the same formula. What matters

for the cascade is how the angle between the photon and the magnetic field changes

as the photon travels. As is discussed in Section 7.3.2, we artificially force this angle

to change more rapidly with distance than in the dipole case, to account for the

effect of the stronger field line curvature.

Note that ignoring the three-dimensional aspect of the photon emission in-

troduces an error in the emission angle of order 1/γ. This affects the point at

which the photon decays in our simulation, since photon decay depends strongly

on the intersection angle between the photon and the magnetic field (see below,

Section 7.3.2). However, as the photon propagates through the magnetosphere

these errors (which are on the order of 1/γ ∼ 10−7 for curvature radiation and

10−3 for ICS) quickly become negligible in comparison to the photon-magnetic

field intersection angle, which grows like sph/Rc (and so reaches the angle 1/γ by

sph ∼ 10−5R for curvature and ∼ 0.1R for ICS).

The total energy lost over the step is

∑

ε

ε∆Nε ' ∆γmec
2 . (7.9)

Only one photon is tracked for each energy bin ε at each step ∆s, so the photon

is given a weighting factor ∆Nε. In addition to its initial position [the position

of the electron at the point of emission, (r, θ)] and propagation direction (Θph),

the photon has a polarization direction. For curvature radiation the polarization

fraction is between 50% and 100% polarized parallel to the magnetic field curva-
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Figure 7.3: A schematic diagram for deriving the photon emission angle. The
direction of the magnetic dipole axis is given by ~µ. The electron (positron) follows
the curved field line to the point (r, θ), then emits a photon in a cone of width 1/γ
inclined with respect to the magnetic axis by an angle χ.
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ture (see Rybicki & Lightman 1979); therefore we randomly assign the photon a

polarization with a weighting of one ⊥ to every seven ‖ photons, corresponding to

a 75% parallel polarization.

7.3.2 Photon propagation, pair production, and splitting

The photon is emitted/scattered with energy ε and polarization ‖ or ⊥ (and weight-

ing factor ∆Nε). It propagates in a straight line from the point of emission, at an

angle Θph with respect to the magnetic dipole axis. It has an optical depth to pair

production, τ , and to photon splitting, τsp, both of which are set to zero at the

moment of the photon’s creation.

Note that in the corotating frame (which is the frame we are working in for

most of our simulation; but see Section 7.3.3) the photon path is actually bent;

the deviation grows as sphΩ/c, where sph is the distance traveled (outward) by the

photon from the point of emission (cf. Harding et al. 1978). Like the beaming angle

(Section 7.3.1), this bending affects the photon-magnetic field intersection angle

and the point of photon decay in our simulation. However, the total intersection

angle grows much faster with photon distance sph than the deviation does (sph/Rc

versus sphΩ/c = sph/rLC, or a factor of
√

rLC/R ' 100P
1/2
0 larger), so we can safely

ignore this deviation.

In each step the photon moves a short distance through the magnetosphere,

∆sph [' 0.05rph, where (rph, θph) refers to the current position of the photon]. At

the new position the change in the optical depth for pair production, ∆τ , and for

photon splitting, ∆τsp, are calculated:

∆τ ' ∆sR′
‖,⊥ sinψ , (7.10)
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∆τsp ' ∆sR′ sp
‖,⊥ sinψ , (7.11)

where ψ is the angle of intersection between the photon and the local magnetic field

and R′ is the attenuation coefficient in the frame where the photon is propagating

perpendicular to the local magnetic field, for ‖ and ⊥ polarized photons.

For a dipole field geometry the intersection angle is given by

ψ = χ(θph) − Θph , (7.12)

where Θph is given by Eq. (7.8) and χ(θph) is the angle between the magnetic axis

and the magnetic field at the current location of the photon [Eq. (7.7)]; see Fig. 7.4

for a sketch. For a multipole geometry we set

tanψ =
sph

R
. (7.13)

This approximation has the advantage of accounting for the effect of a strong field

curvature on the photon propagation without requiring knowledge of the actual

field topology.

As was discussed in Chapter 6, for photons propagating in “weak” magnetic

fields (βQ <∼ 0.1) it is valid to use the asymptotic attenuation coefficient for pair

production,

R′
‖,⊥ ' 0.23

a0
βQ exp

(

− 4

3xβQ

)

, (7.14)

where

x =
ε′

2mec2
=

ε

2mec2
sinψ (7.15)

and Eq. (7.14) applies for both polarizations. For stronger fields, however, pairs

are produced in low Landau levels, and the quantum attenuation coefficients must

be used (see Daugherty & Harding 1983). In Appendix D we find that the crit-

ical magnetic field strength separating these two regimes is Bcrit ' 3 × 1012 G
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Figure 7.4: A schematic diagram for deriving the angle between the photon and
the magnetic field, ψ. The direction of the magnetic dipole axis is given by ~µ.
The photon propagates through the magnetosphere with angle Θph with respect
to the magnetic axis [see Eq. (7.8)]. The local magnetic field makes an angle χ
with respect to the magnetic axis [Eq. (7.7)].
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[Eq. (D.20)]. We also find that the boundary between the two regimes is very

sharp: pairs are either created at or near threshold (Landau levels n ≤ 2) for

B >∼ Bcrit or in high Landau levels for B <∼ Bcrit, with very few electrons/positrons

created in intermediate Landau levels. Therefore, in our simulation we only con-

sider the first three attenuation coefficients for ‖-polarized photons and the first

two attenuation coefficients for ⊥-polarized photons [up to x = 0.5(1+
√

1 + 6βQ),

the point where one particle is created in the n = 2 Landau level and the other

is created in the n = 0 Landau level]. These attenuation coefficients are given

in Appendix D.2, Eqs. (D.8)–(D.12). If the photon propagates far enough into

the magnetosphere that a higher attenuation coefficient is needed, the asymptotic

attenuation coefficient, Eq. (7.14), is used instead. The attenuation coefficients

for both polarizations of pair production and the asymptotic value are plotted in

Fig. 7.5.

For photon splitting the attenuation coefficient is given by

R′ sp
⊥→‖‖ '

α2

60π2a0

(

26

315

)2

x5















β6
Q , βQ < 1 ,

1 , βQ ≥ 1
(7.16)

for ⊥ polarization and

R′ sp
‖ = 0 (7.17)

for ‖ polarization; the only allowed photon splitting process is ⊥→‖‖ (Adler 1971;

Usov 2002). Note that, to compare with previous works, we later relax this restric-

tion and allow both ⊥ and ‖ modes to split (as suggested by Baring & Harding

2001); in this case we used Eq. (7.16) as an approximate attenuation coefficient for

both. The ⊥→‖‖ attenuation coefficient for photon splitting is plotted in Fig. 7.5

for βQ = 1. Because the attenuation coefficient R′ sp
⊥→‖‖ drops rapidly with field

strength for βQ < 1 [see Eq. (7.16)], photon splitting is unimportant for βQ <∼ 0.5

(Baring & Harding 2001). However, for perpendicular-polarized photons propa-
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Figure 7.5: Attenuation in the frame where the photon is traveling perpendicular
to the magnetic field, for both photon splitting (labeled by ⊥→‖ + ‖) and pair
production (labeled by ‖→ e+e− and ⊥→ e+e−). The magnetic field strength is
B = BQ = 4.414 × 1013 G.
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gating in superstrong fields βQ >∼ 0.5, photon splitting is the dominant attenuation

process. Even though above threshold [x ≥ 0.5(1 +
√

1 + 2βQ)] the attenuation

coefficient for photon splitting is much smaller than that for pair production (see

Fig. 7.5), in superstrong fields the photon splits before reaching threshold.

Whenever τ ≥ 1 or τsp ≥ 1 the photon is destroyed. While technically the pho-

ton should only be destroyed with probability 1− exp(−τ), in practice once either

τ reaches unity it grows so dramatically with distance sph that the probability of

photon destruction above τ = 1 is nearly unity anyway. If τsp ≥ 1 the photon

splits into two. As a simplification we assume that each photon takes half of the

energy of the parent photon. Rather than tracking two new photons we halve the

energy of the original photon, double the number of photons it represents (∆Nε),

and reset both optical depth values (τsp and τ) to zero. Because ⊥→‖‖ is the

only allowed photon splitting process, the daughter photons are now ‖-polarized

and can not split again. If τ ≥ 1 the photon creates an electron-positron pair. If

the photon has reached a height in the magnetosphere such that the asymptotic

version of the attenuation coefficient is applicable (i.e., at low fields) the electron

and positron are both created with half the energy of the photon (E = 0.5ε) and

traveling in the same direction as the photon (the pitch angle Ψ = ψ). Such an

approximation is valid as long as xβQ <∼ 0.1 (see Daugherty & Harding 1983),

which according to Eq. (6.11) is always true for B <∼ 3 × 1012 G. If the photon

does not reach this asymptotic limit (i.e., at high fields) the electron and positron

are created in low Landau levels as close to the threshold as possible, with energies

and pitch angles given in Appendix D.3 [Eqs. (D.23) and (D.24), respectively].
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7.3.3 Propagation and photon emission of the secondary

electrons and positrons

In the corotating frame the secondary electron (or positron) is created with initial

energy γ0,s and pitch angle ϑ0 or Landau level n (and weighting ∆Nε). (We use

the subscript ‘s’ here for the initial electron/positron energy γ0 to distinguish it

from the initial energy for the primary electron.) For the purpose of tracking the

synchrotron emission from the electron it is easier to work in the frame in which

the electron has no momentum along the magnetic field direction and only moves

transverse to the field in a circular motion. We hereafter refer to this frame as the

“circular motion” frame. In this frame the electron’s initial energy is given by

γ⊥ =
√

γ2
0,s sin2 Ψ + cos2 Ψ =

√

1 + 2βQn . (7.18)

For synchrotron radiation the emission rates are extremely large:

Psynch =
2e2

3c3
γ2ω2

Bev
2 sin2 Ψ >∼ 4 × 1018β2

Qmec
2 s−1 . (7.19)

We therefore assume for the simulation that the electron loses all of its perpendic-

ular momentum p⊥ “instantaneously” due to synchrotron radiation, before moving

from its initial position (cf. Daugherty & Harding 1982). In the “circular motion”

frame the photons are assumed to be emitted perpendicular to the magnetic field

so that no kick is imparted to the electron; with this approximation the frame

corresponding to circular motion of the electron does not change over the course

of the synchrotron emission process. The final energy of the electron after p⊥ = 0

is given by

γ‖ = γ0,s/γ⊥ . (7.20)

Unlike curvature photons, each synchrotron photon carries an energy compara-

ble to the “transverse” energy of the parent electron. Therefore, in the synchrotron
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part of the simulation the electron emits one photon per step, rather than a large

number of photons at many different energies as was done in the curvature radia-

tion part. (Note that to generate smooth photon distributions we sometimes use

energy bins as in the curvature case, but with each bin representing a fraction of

a photon.) If the electron is created in a high Landau level, n > 2, the energy

of the photon is chosen randomly, but with a weighting based on the asymptotic

synchrotron spectrum2 (e.g., Sokolov & Ternov 1968; Harding & Preece 1987)

d2N

dt dε⊥
=

√
3

2π

αωBe

ε⊥



fF

(

ε⊥
fεSR

)

+

(

ε⊥
γ⊥

)2

G

(

ε⊥
fεSR

)



 . (7.21)

where ε⊥ is the photon energy in the circular motion frame, εSR = 3γ2
⊥h̄ωBe/2 is

the characteristic energy of the synchrotron photons, ωBe is the electron cyclotron

frequency, f = 1 − ε⊥/(γ⊥mec
2) is the fraction of the electron’s energy remaining

after photon emission, F (x) = x
∫∞
x K5/3(t) dt, and G(x) = xK2/3(x). If n = 1,

the energy of the photon is that required to lower the electron to its ground state:

ε⊥ = mec
2(
√

1 + 2βQ−1). If n = 2, the energy of the photon could be that required

to lower the electron to its ground state or the first excited state, depending on

the transition. We do not calculate the exact transition rates for the n = 2 state

here. Instead, we use the following simplified formalism, based on the results of

Herold et al. (1982) (see also Harding & Preece 1987): If βQ >∼ 1 the energy of

the photon is chosen to be that required to lower the electron to its ground state,

ε⊥ = mec
2(
√

1 + 4βQ − 1). If βQ < 1 the energy of the photon is randomly chosen

to be that required to lower the electron to either the ground state, 50% of the

2This expression differs from classical synchrotron spectrum (e.g., Rybicki & Lightman 1979)
in two ways: First, a factor of f = 1 − ε⊥/(γ⊥mec

2) appears in several places throughout
Eq. (7.21); when the photon energy is equal to the electron energy (ε⊥ = γ⊥mec

2 or f = 0)
the asymptotic expression goes to zero. Second, a term containing the function G(x) appears in
Eq. (7.21). While a term containing G(x) appears in the classical expressions for the radiation
spectra of both perpendicular- and parallel-polarized photons, in the classical expression for the
total radiation spectra these terms cancel and G(x) disappears. However, when the quantum
effect of the electron spin is considered there is an asymmetry between the perpendicular and
parallel polarizations such that the G(x) term remains.
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time, or the first excited state [ε⊥ = mec
2(
√

1 + 4βQ −
√

1 + 2βQ)], 50% of the

time.

The energy of the photon is transformed into the “lab” frame of the neutron

star (the corotating frame) using

ε = γ‖ε⊥ . (7.22)

Because the photon is emitted in a random direction perpendicular to the magnetic

field in the “circular motion” frame, in the neutron star frame the angle of emission

is approximately given by

Θph = χ+ (Ψ + 1/γ‖) cos(φ) , (7.23)

where φ is a random angle between 0 and 2π, χ is given by Eq. (7.7), and the pitch

angle is given by Eq. (7.18):

Ψ = arcsin





√

√

√

√

γ2
⊥ − 1

γ2
0,s − 1



 . (7.24)

For synchrotron radiation the polarization fraction is between 50% and 100% po-

larized perpendicular to the magnetic field (which is the opposite situation from

that for curvature radiation; see Rybicki & Lightman 1979). Therefore we ran-

domly assign the photon a polarization with a weighting of one ‖ to every seven ⊥

photons (corresponding to a 75% perpendicular polarization). After the photon is

emitted the energy of the electron is reduced by the amount ∆γ⊥ = ε⊥/(mec
2) and

the synchrotron process is repeated. This continues until γ⊥ = 1, i.e., the electron

is in the ground Landau level.

Once the electron (or positron) loses all of its perpendicular momentum, it

moves along the magnetic field line and upscatters RICS photons. In each step

one RICS photon is scattered. The length of the path the electron travels along
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the field in each step, ∆s, is chosen such that one RICS photon is scattered per

step, ∆NRICS = 1. Since

∆s ' c∆NRICS

dNRICS/dt
, (7.25)

we have [Appendix D.1, Eq. (D.7)]

∆s '
[

β2
Q

γ2βa0

∫ γ(1−βxmin)

γ(1−β)

dy

eεBe/(ykT ) − 1

]−1

, (7.26)

where y = γ(1− βx), xmin ' cos[arctan(Rth/z)], and z = r−R. The mean energy

of the scattered photon is

ε = γ



1 − 1
√

1 + 2βQ



mec
2 , (7.27)

and the energy loss is given by

ε∆NRICS = ε . (7.28)

7.3.4 Cascades initiated by a primary photon

For our simulation, the only difference between a photon that is initiating a cascade

and one that is emitted/scattered by an electron or positron (Section 7.3.2) is that

for a photon initiating a cascade the initial conditions must be provided at the

beginning of the simulation. The photon is usually injected into the magnetosphere

at the stellar surface, though at high fields a more interesting cascade results if

the photon is injected higher up (e.g., r = 3R; see Section 7.4). The photon is

injected tangent to the magnetic field, as we find almost no difference in the final

photon spectra/pair plasma if we add a beaming angle 1/γ ∼ 10−7-10−3. At high

fields (B >∼ 3 × 1012 G; see Section 7.3.2 and Appendix D.2) the photon is given

a perpendicular polarization to generate the largest possible cascade; at low fields

(B <∼ 3 × 1012 G) the polarization does not matter as pairs are not being created

in low Landau levels.
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7.4 Results

In this section we present our results for photon- and electron-initiated cascades

(Sections 7.4.1 and 7.4.2, respectively). We present our results for photon-initiated

cascades first, as they are simpler and aid us in our discussion of the results for

the full cascade (initiated by an electron). Our main results are the final photon

spectra and pair plasma distributions presented in each subsection for various input

parameters (surface temperature, surface field strength, rotation period, initial

energy and injection radius of the particle, whether or not ICS operates, and which

photon polarization modes are allowed to split). While most previous works on

pair cascades present photon and pair spectra as functions of differential number

counts dN/dE versus energy E (e.g., Daugherty & Harding 1982; Hibschman &

Arons 2001b; Arendt & Eilek 2002), where E represents the energy of the photon

ε or the electron/positron E , we plot dN/d lnE versus energy in order to show on

a log-log plot the approximate number of photons or electrons at any energy.

7.4.1 Photon-initiated cascades

Our results for photon-initiated cascades are presented in Figs. 7.6–7.8. Note that

due to the discrete nature of the synchrotron and ICS emission the spectra should

be very coarse; we have smoothed the spectra by allowing the electrons to emit

fractions of a photon, rather than an entire photon, in each step. At all field

strengths we find that the peak energies of the photons and electrons produced in

the cascades are approximately given by

ε ∼ 0.2R6 MeV (7.29)
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and

E ∼ 2R6 MeV (7.30)

respectively, where R6 = Rc/(106 cm) is the local radius of curvature of the

magnetic field (see Figs. 7.6 and 7.8). At moderate fields (B <∼ 3 × 1012 G;

Section 7.3.2 and Appendix D.2) we find that cascades are initiated by photons with

ε >∼ 104 MeV for dipole geometries or ε >∼ 102 MeV for multipole geometries; below

these energies the primary photons do not produce pairs within the magnetosphere.

Strong cascades (cascades with a second generation of pair production) occur when

ε >∼ 105 MeV for dipole geometries or ε >∼ 103 MeV for multipole geometries.

For the moderate and strong cascades the multiplicities of photons and electrons

produced are given by

Nε ∼
ε0

5 MeV
R−1

6 (7.31)

and

NE ∼ ε0
100 MeV

R−1
6 (7.32)

respectively, where ε0 is the primary photon energy. Therefore, for a given primary

photon energy, cascades in multipole geometries are a factor of ∼ 100P
1/2
0 times

larger in multiplicity but ∼ 100P
1/2
0 times lower in peak energy than those in dipole

geometries. Figures 7.6 and 7.7 show the spectra for photon-initiated cascades at

B = 1012 G.

At high fields (B >∼ 3 × 1012 G), if we “turn off” inverse Compton scattering

(ICS) by the secondary electrons and positrons we find that cascades are very weak

at all energies and field geometries; if the primary photon is parallel polarized, there

will be no cascade at all. This is because the electrons and positrons produced by

the primary photon are near or at threshold (Landau levels n < 2) and so will not

emit synchrotron radiation to sustain the cascade. With the ICS process operating
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Figure 7.6: Final photon spectra and plasma distributions of photon-initiated cas-
cade, for B12 = 1 and P0 = 1. The primary photon energy is 102 MeV (left-most
panels), 104 MeV (middle), or 106 MeV (right), and the field geometry is dipole
(top) or multipole (Rc = R) (bottom). The spike in every panel except the first
represents the final energies of the first generation of pairs (one electron and one
positron). The spike in the first panel represents the primary photon, which does
not initiate a cascade for these parameters.
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Figure 7.7: Cumulative spectra of successive generations of e+e− pair production
and photon emission, for photon-initiated cascades. The thick lines represent the
pair plasma distributions and the thin lines represent the photon spectra. Here the
primary photon energy is 106 MeV and the field geometry is dipole, with B12 = 1
and P0 = 1.
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there will be a moderate cascade in most cases, provided that the electrons are at

low enough energies for this process to work efficiently (E <∼ βQmec
2/(kT )). For

primary photons injected at a height r >∼ 2R above the surface, the background of

thermal photons from the surface is too weak for ICS to assist in the propagation

of the cascade. However, for these primary photons the cascade will actually

be stronger than for primary photons injected near the surface, because the local

magnetic field strength has dropped by a factor of (r/R)3; if Bp(R/r)
3 <∼ 3×1012 G,

where Bp is the surface magnetic field strength, the cascade will be similar in

behavior to the weak-field cascades discussed above. Figure 7.8 shows spectra for

photon-initiated cascades at B = BQ = 4.414 × 1013 G.

7.4.2 Electron-initiated cascades

Our results for electron-initiated cascades are presented in Figs. 7.12–7.18 and Ta-

ble 7.1. We find that the densest and most energetic pair plasmas are produced

for neutron stars with strong surface fields, short rotation periods, and multipole

field geometries. The amplitudes of the photon spectra and plama distributions

increase rapidly with the initial energy of the primary electron; large initial ener-

gies also tend to come from stars with strong fields and rapid rotation (Fig. 7.1).

Figures 7.9–7.11 show our results for a variety of magnetic field strengths, periods,

and initial electron energies.

Figure 7.12 shows the photon energy distribution in the frame in which each

photon is traveling perpendicular to the magnetic field, for various heights above

the star. Note that when the local magnetic field [given by B ' Bp(R/r)
3, where

Bp is the surface magnetic field at the pole] is greater than about 3×1012 G, there

are no photons in the spectra with ε′ = ε sinψ > 2mec
2; as we saw in Section 7.3.2,
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Figure 7.8: Final photon spectra and plasma distributions of photon-initiated cas-
cades, for B = BQ and P0 = 1. The primary photon energy is 106 MeV, the
injection radius is r0 = R (left-most panels) or r0 = 3R (right), and the field ge-
ometry is dipole (top) or multipole (Rc = R) (bottom). The spikes in the plasma
distributions represent individual electrons or positrons or electron-positron pairs.
The spectra in the left-most panels are of cascades where all photons are polar-
ized perpendicular to the field; for random polarizations the cascades are generally
much smaller. All of the cascades shown here include ICS secondary effects.
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Figure 7.9: Photon spectra for polar magnetic field strengths Bp = 1012 G, BQ =
4.414 × 1013 G (the critical quantum magnetic field strength), and 1015 G. Here,
the period is P = 1 s, the magnetic field is dipole, and the primary electron
travels along the last open field line. The curve labeled “Curvature photons” in
each panel (the dot-dashed line) shows the curvature radiation generated by the
primary electron, which is the same for all field strengths. The other curves show
the final photon spectra after pair production and synchrotron emission. In the
first panel the initial Lorentz factor of the primary electron is γ0 = 2× 107, in the
second γ0 = 5 × 107.
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Figure 7.10: Pair plasma distributions for polar magnetic field strengths Bp =
1012 G, BQ = 4.414 × 1013 G (the critical quantum magnetic field strength), and
1015 G. Here, the period is P = 1 s, the magnetic field is dipole, and the primary
electron travels along the last open field line. In the first panel the initial Lorentz
factor of the primary electron is γ0 = 2 × 107, in the second γ0 = 5 × 107.

for B >∼ 3 × 1012 G photons pair produce almost immediately upon reaching the

threshold condition (ε′ = 2mec
2).

Figure 7.13 shows the photon and electron/positron number distributions as a

function of height above the star, for surface magnetic field strengths B = 1012 G,

4.414 × 1013 G, and 1015 G. The curves representing the number distributions

of curvature radiation photons are the same in each case, since the spectrum of

curvature radiation given by Eq. (7.6) does not depend on magnetic field strength.

Electron-positron pairs are produced with almost 100% efficiency (i.e., one pair is

created for each curvature photon) until B drops below about 3 × 1012 G; they

are then produced with moderate efficiency until B drops below about 1011 G (the

exact value depends on the initial electron energy γ0), at which point no more pairs

are produced. Note that while curvature radiation dominates the overall photon

distribution, there is a flurry of synchrotron radiation between B = 3 × 1012 G,
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Figure 7.11: Photon spectra and plasma distributions for various stellar periods.
The spectra for B = 1015 G are on the top; the spectra for B = 1012 G are on the
bottom; the photon spectra are on the left; the pair spectra are on the right.
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Figure 7.12: Photon energy distribution ε′ = ε sinψ at different heights above the
star, where ε′ is the photon energy in the frame in which the photon is traveling
perpendicular to the magnetic field and ψ is the angle between the photon and
the local magnetic field. The stellar surface is located at r = R. The left panel
shows the spectrum at B = 3 × 1012 G; the right panel shows the spectrum at
B = BQ = 4.414× 1013 G. Every photon that passes a given height is recorded in
the spectrum for that height. The initial electron Lorentz factor is γ0 = 5 × 107.
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the point at which electrons and positrons are created in high Landau levels, and

B ∼ 1011 G, the point at which electron-positron pairs are no longer created.

Figures 7.14 and 7.15 show photon spectra and plasma distributions at different

heights above the star. These spectra are generated by recording the parameters

of any photon or electron/positron which crosses a given height, say r = 2R.

For a given initial electron energy γ0, the spectra all exhibit similar trends with

height as long as the local field is greater than about 3 × 1012 G. For example,

the numbers and peak energies of the cascade photons and electrons/positrons

which pass r = 2R in a star with Bp = BQ are approximately the same as those

which pass r = 2R in a star with B = 1015 G; however, the numbers and energies

are different passing r = 5R, since the local field of the Bp = BQ star is now

B = 3 × 1011 G (see Fig. 7.14).

Table 7.1 shows the final photon and electron/positron energies and multiplic-

ities for various magnetic field strengths, with γ0 = 5× 107 and P0 = 1. Note that

while the total number of photons does not change much with field strength (as

curvature radiation, which is independent of B, dominates the total multiplicity

of photons produced; see Fig. 7.13), the total energy of the photons changes dra-

matically with field strength. A much larger fraction of the total photon energy is

converted in to pair production at high fields, resulting in a larger number and total

energy of electron-positron pairs. Fig. 7.16 shows the final electron multiplicities

as a function of γ0, for various field strengths and periods. Note that multiplicity

drops off precipitously with decreasing γ0; if indeed a dense (ρ� ρGJ) pair plasma

is necessary to generate the observed radio emission from rotation-powered pulsars

(as is suggested by, e.g., Melrose 2004; Thompson 2004), then γ0 can not be much

less than 5 × 106 (a number which varies slightly with field strength and rotation
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Figure 7.13: Photon and electron/positron number distributions as a function of
radius, for γ0 = 2 × 107, P0 = 1, and B12 = 1 (top left panel), B12 = 44.14
(top right), and B12 = 1000 (bottom). For a given particle (photon, electron,
or positron), the radius r0 is the radius where the particle is created, so that
dN/d ln r0 is a measure of how many particles are created at the point r0. The curve
labeled “Curvature” shows where the curvature radiation photons are emitted by
the primary electron (which continues in a similar manner beyond the graph out
to r = rLC), “Synchrotron” shows where the synchrotron photons are emitted by
the secondary electrons/positrons, “Final” shows where the photons that escape
the magnetosphere are created (any photon that avoids destruction through pair
production or photon splitting), and “e+e− pairs” shows where the electrons and
positrons are created.
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Figure 7.14: Photon spectra and plasma distributions at different heights above
the star, where the stellar surface is at r = R. Here, γ0 = 2 × 107. The photon
spectra are shown in the left-most panels; the pair spectra are shown in the right-
most panels; the spectra for B = 1015 G are on the top; the spectra for B = BQ =
4.414 × 1013 G are on the bottom. Every photon or electron/positron that passes
a given height is recorded in the spectrum for that height.
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Figure 7.15: Same as for Fig. 7.14, but with γ0 = 5 × 107. The spectra for
B = 1015 G are on the top; the spectra for B = 3 × 1012 G are on the bottom.
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Figure 7.16: Final electron/positron multiplicity as a function of the initial energy
of the primary electron γ0, for P0 = 1 at several different B fields (left panel) and
for B12 = 1000 at several different periods (right panel).

period).

7.4.3 Photon splitting

Photon splitting makes a large difference if photons with both parallel and per-

pendicular polarizations are allowed to split, but only a slight difference if only

⊥→‖‖ photon splitting is allowed (see Fig. 7.17). Note that regardless of which

splitting modes are allowed, the photon spectra and plasma distributions remain

more-or-less intact, such that photon splitting by itself will prevent a neutron star

from generating gamma-ray or radio pulsed emission.
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Table 7.1: Final photon and electron energies, in units of MeV, for various surface magnetic field strengths, with P = 1 s,
θ0 = θc, and γ0 = 5 × 107. When the primary electron reaches r⊥ = rLC, the simulation stops and the electron’s remaining
energy is E = 5 × 106 MeV.

Bp Curvature radiation Final photons Electrons/positrons # of photons # of electrons
(×1012 G) (MeV) (MeV) (MeV)

1 2.1 × 107 1.9 × 107 1.3 × 106 6.6 × 105 1.4 × 103

3 2.1 × 107 1.6 × 107 4.5 × 106 6.4 × 105 3.9 × 103

10 2.1 × 107 1.1 × 107 1.0 × 107 5.3 × 105 5.1 × 103

44.14 2.1 × 107 7.6 × 106 1.3 × 107 4.8 × 105 6.5 × 103

100 2.1 × 107 6.7 × 106 1.4 × 107 4.6 × 105 7.8 × 103

1000 2.1 × 107 5.1 × 106 1.5 × 107 4.4 × 105 1.2 × 104
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Figure 7.17: The effect of photon splitting on the final photon spectra and plasma
distributions. The photon spectra are shown in the left panel; the plasma en-
ergy distributions are shown in the right panel. The magnetic field strength is
B = 1015 G. In each panel the spectrum when only photons with perpendicular
polarizations are allowed to split (with ⊥→‖‖) is plotted along with the spec-
trum when photons of both polarizations are allowed to split. The spectrum when
photon splitting is “turned off” in the simulation is indistinguishable from the
spectrum when ⊥→‖‖ is allowed, within the error of the Monte Carlo calculation.
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7.4.4 Inverse Compton scattering (ICS)

As was shown in Section 7.4.1, ICS increases the effectiveness of the cascade near

the stellar surface but has very little effect for r >∼ 2R. In addition, because the

photons scattered by the ICS process have mean energy ε0 = 3.04× 103T−1
6 βQ(1−

1/
√

1 + 2βQ) MeV, ICS photons are generally weak compared to other cascade

photons and only affect the cascade when B >∼ BQ. Our method for generating ICS

scattered photons is described in Appendix D.1. We plot our results in Fig. 7.18.

To generate the figure we use two ‘thermal cap’ models: one where the thermal

cap has a temperature of T = 3 × 105 K and a radius of R (i.e., the size of the

star) for a stronger ICS effect, and one where the thermal cap has a temperature

of T = 106 K and a radius of Rθc (i.e., the size of the polar cap) for a weaker ICS

effect.

7.5 Discussions

We have presented simulations of pair cascades in the neutron star magnetosphere,

for strong magnetic fields ranging from B = 1012 G to 1015 G. Our results, pre-

sented in various tables and figures, show that pair cascades initiated by curvature

radiation can account for most pulsars in the P–Ṗ diagram, but significant field

line curvature near the stellar surface is needed. Contrary to previous works (e.g.,

Hibschman & Arons 2001b; Arendt & Eilek 2002), we find that inverse Compton

scatterings (resonant or not) are not efficient generators of pulsar radio emission,

and that the allowed (“alive”) regions of the pulsar death boundaries are even

smaller than is shown in Figs. 6.1 and 6.3. Resonant inverse Compton scatterings

may even make the death boundaries for curvature-radiation initiated cascades
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Figure 7.18: The effect of resonant inverse Compton scattering on the final photon
spectra and plasma distributions. The photon spectra are shown in the left panel;
the plasma energy distributions are shown in the right panel. The magnetic field
strength is B = BQ. For the curves labeled “ICS” the ‘thermal cap’ has a temper-
ature of T = 3× 105 K and a radius of R (i.e., the size of the star); for the curves
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smaller, by prematurely shorting out the gap before electrons can reach the Lorentz

factors necessary for efficient curvature radiation. Our results for RICS-initiated

cascades differ from those of Arendt & Eilek (2002) because the previous work

greatly overestimates the magnitude of the RICS spectrum in the relevant energy

range (a primary electron with γ0 ∼ 103-105): to estimate the spectrum these

authors adopt the same scaling as is given in Daugherty & Harding (1989) for the

spectrum at the point of peak power loss (γ0 ∼ εBe/kT ' 135 for B = 1012 G), and

additionally normalize the spectrum such that the electron loses all of its energy

to the photons; however, at high energies the RICS spectrum is much shallower

in slope than at its peak and very little of the primary electron’s initial energy is

lost. While we find similar results to those of Hibschman & Arons (2001b), that

RICS- and NRICS-initiated cascades produce a very low multiplicity of secondary

particles (λ ∼ 0.1-1 secondary electrons and positrons for every primary electron),

we reach the opposite conclusions. Hibschman & Arons (2001b) suggest that any

pulsar is alive if it has a “pair formation front” (the height at which the multiplic-

ity of pairs produced is enough to screen the potential); we suggest that pulsars

with λ ∼ 0.1-1 are dead even though they have pair formation fronts, because the

resulting plasma is not dense enough to generate coherent radio emission. Indeed,

there is hardly a reason to require that a cascade forms if the resulting plasma

density is lower than the ambient Goldreich-Julian charge density, as would be the

case if λ ∼ 0.1. Additionally, we find that the synchrotron emission mechanism is

suppressed for B >∼ 3 × 1012 G, such that NRICS-initiated cascades at these field

strengths can not even reach λ ∼ 0.1. In addition to our results for RICS and

NRICS cascades, we find that photon splitting, while important near the stellar

surface, has very little effect on the final photon and pair spectra (contrary to, e.g.,

Baring & Harding 2001).
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The high-energy photon spectra generated by our simulation agree with obser-

vations of gamma-ray pulsars in several respects. First, not surprisingly, cascades

initiated in magnetospheres with the strongest voltage drops (those in neutron stars

with strong surface fields and rapid rotation) generate the largest multiplicity of

gamma rays; all of the gamma-ray pulsars detected so far have very large char-

acteristic voltage drops (e.g., Arons 1996; Thompson 2004). Second, our results

(e.g., Fig. 7.9) show high-energy cutoffs in the photon spectra which decrease with

magnetic field strength and which occur at around 103-104 MeV for dipole field

geometries; this trend and these cutoff values are observed in the six of the seven

confirmed gamma-ray pulsars (Thompson 2004). The one exception is B1509-58,

which has a high-energy cutoff at around 10 MeV; this very low cutoff energy could

be explained by a multipole field geometry, which tends to give energy cutoffs a

factor of 10-100 times lower than those for dipole field geometries. Third, to first

order our gamma-ray spectra agree in shape and amplitude with observed spec-

tra of gamma-ray pulsars, when properly normalized. Our results for the photon

spectrum generated by a single electron emitted from the stellar surface can be

converted into a total photon flux coming from the polar cap, by multiplying by

the electron flux from the surface,

Fe =
ρGJc

e
=

βQ

α3a2
0

Ω

2π
= 9.19 × 1022βQP

−1
0 cm−2 s−1 (7.33)

(see Section 5.4.1). This flux can then be converted into an observed flux by

multiplying by the factor (R/d)2, where d is the distance to the pulsar. We stress

that this is only a first-order approximation; an accurate model of the phase-

averaged photon spectrum must account for the change in polar cap viewing angle

with phase and the geometry of the beam. Figure 7.19 shows the comparison

between the observed phase-averaged spectrum and the spectrum from our first-

order model, for the case of PSR B1055-52. We use the parameters d = 0.72 kpc,
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Figure 7.19: The observed phase-averaged gamma ray spectrum for PSR B1055-
52, from Thompson et al. (1999) (left panel), along with the ‘model fit’ from our
simulation (right panel).

P = 0.197 s, Ṗ = 5.83 × 10−15 s s−1, and polar cap field strength Bp = 6.32 ×

1019
√

P0Ṗ G = 2.14 × 1012 G (Thompson 2004), and assume that R = 10 km,

γ0 = 2 × 107, and θ0 =
√

RΩ/c.

The recently-launched Gamma-ray Large Area Space Telescope (GLAST) will

greatly improve the quantity and quality of observations from gamma-ray pul-

sars. GLAST has a sensitivity 30 times larger than that of its predecessor, the

Compton Gamma Ray Observatory (CGRO), which could allow it to detect 30 to

100 gamma-ray pulsars (compared to the 7 confirmed and 3 candidate gamma-ray

pulsars seen by CGRO) (Thompson 2008). In addition, GLAST will extend the

observed spectra of these pulsars out to 300 GeV (compared to the upper limit of

10-30 GeV for CGRO). With this detection range GLAST will be able to discrim-
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inate between polar gap models (such as the one used here and in Chapter 6) and

outer gap models (e.g., Romani 1996; Zhang & Cheng 1997), as these two models

predict photon spectra that are similar in shape for ε < 10 GeV but which diverge

at higher energies (the spectra are much steeper for the polar cap models than for

the outer gap models; see Thompson 2008 for a comparison).
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APPENDIX A

CHAPTER 2 APPENDIX

A.1 Numerical method

A.1.1 Evaluating the integrals in the Kohn-Sham equa-

tions

The two most computation-intensive terms in the Kohn-Sham equations [Eq. (3.35)]

are the ion-electron interaction term and the direct electron-electron interaction

term:

VZe,m(z) =
∫

dr⊥
|Wm|2(ρ)
|r− zj|

(A.1)

and

Vee,m(z) =
∫ ∫

dr⊥ dr
′ |Wm|2(ρ)n(r′)

|r − r′| . (A.2)

Equation (A.1), together with the exchange-correlation term,
∫

dr⊥ |Wm|2(ρ)µexc(n),

can be integrated by a standard quadrature algorithm, such as Romberg integra-

tion (Press et al. 1992). Equation (A.2), however, is more complicated and its

evaluation is the rate-limiting step in the entire energy calculation. The integral is

over four variables (ρ, ρ′, z′, and φ or φ− φ′), so it requires some simplification to

become tractable. To simplify the integral we use the identity (see, e.g., Jackson

1998)

1

|r− r′| =
∞
∑

n=−∞

∫ ∞

0
dq ein(φ−φ′)Jn(qρ)Jn(qρ′)e−q|z−z′| , (A.3)

where Jn(z) is the nth order Bessel function of the first kind. Then

Vee(r) =
∫

dr′
n(r′)

|r − r′|
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= 2π
∫ ∞

−∞
dz′

∫ ∞

0
dq J0(qρ)

[∫ ∞

0
ρ′ dρ′ n(ρ′, z′)J0(qρ

′)
]

exp(−q|z − z′|) ,

(A.4)

and

Vee,m(z) =
∫

dr⊥ |Wm|2(ρ)Vee(r)

= 4π2
∫ ∞

−∞
dz′

∫ ∞

0
dq
[∫ ∞

0
ρ dρ |Wm|2(ρ) J0(qρ)

]

×
[∫ ∞

0
ρ′ dρ′ n(ρ′, z′)J0(qρ

′)
]

exp(−q|z − z′|) . (A.5)

Using Eq. (2.11) for the electron density distribution, Eq. (A.5) becomes

Vee,m(z) =
∑

m′ν′

∫ ∞

−∞
dz′ |fm′ν′(z′)|2

∫ ∞

0
dq Gm(q)Gm′(q) exp(−q|z − z′|) , (A.6)

where

Gm(q) = 2π
∫ ∞

0
ρ dρ |Wm|2(ρ) J0(qρ)

= exp(−q2/2)Lm(q2/2) , (A.7)

and

Lm(x) =
ex

m!

dm

dxm
(xme−x) (A.8)

is the Laguerre polynomial of order m. These polynomials can be calculated using

the recurrence relation

mLm(x) = (2m− 1 − x)Lm−1(x) − (m− 1)Lm−2(x) , (A.9)

with L0(x) = 1 and L1(x) = 1 − x.

Using the method outlined above the original four-dimensional integral in

Eq. (A.2) reduces to a two-dimensional integral. Once a value for z is specified,

the integral can be evaluated using a quadrature algorithm (such as the Romberg

integration method).
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A.1.2 Solving the differential equations and total energy

The Kohn-Sham equations [Eq. (3.35)] are solved on a grid in z. Because of sym-

metry we only need to consider z ≥ 0, with z = 0 at the center of the molecule.

The number and spacing of the z grid points determine how accurately the equa-

tions can be solved. In this chapter we have attempted to calculate ground-state

energies to better than 0.1% numerical accuracy. This requires approximately (de-

pending on Z and B) 133 grid points for a single atom calculation, plus 66 more

for each additional atom in the molecule, or a total of ≈ 66 ∗ (N + 1) points for

an N -atom molecule. The grid spacing is chosen to be constant from the center

out to the outermost ion, then exponentially increasing as the potential decays to

zero. The maximum z value for the grid is chosen such that the amplitude of all

of the electron wave functions fmν at that point is less than 5 × 10−3.

For integration with respect to ρ, ρ′, or q (e.g., when calculating the direct

electron-electron interaction term), our 0.1%-accuracy goal for the energy values

requires an accuracy of approximately 10−5 in the integral. A variable-step-size

integration routine is used for each such integral, where the number of points in the

integration grid is increased until the error in the integration is within the desired

accuracy.

Solving the Kohn-Sham equations requires two boundary conditions for each

(mν) orbital. The first is that fmν(z) vanishes exponentially for large z. Because

the fmν(z) wave functions must be symmetric or anti-symmetric about the center

of the molecule, there is a second boundary condition: wave functions with an

even number of nodes have an extremum at the center and wave functions with

an odd number of nodes have a node at the center; i.e., f ′
mν(0) = 0 for even ν

and fmν(0) = 0 for odd ν. In practice, we integrate Eq. (3.35) from the large-z
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edge of the z grid and “shoot” toward z = 0, adjusting εmν until the boundary

condition at the center is satisfied. One final step must be taken to ensure that

we have obtained the desired energy and wave function shape, which is to count

the number of nodes in the wave function. For each (mν) orbital there is only

one wave function shape that satisfies the required boundary conditions and has

the correct number of nodes ν (e.g., the shape of each orbital in Fig. 2.4, however

complicated-looking, is uniquely determined).

To determine the electronic structure of an atom or molecule self-consistently, a

trial set of wave functions is first used to calculate the potential as a function of z,

and that potential is used to calculate a new set of wave functions. These new wave

functions are then used to find a new potential, and the process is repeated until

consistency is reached. In practice, we find that fmν(z) = 0 works well as the trial

wave function, and rapid convergence can be achieved: four or five iterations for

atoms and no more than 20 iterations for the largest and most complex molecules.

To prevent overcorrection from one iteration to the next, the actual potential used

for each iteration is a combination of the newly-generated potential and the old

potential from the previous iteration (the weighting used is roughly 30% old, 70%

new).

A.2 Correlation energy

As was mentioned in Section 3, the form of the correlation energy has very little

effect on the relative energy between atom and molecule (or between different

states of the same molecule). This holds true even if the calculations are done in

the extreme case where the correlation energy term is set to zero. As an example,
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consider the energy of the C2 molecule at B = 1015 G. Using the correlation

energy of Skudlarski and Vignale [Eq. (3.31)], we find the C atom has energy

Ea = −41 330 eV and the C2 molecule has energy per atom Em = −50 760 eV, so

that the relative energy is ∆E = 9430 eV. Using the correlation energy of Jones

[Eq. (2.33)], we find Ea = −44 420 eV and Em = −53 840 eV, so that ∆E = 9420 eV.

Without any correlation term at all, Ea = −38 600 eV and Em = −47 960 eV,

so that ∆E = 9360 eV. As another example of the relative unimportance of

the correlation term, two other works using density-functional calculations, Jones

(1985); Relovsky & Ruder (1996), find very similar cohesive energy (i.e., infinite

chain) results even though they use two very different correlation energy terms.

For example, at B = 5 × 1012 G they both find a cohesive energy of 220 eV for

He∞.

We make one final comment about the accuracy of our chosen correlation energy

term, the Skudlarski-Vignale expression Eq. (3.31). Jones (1985) found an empir-

ical expression for the correlation energy at high B [Eq. (2.33)], and then checked

its accuracy using the fact that the self-interaction of an occupied, self-consistent

orbital should be zero, i.e.,

Edir[nmν ] + Eexc[nmν ] = 0 , (A.10)

where nmν = |Ψmν(r)|2 is the number density of electrons in the (mν) orbital.

Performing such a test on the Skudlarski-Vignale expression, we find that the

error in Eq. (A.10) is of order 5–20% for B12 = 1 and up to 20–30% for B12 = 1000

for the elements and molecules considered here. Testing Jones’s expression, we

find it does as well and sometimes better at B12 = 1, but at large fields it does

considerably worse, up to 60–100% error for B12 = 1000. For example, for He2

at B12 = 1000 the Skudlarski-Vignale correlation function satisfies Eq. (A.10) to

within 23% but Jones’s expression satisfies Eq. (A.10) only to within 63%. Thus,
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the Skudlarski-Vignale correlation function adopted in this chapter is much more

accurate than Jones’s expression for a wide range of field strengths.
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APPENDIX B

CHAPTER 3 APPENDIX

B.1 Technical details and numerical method

B.1.1 Evaluating the integrals in the Kohn-Sham equa-

tions

The most computation-intensive term in the modified Kohn-Sham equations [Eqs. (3.35)

and (3.41)] is the direct electron-electron interaction term

Vee,m(z) =
∫ ∫

|z′|<a(NQ+1/2)
dr⊥ dr

′ |Wm|2(ρ)n(r′)

|r − r′| . (B.1)

The evaluation of this term is the rate-limiting step in the entire energy calculation.

The integral is over four variables (ρ, ρ′, z′, and φ or φ− φ′), so it requires some

simplification to become tractable. To simplify the integral we use the identity

(e.g., Jackson 1998)

1

|r− r′| =
∞
∑

n=−∞

∫ ∞

0
dq ein(φ−φ′)Jn(qρ)Jn(qρ′)e−q|z−z′| , (B.2)

where Jn(z) is the nth order Bessel function of the first kind. Then

Vee(r) =
∫

|z′|<a(NQ+1/2)
dr′

n(r′)

|r− r′| (B.3)

= 2π
∫ a(NQ+1/2)

−a(NQ+1/2)
dz′

∫ ∞

0
dq J0(qρ) ×

[∫ ∞

0
ρ′ dρ′ n(ρ′, z′)J0(qρ

′)
]

exp(−q|z − z′|) , (B.4)

and

Vee,m(z) =
∫

dr⊥ |Wm|2(ρ)Vee(r) (B.5)

260



= 4π2
∫ a(NQ+1/2)

−a(NQ+1/2)
dz′

∫ ∞

0
dq
[∫ ∞

0
ρ dρ |Wm|2(ρ) J0(qρ)

]

×
[∫ ∞

0
ρ′ dρ′ n(ρ′, z′)J0(qρ

′)
]

exp(−q|z − z′|) . (B.6)

Using Eq. (2.11) for the electron density distribution, Eq. (B.6) becomes

Vee,m(z) =
∑

m′ν′

∫ a(NQ+1/2)

−a(NQ+1/2)
dz′ f̄ 2

m′ν′(z′)
∫ ∞

0
dq Gm(q)Gm′(q) exp(−q|z− z′|) , (B.7)

where

Gm(q) = 2π
∫ ∞

0
ρ dρ |Wm|2(ρ) J0(qρ) (B.8)

= exp(−q2/2)Lm(q2/2) , (B.9)

and

Lm(x) =
ex

m!

dm

dxm
(xme−x) (B.10)

is the Laguerre polynomial of order m. These polynomials can be calculated using

the recurrence relation

mLm(x) = (2m− 1 − x)Lm−1(x) − (m− 1)Lm−2(x) , (B.11)

with L0(x) = 1 and L1(x) = 1 − x.

Using the method outlined above the original four-dimensional integral in

Eq. (B.1) reduces to a two-dimensional integral. Once a value for z is specified,

the integral can be evaluated using a quadrature algorithm [such as the Romberg

integration method Press et al. 1992].

B.1.2 Evaluating the integrals in the calculation of 3D con-

densed matter

For the 3D condensed matter calculation, we simplify the energy integrals of the

nearest-neighbor interactions in a way similar to that for the infinite chain cal-
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culation. To do this, we require Eq. (B.2) and one additional identity of Bessel

functions:

J0(q
√
a2 + b2 − 2ab cos θ) =

∞
∑

n=−∞
einθJn(qa)Jn(qb) . (B.12)

With these equations the ion-electron nearest-neighbor energy term [Eq. (3.65)]

becomes

EeZ,nn[n] = −Ze2
∫

|z|<a/2
dr

n(r)

|r− rnn|
(B.13)

= −Ze22π
∫ a/2

−a/2
dz
∫ ∞

0
dq J0(2Rq) ×

[∫ ∞

0
ρ dρ n(ρ, z)J0(qρ)

]

exp(−q|z − a/2|) (B.14)

= −Ze2
∑

mν

∫ a/2

−a/2
dz f̄ 2

mν(z)
∫ ∞

0
dq J0(2Rq)Gm(q) exp(−q|z − a/2|) .

(B.15)

The electron-electron energy term [Eq. (3.66)] becomes

Edir,nn[n] =
e2

2

∫ ∫

|z|<a/2, |z′|<a/2
dr dr′

n(r)n(r′)

|r − (r′ + rnn)|
(B.16)

=
e2

2
2π
∫ a/2

−a/2
dz
∫ a/2

−a/2
dz′

∫ ∞

0
ρ′ dρ′ n(ρ′, z′)

∫ 2π

0
dφ′ ×

∫ ∞

0
dq J0(q|r′⊥ + r⊥,nn|)

[∫ ∞

0
ρ dρ n(ρ, z)J0(qρ)

]

e−q|z−z′−a/2| ,

(B.17)

where θ is the angle of r′⊥ + r⊥,nn in the (ρ, φ, z) cylindrical coordinate system ⇒

Edir,nn[n] =
e2

2
4π2

∫ a/2

−a/2
dz
∫ a/2

−a/2
dz′

∫ ∞

0
dq J0(2Rq)

[∫ ∞

0
ρ dρ n(ρ, z)J0(qρ)

]

×
[∫ ∞

0
ρ′ dρ′ n(ρ′, z′)J0(qρ

′)
]

e−q|z−z′−a/2| (B.18)

=
e2

2

∑

mν,m′ν′

∫ a/2

−a/2
dz f̄ 2

mν(z)
∫ a/2

−a/2
dz′ f̄ 2

m′ν′(z′) ×
∫ ∞

0
dq J0(2Rq)Gm(q)G′

m(q) exp(−q|z − z′ − a/2|) . (B.19)

Notice that the infinite chain expression for the nearest-neighbor electron-electron

interaction energy is recovered when R = 0 and a/2 is replaced by ±a.
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B.1.3 Solving the differential equations and the total en-

ergy self-consistently

The Kohn-Sham equations [Eqs. (3.35) and (3.41)] are solved on a grid in z. Be-

cause of symmetry we only need to consider z ≥ 0, with z = 0 coincident with an

ion. The number and spacing of the z grid points determine how accurately the

equations can be solved. In this chapter we have attempted to calculate ground-

state chain energies to better than 0.1% numerical accuracy. This requires approx-

imately (depending on Z and B) 33 grid points for each unit cell and 3 cells (for

NQ = 1 there are three cells that require exact treatment: the cell under consid-

eration z ∈ [−a/2, a/2] and its nearest neighbors; the rest of the cells enter the

calculation only through their quadrupole moments). The grid spacing is chosen

to be constant from the center out to the edge of the cell. The shape of the wave

function is found within one cell and then copied to the other cells.

For integration with respect to ρ, ρ′, or q (e.g., when calculating the direct

electron-electron interaction term), our goal of 0.1% accuracy for the total energy

requires an accuracy of approximately 10−5 in the integral. A variable-step-size

integration routine is used for each such integral, where the number of points in the

integration grid is increased until the error in the integration is within the desired

accuracy.

We discussed the boundary conditions for the wave function solutions to the

Kohn-Sham equations (see Section 3.3.3). The only other requirement we have

for these wave functions is that the magnitude of each wave function has the

correct number (ν) of nodes per cell (see Fig. 3.2). In practice, to find fmν0(z)

and fmνπ/a(z) we integrate Eqs. (3.36) and (3.41) from one edge of the z grid
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Figure B.1: Flowchart of our procedure for finding fmνk(z), εmν(k), and σmν self-
consistently.

(e.g., z = a/2) and shoot toward the center (z = 0), adjusting εmν(k = 0) and

εmν(π/a) until the correct boundary condition is satisfied. For the other k values

with energies between these two extremes, we use the given energy to find a wave

function and calculate the k that solves the boundary condition Eq. (3.51), as

discussed in Section 3.3.3.

Our procedure for finding fmνk(z), εmν(k), and σmν self-consistently is shown

in Fig. B.1.3. There are two parts: (i) determining the longitudinal wave functions

fmνk and periodic potential self-consistently, and (ii) determining the electron level

occupations σmν self-consistently.

To determine the fmνk wave functions self-consistently, a trial set of wave func-
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tions and σmν values is first used to calculate the potential as a function of z, and

that potential is used to calculate a new set of wave functions. These new wave

functions are then used to find a new potential, and the process is repeated until

consistency is reached. In practice, we find that fmνk(z) = 0 works well as the

trial wave function and a linear spread of σmν from σ0ν = 1 to σnmν = 0 works

well for the trial σ values. Convergence can be achieved in four or five iterations.

To prevent overcorrection from one iteration to the next, the actual potential used

for each iteration is a combination of the newly-generated potential and the old

potential from the previous iteration (the weighting used is roughly 30% old, 70%

new).

To determine the σmν level occupations self-consistently, we first find the wave

functions and eigenvalues εmν(k) as a function of k self-consistently as described

above. With this information, and given a Fermi level energy εF , we can calculate

new σ values, using the equations in Section 3. The Fermi level energy is adjusted

until
∑

σmν = Z using Newton’s method. These new σmν values are used to

re-calculate the wave functions self-consistently. This process is repeated until

self-consistency is reached, which is typically after about three (for hydrogen at

1012 G) to twelve (for iron at 2 × 1015 G) full iterations.
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APPENDIX C

CHAPTER 6 APPENDIX

C.1 Maximum potential drop for an oblique rotator

For an oblique rotator, with the magnetic inclination angle i much larger than

the polar cap angular size rp/R, the voltage drop across the polar cap is of order

(ΩBp/c)Rrp sin i, which is a factor of R/rp larger than the aligned case. Here we

show explictly that the maximum potential drop across the height of the vacuum

gap is still of order (ΩBp/c)r
2
p.

We will be working in the “lab” frame, where the star rotates with respect to

the observer. For simplicity we approximate the vacuum gap to be a cylinder of

radius rp and height h � R; see Fig. C.1. In reality the bases of the cylinder are

not exactly circular for an oblique rotator, but this does not affect our conclusion.

The gap is small compared to the stellar radius and we can treat it locally, using a

Cartesian coordinate system: z along the gap height and x, y for the distance from

the pole (with x̂ being principally along θ̂ and ŷ along φ̂; θ̂ points in the direction

from the rotational pole to the magnetic pole). The magnetic field in the cylinder

is approximately uniform, B = −Bpẑ.

The electric potential inside the cylindrical gap satisfies ∇2Φ = 0. The potential

at the base and on the walls of the cylinder can be found from E = −c−1[(Ω ×

r) × B]. At the top of the cylinder, the potential satisfies Ez = −∂Φ/∂z = 0.

With these boundary conditions the potential within the cylinder is completely

determined.

Without solving the complete potential problem, here we only consider the
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Figure C.1: A schematic diagram showing the polar gap structure in the cylindrical
approximation.
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potential at the top of the cylinder in the limit of h � rp (but h � R); this

corresponds to the maximum potential drop across the gap. In this limit, the

electric field on the top satisfies not only Ez = 0 but also dEz/dz = 0. Thus the

Laplace equation below the top of the cylinder becomes

d2Φ

dx2
+
d2Φ

dy2
= 0 . (C.1)

To lowest order in x/R and y/R the electric field below the base of the cylinder is

given by

E = −(Ω × r) × B

c
' ΩBpR

c

[(

sin i + cos i
x

R

)

x̂+ cos i
y

R
ŷ
]

. (C.2)

The potential at the base of the cylinder is therefore (using E = −∇Φ and renor-

malizing such that the potential is zero at the pole)

Φbase = −ΩBpR
2

c

[

sin i
x

R
+ cos i

(

x2

2R2
+

y2

2R2

)]

. (C.3)

Since Ez = 0 on the cylindrical wall, the potential on the wall is also given by

Eq. (C.3). The potential at the top of the cylinder must solve Eq. (C.1) and

match the potential on the wall along the upper edge. For a circular polar cap

boundary, given by x2 + y2 = r2
p, the potential at the top is then

Φtop = −ΩBpR
2

c

[

sin i
x

R
+ cos i

r2
p

2R2

]

. (C.4)

From Eqs. (C.3) and (C.4), we find that at the magnetic pole, |Φtop −Φbase| '

(ΩBpr
2
p/2c) cos i, which is the value of the aligned case multiplied by cos i. Fig-

ure C.2 compares the potential at the base and top of the cylindrical gap along

the x axis. We see that although there is a large potential drop across the polar

cap, the potential difference between the top and the base is smaller.

Alternatively, we may examine the problem in the rotating frame, in which the

potential inside the vacuum gap satisfies the equation ∇2Φ = 4πρGJ, where ρGJ
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Figure C.2: Potential along the x̂ (∼ θ̂) direction, through the magnetic pole, both
at the stellar surface and at the top of the vacuum gap, for an oblique rotator. The
magnetic inclination angle is chosen to be i = π/8. The potential is measured in
units of ΩBpr

2
p/2c, the value of the maximum potential drop for an aligned rotator

case.
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is the Goldreich-Julian charge density. The potential at the base and on the wall

of the cylinder is Φ = 0 (since the electric field is zero there). At the top of the

cylinder, we have ∂Φ/∂z = 0. These boundary conditions completely determine

the potential inside the cylinder. For h � rp, we expect the potential drop along

the z-axis, ∆Φ, to grow as h2. But when h becomes larger than rp, the potential

drop ∆Φ will saturate to (ΩBpr
2
p/2c) cos i, similar to the aligned case.

C.2 Scattering rate calculation

In the neutron star rest frame (“lab” frame), the electron (positron) is embedded

in a radiation field with specific intensity Iεi
(Ω̂i). In the electron rest frame,

I ′ε′(Ω̂
′) =

(

ε′

εi

)3

Iεi
(Ω̂i) , (C.5)

where ε′ and εi are related by a Lorentz transformation: ε′ = εiγ(1 − β cos θi).

For a photon coming in along the Ω̂′ direction, the total scattering cross section is

σ′ =
∫

dΩ′
1

(

dσ
dΩ′

1

)

Ω̂′→Ω̂′

1

, which in general depends on Ω̂′ and ε′. The scattering rate

in the electron rest frame is

dN

dt′
=
∫

dΩ′
∫

dε′
I ′ε′

ε′
σ′ . (C.6)

In the lab frame the scattering rate is dN/dt = γ−1(dN/dt′) (e.g., Rybicki &

Lightman 1979). Using dΩ′/dΩi = (εi/ε
′)2 and Eq. (C.5) we have

dN

dt
=
∫

dΩi

∫

dεi (1 − β cos θi)
Iεi

εi
σ′ . (C.7)

Neglecting the angle dependence of σ′ and assuming that the radiation field Iεi
is

semi-isotropic, this becomes

dN

dt
' c

∫

dεi
dnph

dεi
σ′ , (C.8)

which is the same as Eq. (6.25).
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APPENDIX D

CHAPTER 7 APPENDIX

D.1 Resonant inverse Compton scattering

To determine the photon scattering rate for the resonant inverse Compton process

we use the simplified model of an electron positioned directly above the pole and

traveling radially outward (see Fig. D.1).

ε′ = γεi(1 − β cos θi) . (D.1)

σ′
res ' 2π2 e

2h̄

mec
δ(ε′ − εBe) . (D.2)

tan θi,crit = Rth/z . (D.3)

[Note that θi,crit can be no larger than arcsin(R/r).]

Iεi
(θi; r) =















Bεi
(T ) =

ε3i /(4π3h̄3c2)

eεi/kT−1
, θi < θi,crit ,

0 , otherwise.
(D.4)

dNph

dt
=

∫

dΩi

∫

dεi (1 − β cos θi)
(

Iεi

εi

)

σ′
res (D.5)

=
2π2e2h̄

mecγ

∫

θi<θi,crit

dΩi

(

Bεi

εi

)

εi=εBe/[γ(1−β cos θi)]

(D.6)

=
c

γ3a0

(

εBe

mec2

)2 ∫ 1

cos θi,crit

dx/(1 − βx)2

eεBe/[γ(1−βx)kT ] − 1
. (D.7)
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Figure D.1: Simplified picture of the ICS effect on the electron. The electron is
assumed to be directly above the pole traveling radially outward.
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D.2 Photon attenuation and the optical depth for pair pro-

duction

In the frame where the photon is traveling perpendicular to the local magnetic

field direction (the “perpendicular” frame), the first five attenuation coefficients

(the coefficients with the lowest threshold energies) for the photon are (Daugherty

& Harding 1983)

R′
‖,00 =

1

2a0

βQ

x2
√
x2 − 1

e−2x2/βQ , (D.8)

R′
‖,10 = 2 × 1

2a0

2 + βQ − β2
Q

4x2
√

x2 − 1 − βQ +
β2

Q

4x2

e−2x2/βQ , (D.9)

R′
‖,20 = 2 × 1

2a0

2x2

βQ

1 + βQ − β2
Q

2x2
√

x2 − 1 − 2βQ +
β2

Q

x2

e−2x2/βQ , (D.10)

R′
⊥,10 = 2 × 1

2a0

βQ

2x2

2x2 − βQ
√

x2 − 1 − βQ +
β2

Q

4x2

e−2x2/βQ , (D.11)

R′
⊥,20 = 2 × 1

2a0

x2 − βQ
√

x2 − 1 − 2βQ +
β2

Q

x2

e−2x2/βQ . (D.12)

where ξ = 2x2/βQ and x = ε
2mec2

sinψ [Eq. (7.15)]. In the above equations R′
‖,jk

is the attenuation coefficient for parallel polarizations and R′
⊥,jk is the attenua-

tion coefficient for perpendicular polarizations of the photon, and j and k are the

Landau levels of the electron and positron produced by the photon.

Below, we examine the conditions for pair production by a parallel-polarized

photon (the analysis is similar for a perpendicular-polarized photon and yields the

same result). Our goal is to determine when pairs are created in low Landau levels

and when they are created in high Landau levels. We find that above a critical

magnetic field strength Bcrit ' 3× 1012 G, the electrons and positrons are created

at or near threshold (Landau levels n <∼ 2).
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The optical depth for pair production, in the neutron star (“lab”) frame, is

τ =
∫ s

0
dsR(s) =

∫ s′

0
ds′R′(s′) sinψ , (D.13)

where s is the distance traveled by the photon (s in the lab frame and s′ in the

perpendicular frame) and ψ is the photon-magnetic field intersection angle. We

assume here that ψ � 1, which is valid since most photons that can pair produce

will do so long before the angle ψ approaches unity (only photons near threshold,

ε ' 2mec
2, must wait until ψ ∼ 1 to pair produce). In this limit

sinψ ' s

Rc
, (D.14)

so that x and s are related by

x =
s

Rc

ε

2mec2
. (D.15)

For x < 1, the photon cannot pair produce, so R′(s′) = 0. For 1 < x <

0.5(1 +
√

1 + 2βQ), R′(s′) = R′
‖,00(s

′). We define s′00 to be distance traveled by

the photon to reach the first threshold x = 1, and s′01 to be the distance traveled

by the photon to reach the second threshold x = 0.5(1 +
√

1 + 2βQ). The optical

depth to reach the second threshold for pair production is therefore

τ01 =
∫ s01

s00

dsR‖,00(s) (D.16)

=
βQ

2a0

(

2mec
2

ε

)2

Rc

∫

1+
√

1+2βQ

2

1

dx

x
√
x2 − 1

e−2x2/βQ (D.17)

= 9.87 × 1011
(

Rc

108 cm

)(

100 MeV

ε

)2

F (βQ) , (D.18)

where

F (βQ) = βQ

∫

1+
√

1+2βQ

2

1

dx

x
√
x2 − 1

e−2x2/βQ . (D.19)

We plot τ01 as a function of magnetic field strength in Fig. D.2, for ε = 100 MeV

and Rc = 108 cm.
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Figure D.2: Plot of F (βQ) as given by Eq. (D.19) (right axis) and the optical
depth to reach the second threshold for pair production, τ01, as a function of βQ,
for ε = 100 MeV and Rc = 108 cm (left axis).

From Eq. (D.18) we see that pair production occurs at threshold (τ01 ≥ 1)

when

B >∼ Bcrit = 3 × 1012 G. (D.20)

Because of the steep dependence of τ on B forB ∼ 3×1012 G, the value of Bcrit does

not change much for different cascade parameters (photon energy ε and curvature

radius Rc). For example, Bcrit = 3×1012 G for ε = 100 MeV and Rc = 108 cm (see

Fig. D.2), and Bcrit = 7 × 1012 G for ε = 104 MeV and Rc = 106 cm. Eq. (D.18)

also shows that for B <∼ Bcrit, the optical depth τ01 is much less than unity. The

same result is found for the optical depth from the second to the third threshold,

and for higher thresholds. The pair production process can therefore be divided

into two regimes: for B <∼ Bcrit, photons must travel large distances before pair

producing, at which point the pairs will be in high Landau levels; for B >∼ Bcrit,

photons pair produce almost immediately upon reaching threshold (x = 1), so that
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the pairs will be in low Landau levels.

D.3 Electron levels

In the frame where the photon is traveling perpendicular to the local magnetic

field direction, the momentum along the field of an electron (or positron) created

by this photon is given by

p′z = mec

√

x2 − 1 − (j + k)βQ + (j − k)2
β2

Q

4x2
, (D.21)

and its energy is given by

E ′
j = mec

2

√

x2 + (j − k)βQ + (j − k)2
β2

Q

4x2
, (D.22)

where j and k are the Landau levels of the electron and positron produced by

the photon (or vice versa). In the neutron star (“lab”) frame, the energies of the

electron and positron are given by

E =
1

sinψ
(E ′ ± p′zc cosψ) , (D.23)

with one particle being randomly assigned ‘+’ and the other ‘−’. The electron’s

pitch angle Ψ is given by

sin Ψ =
p⊥
p

=

√

2βQj

E2/m2
e − 1

. (D.24)
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