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Diskoseismological modes of accretion disks around compact objects are ex-

plored, in particular p-modes and their interaction with the corotation reso-

nance. A WKB treatment of wave super-reflection due to corotation resonance

and corotation absorption is developed, with super-reflection depending on the

gradient of the so-called “vortensity” of the background flow. This result is ap-

plied to the context of black hole accretion disks where the background space-

time can modify the vortensity gradient so that p-modes trapped in the inner

region of the disk may be amplified. The inner boundary condition for such

disks is also explored in detail, in particular the effect of a transonic flow near

the innermost stable circular orbit of a black hole is examined.

The effect of the corotation absorption is also briefly examined for other

diskoseismic modes with vertical structure, in particular c-modes are shown

to be damped by the absorption, and their damping rate is calculated. The

inner boundary condition for a magnetosphere-disk model is calculated, as

well as that of a star-disk interface. It is shown that interface modes, modes

generated at the inner boundary of the disk, can be strongly unstable in the

magnetosphere-disk model, due to the Rayleigh-Taylor and Kelvin-Helmholtz

instabilities. However, due to the suppressing effect of the disk vorticity in dif-

ferential rotation, the Rayleigh Taylor instability is suppressed (in models with

no shear between the disk and magnetosphere) when sound speed is sufficiently

small, while the Kelvin-Helmhotz instability may still be active for small sound



speed when there is shear between the magnetosphere and disk. Star-disk in-

terface modes are found to be weakly unstable primarily due to wave absorp-

tion at the corotation. Lastly, a procedure for ray-tracing in the Kerr metric is

described, and used to generate images and time-dependant observables from

various disk models.
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CHAPTER 1

INTRODUCTION

Accretion onto compact objects can occur in many systems, including X-ray

binaries, cataclysmic variables, and active galactic nuclei. When the accreting

matter has excess angular momentum, the flow takes the form of an accretion

disk, where the matter undergoes differential rotation around the central ob-

ject with near Keplerian frequency, while turbulent viscosity transports angular

momentum outwards and allows the matter to be accreted.

Accretion disks are ubiquitous in astrophysics, and their study is impor-

tant to understanding many phenomena, ranging from understanding variable

emissions from binary systems to helping determine the extreme spacetime

properties near black holes. Of particular interest are quasi-periodic oscilla-

tions (QPOs) detected in several X-ray binary systems. These are quasi-periodic

variations in the luminosity of X-ray emissions from systems where matter is

accreted onto a neutron star or black hole. There is considerable evidence, from

timing arguments to comparison of spectral components, that the luminosity

variations must arise from the inner regions of the accretion disks in these sys-

tems.

The study of oscillations of accretion disks, so-called “diskoseismology” is

the main subject of this dissertation. The study of the instability of these modes

can help to solve the riddle of QPOs, as unstable diskoseismic modes may be

a source for the luminosity variation observed. In particular we discuss the

diskoseismic instabilities involving density waves traversing their corotation

point.
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In Chapter 2 we describe the basic framework for treating the super reflec-

tion due to the presence of a corotation point in the disk. In differentially ro-

tating disks with no self-gravity, density waves cannot propagate around the

corotation, where the wave pattern rotation speed equals the fluid rotation rate.

Waves incident upon the corotation barrier may be super-reflected (commonly

referred to as the corotation amplifier), but the reflection can be strongly affected

by wave absorptions at the corotation resonance/singularity. The sign of the ab-

sorption is related to the Rossby wave zone very near the corotation radius. We

derive the explicit expressions for the complex reflection and transmission co-

efficients, taking into account wave absorption at the corotation resonance. We

show that for generic disks this absorption plays a much more important role

than wave transmission across the corotation barrier. Depending on the sign of

the gradient of the vortensity of the disk, ζ = κ2/(2ΩΣ) (where Ω is the rotation

rate, κ is the epicyclic frequency, and Σ is the surface density), the corotation

resonance can either enhance or diminish the super-reflectivity, and this can

be understood in terms of the location of the Rossby wave zone relative to the

corotation radius. Our results provide the explicit conditions (in terms of disk

thickness, rotation profile and vortensity gradient) for which super-reflection

can be achieved. Global overstable disk modes may be possible for disks with

super-reflection at the corotation barrier.

In Chapter 3 we study the global stability of non-axisymmetric p-modes

(also called inertial-acoustic modes) trapped in the inner-most regions of ac-

cretion disks around black holes. We show that the lowest-order (highest-

frequency) p-modes, with frequencies ω = (0.5−0.7)mΩISCO (where m = 1, 2, 3, . . .

is the azimuthal wave number, ΩISCO is the disk rotation frequency at the Inner-

most Stable Circular Orbit, ISCO), can be overstable due to general relativistic

2



effects, according to which the radial epicyclic frequency κ is a non-monotonic

function of radius near the black hole. The mode is trapped inside the corotation

resonance radius rc (where the wave pattern rotation speed ω/m equals the disk

rotation rate Ω) and carries a negative energy. The mode growth arises primar-

ily from wave absorption at the corotation resonance, and the sign of the wave

absorption depends on the gradient of the disk vortensity. When the mode fre-

quency ω is sufficiently high, such that dζ/r > 0 at rc, positive wave energy is

absorbed at the corotation, leading to the growth of mode amplitude. The mode

growth is further enhanced by wave transmission beyond the corotation barrier.

We also study how the rapid radial inflow at the inner edge of the disk affects

the mode trapping and growth. Our analysis of the behavior of the fluid pertur-

bations in the transonic flow near the ISCO indicates that, while the inflow tends

to damp the mode, the damping effect is sufficiently small under some condi-

tions (e.g., when the disk density decreases rapidly with decreasing radius at

the sonic point) so that net mode growth can still be achieved. We further clar-

ify the role of the Rossby wave instability and show that it does not operate

for black hole accretion disks with smooth-varying vortensity profiles. Over-

stable non-axisymmetric p-modes driven by the corotational instability provide

a plausible explanation for the high-frequency (>∼ 100 Hz) quasi-periodic oscil-

lations (HFQPOs) observed from a number of black-hole X-ray binaries in the

very high state. The absence of HFQPOs in the soft (thermal) state may result

from mode damping due to the radial infall at the ISCO.

In Chapter 4 we discuss the effect of the corotation singularity on so-called

corrugation waves, or c-modes. Diskoseismic c-modes in accretion disks have

been invoked to explain low-frequency variabilities observed in black-hole X-

ray binaries. These modes are trapped in the inner-most region of the disk

3



and have frequencies much lower than the rotation frequency at the disk in-

ner radius. We show that because the trapped waves can tunnel through the

evanescent barrier to the corotational wave zone, the c-modes are damped due

to wave absorption at the corotation resonance. We calculate the corotational

damping rates of various c-modes using the WKB approximation. The damp-

ing rate varies widely depending on the mode frequency, the black hole spin

parameter and the disk sound speed, and is generally much less than 10% of

the mode frequency. A sufficiently strong excitation mechanism is needed to

overcome this corotational damping and make the mode observable.

Chapter 5 explores the effect of a magnetosphere or star surface as the inner

boundary for an accretion disk on modes confined to the disk/magnetosphere

or disc/star interface. Such boundaries may lead to the development of

Rayleigh-Taylor or Kelvin-Helmholtz type instabilities. We find that the fluid

vorticity due to differential rotation acts to suppress these modes, unless, for

the disk/magnetosphere case, the disk is sufficiently hot. We find that in the

disk/star case the effective gravity also helps to suppress instability, and only

the corotation absorption can drive an instability, if the surface density index is

sufficiently high.

Finally in Chapter 6, we describe a raytracing engine for use in the Kerr

metric to calculate observables for disks located around rotating black holes.

We present a user-interface for generating disk images and line profiles, as well

as demonstrating the calculation of the observed polarization and of the time

dependent changes in observed flux due to the types of perturbations discussed

in earlier chapters.
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CHAPTER 2

SUPER-REFLECTION IN FLUID DISKS: COROTATION AMPLIFIER,

COROTATION RESONANCE, ROSSBY WAVES, AND OVERSTABLE

MODES

2.1 Introduction

Differentially rotating fluid disks, ubiquitous in astrophysics, are known to ex-

hibit rich dynamics and possible instabilities (e.g. Papaloizou & Lin 1995; Bal-

bus & Hawley 1998). While local instabilities, such as Rayleigh’s centrifugal

instability (for disks with specific angular momentum decreasing outwards),

gravitational instability (for self-gravitational disks with too large a surface den-

sity, or more precisely, Toomre Q <∼ 1), and magnetorotational instability (for

disks with a sub-thermal magnetic field), are well understood (at least in the

linear regime), global effects and instabilities are more subtle, since they in-

volve couplings and feedbacks of fluid at different locations (see Goldreich 1988

for an introduction/review). A well-known example is the corotation amplifier

(e.g. Mark 1976; Narayan, Goldreich & Goodman 1987), which arises from the

interaction across the corotation between waves carrying opposite signs of an-

gular momentum. Much stronger corotation amplifications (WASER – wave

amplification by the stimulated emission of radiation, and SWING amplifiers)

can be achieved for self-gravitating disks (e.g., Goldreich & Lynden-Bell 1965;

Julian & Toomre 1966; Lin & Lau 1975; see Shu 1992 for a review). Another well-

known example is the Papaloizou-Pringle instability in finite accretion tori (con-

fined between two free surfaces), in which coupling between waves inside the

corotation with those outside, combined with reflecting inner and outer bound-

5



aries, leads to violent overstable modes (Papaloizou & Pringle 1984; Goldreich

et al. 1986). Recent works on global disk instabilities include the Rossby wave

instability (for disks with a strong enough density or vortensity bump; Lovelace

et al. 1999; Li et al. 2000) and the accretion-ejection instability (for magnetized

disks; Tagger & Pellat 1999, Tagger & Varniere 2006).

In this chapter we are interested in 2D fluid disks without self-gravity and

magnetic field. For disturbances of the form eimφ−iωt, where m > 0 and ω is the

wave (angular) frequency (and thus ωp = ω/m is the pattern frequency), the

well-known WKB dispersion relation for density waves takes the form (e.g.,

Shu 1992)

(ω − mΩ)2
= ω̃2

= κ2
+ k2

r c2, (2.1)

where Ω is the disk rotation frequency, ω̃ = ω − mΩ is the Doppler-shifted wave

frequency, κ is the radial epicyclic frequency, kr is the radial wavenumber, and

c is the sound speed. Thus waves can propagate either inside the inner Lind-

blad resonance radius rIL (defined by ω̃ = −κ) or outside the outer Lindblad

resonance radius rOL (defined by ω̃ = κ), while the region around the corota-

tion radius rc (set by ω̃ = 0) between rIL and rOL is evanescent. Since the wave

inside rIL has pattern speed ωp smaller than the fluid rotation rate Ω, it carries

negative wave action (or angular momentum), while the wave outside rOL car-

ries positive wave action. As a result, a wave incident from small radii toward

the corotation barrier will be super-reflected, (with the reflected wave having a

larger amplitude than the incident wave amplitude) if it can excite a wave on

the other side of the corotation barrier. If there exists a reflecting boundary at

the inner disk radius rin, then a global overstable mode partially trapped be-

tween rin and rIL will result (see, e.g. Narayan et al. 1987 for specific examples in

the shearing sheet model, and Goodman & Evans,1999 and Shu et al. 2000 for
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global mode analysis of singular isothermal disks).

The simple dispersion relation (2.1), however, does not capture an important

effect in the disk, i.e., corotation resonance or corotation singularity. Near coro-

tation |ω̃| ≪ κ, the WKB dispersion relation for the wave is [see equation (2.17)

below]

ω̃ =
2Ωkφ

k2
r + k2

φ + κ
2/c2

(

d
dr

ln
κ2

2ΩΣ

)

c

, (2.2)

where kφ = m/r and Σ is the surface density, and the subscript “c” implies that

the quantity is evaluated at r = rc. The quantity

ζ ≡ κ2

2ΩΣ
=

(∇ × u0) · ẑ
Σ

(2.3)

is the vortensity of the (unperturbed) flow (where u0 is the flow velocity). The

dispersion relation (2.2) describes Rossby waves, analogous to those studied in

geophysics (e.g. Pedlosky 1987) 1. For k2
r ≫ κ2/c2 and k2

r ≫ k2
φ, we see that Rossby

waves can propagate either outside the rotation radius rc (when dζ/dr > 0) or

inside rc (when dζ/dr < 0). In either case, we have kr → ∞ as r → rc. This

infinite wavenumber signifies wave absorption (cf. Lynden-Bell & Kalnajs 1972

in stellar dynamical context; Goldreich & Tremaine 1979 in the context of wave

excitation in disks by a external periodic force; see also Kato 2003, Li et. al.

2003, and Zhang & Lai 2006 for wave absorption at the corotation in 3D disks).

At corotation, the wave pattern angular speed ω/m matches Ω, and there can be

efficient energy transfer between the wave and the background flow, analogous

to Landau damping in plasma physics. Narayan et al. (1987) treated this effect

as a perturbation of the shearing sheet model, and showed that the corotational

absorption can convert neutral modes in a finite shearing sheet into growing or

1A Rossby wave propagating in the Earth’s atmosphere satisfies the dispersion relation ω̃ =

(2kφ/k2R)(∂Ω3/∂θ), where k2
= k2

φ + k2
θ , Ω3 = Ω cosθ is the projection of the rotation rate on the

local surface normal vector and θ is the polar angle (co-latitude).
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decaying modes. Papaloizou & Pringle (1987) used a WKB method to examine

the effect of wave absorption at corotation on the nonaxisymmetric modes in an

unbound (with the outer boundary extending to infinity) cylindrical torus.

In this chapter, we derive explicit expressions for the complex reflection coef-

ficient and transmission coefficient for waves incident upon the corotation bar-

rier. We pay particular attention to the behavior of perturbations near the coro-

tation resonance/singularity. Our general expressions include both the effects

of corotation amplifier and wave absorption at corotation (which depends on

dζ/dr). We show explicitly that depending on the sign of dζ/dr, the corotation

resonance/singularity can either enhance or diminish the super-reflectivity, and

this can be understood in terms of the location of the Rossby wave zone relative

to the corotation radius.

Our chapter is organized as follows. After presenting the general perturba-

tion equations (section 2), we discuss the the wave dispersion relation and prop-

agation diagram, and derive the local solutions for the wave equation around

the Lindblad resonances and corotation resonance (section 3). We then construct

global WKB solution for the wave equation, and derive the wave reflection,

transmission and corotational damping coefficients in section 4. An alternative

derivation of the wave damping coefficient is presented in section 5. Readers

not interested in technical details can skip Sections 2-5 and concentrate on Sec-

tion 6, where we illustrate our results and discuss their physical interpretations.

Section 6.1 contains a numerical calculation of the wave reflectivity across coro-

tation and discusses the limitation of the WKB analysis. We discuss how global

overstable modes may arise when super-reflection at the corotation is present in

section 7 and conclude in section 8.
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2.2 Perturbation Equations

We consider a geometrically thin gas disk and adopt cylindrical coordinate sys-

tem (r, φ, z). The unperturbed disk has an integrated surface density Σ(r) and

velocity u0 = (0, rΩ, 0). The flow is assumed to be barotropic, so that the inte-

grated pressure P depends only on Σ. Self gravity of the disk is neglected.

The linear perturbation equations for the flow read

∂

∂t
δu + (u0 · ∇)δu + (δu · ∇)u0 = −∇δh, (2.4)

∂

∂t
δΣ + ∇ · (Σ δu + u0 δΣ) = 0, (2.5)

where δΣ, δu and δh = δP/Σ are the (Eulerian) perturbations of surface density,

velocity and enthalpy, respectively. For barotropic flow, δh and δΣ are related by

δh = c2δΣ

Σ
, (2.6)

where c is the sound speed, with c2
= dP/dΣ.

We assume that the φ and t dependence of the perturbation are of the form

δu, δΣ, δh ∝ eimφ−iωt, (2.7)

where m is a positive integer, and ω is the wave (angular) frequency. We pre-

sume ω > 0 so that the pattern (angular) speed of the perturbation ωp = ω/m

is positive (in the same direction as the flow rotation). Note that we usually

assume ω is real, except in section 3.2 (dealing with the perturbation near coro-

tation) where we include a small imaginary part (ω = ωr + iωi, with ωi > 0) to

represent slowly growing disturbances. The perturbation equations (2.4)-(2.5)
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become

−iω̃
Σ

c2
δh +

1
r
∂

∂r
(Σrδur) +

im
r
Σδuφ = 0, (2.8)

−iω̃δur − 2Ωδuφ = −
∂

∂r
δh, (2.9)

−iω̃δuφ +
κ2

2Ω
δur = −

im
r
δh, (2.10)

where the epicyclic frequency κ is given by

κ2
=

2Ω
r

d
dr

(r2
Ω). (2.11)

Eliminating δur and δuφ from equations (2.8)-(2.10), we obtain a standard

second-order differential equation governing δh (e.g., Goldreich & Tremaine

1979):
[

d2

dr2
− d

dr

(

ln
D
rΣ

) d
dr
− 2mΩ

rω̃

(

d
dr

ln
ΩΣ

D

)

− m2

r2
− D

c2

]

δh = 0, (2.12)

where

D ≡ κ2 − ω̃2
= κ2 − (ω − mΩ)2. (2.13)

Defining

S = D/(rΣ), η = S −1/2δh, (2.14)

we can rewrite (2.12) as a wave equation
[

d2

dr2
− D

c2
− m2

r2
− 2mΩ

rω̃

(

d
dr

ln
ΩΣ

D

)

− S 1/2 d2

dr2
S −1/2

]

η = 0 . (2.15)

This is our basic working equation.

2.3 Propagation Diagram and Local Solutions Near Resonances

Consider local free wave solution of the form

δh ∝ exp



















i

r
∫

kr(s)ds



















. (2.16)
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For |krr| ≫ m and away from the D = 0 region, we find from equation (2.15)

k2
r +

D
c2
+

2mΩ
rω̃

(

d
dr

ln
ΩΣ

D

)

≃ 0. (2.17)

This is the general WKB dispersion relation. Away from the region where ω̃ = 0,

this reduces to the well-known result k2
r ≃ −D/c2 [equation (2.1)]; in the vicinity

of ω̃ = 0 this describes local Rossby waves, with [see equations (2.2)-(2.3)]

ω̃ ≃ 2mΩ
rk2

r

(

d ln ζ
dr

)

c

. (2.18)

Before studying global solutions to the wave equation (2.12) or (2.15), it is

useful to consider the special resonant locations in the disk. These can be rec-

ognized by investigating the singular points and turning points of the wave

equation (2.12) or (2.15), or by examining the characteristics of the dispersion

relation (2.17). The special radii are

(i) Lindblad resonances (LRs), where D = 0 or ω̃2
= κ2, including the outer

Lindblad resonance (OLR) at ω̃ = κ and the inner Lindblad resonance (ILR)

at ω̃ = −κ. The LRs are apparent singularities of equation (2.12) or (2.15) – all

physical quantities are finite at D = 0. The LRs are turning points at which wave

trains are reflected or transmitted. In the presence of an external force, waves

are launched from LRs.

(ii) Corotation resonance (CR), where ω̃ = 0. In general, the CR is a singular

point of the wave equation except in the special case of dζ/dr = 0 at corotation.

Some physical quantities (e.g., azimuthal velocity perturbation) are divergent

at corotation. Physically, this singularity signifies that a steady emission or ab-

sorption of wave action may occur there.

From equation (2.15), we define the effective potential for wave propagation
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by

Veff(r) =
D
c2
+

m2

r2
+

2mΩ
rω̃

(

d
dr

ln
ΩΣ

D

)

+ S 1/2 d2

dr2
S −1/2

= Veff,0(r) + ∆Veff(r), (2.19)

where

Veff,0(r) =
D
c2
+

m2

r2
− 2mΩ

rω̃

(

d
dr

ln ζ

)

, (2.20)

∆Veff(r) = −2mΩ
rω̃

d
dr

ln
D
κ2
+ S 1/2 d2

dr2
S −1/2. (2.21)

Clearly, wave propagation is possible only in the region where Veff(r) < 0. Fig-

ures 1-3 depict the wave propagation diagrams for the cases of (dζ/dr)c = 0, < 0

and > 0, respectively. We are interested in the parameter regime c/(rΩ) ≪ 1 and

m is of order unity. Note that the apparent singularity in ∆Veff(r) at D = 0 can

be eliminated by analysing the wave solution around the LRs (see section 3.1

below). Thus we also show Veff,0(r) in Figs. 1-3.

We now consider the behaviors of the perturbations around the LRs and CR.

2.3.1 Solution Around Lindblad Resonances

Equation (2.15) has an apparent singularity at the LRs, where D → 0. For con-

creteness we will explicitly examine the outer Lindblad resonance (OLR); a sim-

ilar solution can be found for the inner Lindblad resonance (ILR).

In the vicinity of the OLR, equation (2.15) becomes

d2

dr2
η +

(

k2 − k
d2

dr2

1
k
+

4mΩ
rω̃k

dk
dr

)

η = 0, (2.22)
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Figure 2.1: Wave propagation diagram in Keplerian disks: A sketch of the ef-
fective potential Veff,0(r) (solid line) and Veff(r) (dashed line) as a function of r,
for the case of (dζ/dr)c = 0. Waves can propagate only in the region where
Veff(r) < 0, i.e., where the curves are below the dotted line. The three special
locations are denoted by IL (Inner Lindblad Resonance), OL (Outer Lindblad
Resonance) and CR (Corotation Resonance). The divergence in the Veff(r) curve
around IL and OL represents an apparent singularity.
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Figure 2.2: Same as Fig. 1, except for the case of negative vortensity gradient,
(dζ/dr)c < 0 (or ν < 0). Note the CR represents a singularity, and the Rossby
wave zone lies inside the corotation radius.
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Figure 2.3: Same as Fig. 1, except for the case of positive vortensity gradient,
(dζ/dr)c > 0 (or ν > 0), for which the Rossby wave zone lies outside the corota-
tion radius.
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where k2 ≡ −D/c2. The last term inside (· · · ) is smaller than the second term and

will be neglected. Changing the independent variable from r to the dimension-

less integrated phase

z =

r
∫

rOL

k dr, (2.23)

we have

V ′′ +













k′′

2k
− 3

4

(

k′

k

)2

+ 1













V = 0, (2.24)

where

V =
√

k η =

√

k
S
δh, (2.25)

and the prime denotes differentiation with respect to z. Note that near OLR,

k2 ≃ C(r − rOL), with C = (−c−2dD/dr)OL > 0 a constant, we have

z =

{ 2
3C1/2(r − rOL)3/2 for r > rOL

2
3C1/2(rOL − r)3/2ei3π/2 for r < rOL

(2.26)

We can then express k in terms of z as

k =

(

3
2

C

)1/3

z1/3 . (2.27)

Using equation (2.27) in equation (2.24) we have

V ′′ +

(

1− 7
36z2

)

V = 0 . (2.28)

Equation (2.28) has two independent solutions in terms of Bessel function

(Abramowitz & Stegun 1964)

V =
√

zJ±2/3(z) =
1

(12z)1/6

[

±
√

3Ai′(−Z) + Bi′(−Z)
]

, (2.29)

where Z = (3z/2)2/3, and Ai ′, Bi′ are the derivatives of the Airy functions. Instead

of using
√

zJ±2/3(z), we we can construct two linearly independent solutions for
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η in a form convenient for asymptotic matching:

η1 = −
(

π

k

)1/2
(

2
3z

)1/6

Ai ′(−Z) ∼
{ 1√

k
cos(z + π/4) for |z| ≫ 1 and arg(z) = 0

1
2
√

k
exp(−|z|) for |z| ≫ 1 and arg(z) = 3π/2

(2.30)

η2 =

(

π

k

)1/2
(

2
3z

)1/6

Bi′(−Z) ∼
{ 1√

k
sin(z + π/4) for |z| ≫ 1 and arg(z) = 0

1√
k

exp(|z|) for |z| ≫ 1 and arg(z) = 3π/2

(2.31)

where ∼ indicates asymptotic expansions. This gives the connection formulae

for the enthalpy perturbation at the OLR2:

δh1 ∼
{ 1

2

√
S/k exp

(

−
∫ rOL

r
|k| dr

)

for r ≪ rOL

√
S/k cos

(∫ r

rOL
k dr + π/4

)

for r ≫ rOL

(2.32)

δh2 ∼
{

√
S/k exp

(∫ rOL

r
|k| dr

)

for r ≪ rOL

√
S/k sin

(∫ r

rOL
k dr + π/4

)

for r ≫ rOL

(2.33)

The connection formulae for ILR can be similarly derived: 3

δh1 ∼
{ 1

2

√
S/k exp

(

−
∫ r

rIL
|k| dr

)

for r ≫ rIL

√
S/k cos

(∫ rIL

r
k dr + π/4

)

for r ≪ rIL

(2.34)

δh2 ∼
{

√
S/k exp

(∫ r

rIL
|k| dr

)

for r ≫ rIL

√
S/k sin

(∫ rIL

r
k dr + π/4

)

for r ≪ rIL

(2.35)

2The usage here of≫ is used as a shorthand for the range of validity for an asymptotic expan-
sion of a local solution. The fitting formulae are to be used far enough away from the resonances
so that the asymptotic expansion is valid, but close enough that the local approximation made
in (22) holds.

3Note that for the ILR, k is real for r < rIL and imaginary for r > rIL , while for the OLR, k is
real for r > rOL and imaginary for r < rOL.
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2.3.2 Solution Around Corotation Radius

In the vicinity of the corotation radius rc, we can rewrite (2.15) dropping the

m2/r2 and S terms compared to the singular term proportional to 1/ω̃, giving

[

d2

dr2
− k̃2
+

2
q

(

d
dr

ln
κ2

ΩΣ

)

c

1
r − Rc

]

η = 0, (2.36)

where

k̃2 ≡ D
c2
, q ≡ −

(

d lnΩ
d ln r

)

c

, Rc ≡ rc − i
rcωi

qωr
. (2.37)

Here we have introduced a small imaginary part to the wave frequency, so that

ω = ωr + iωi. To study the response of the disk to a slowly increasing perturba-

tion, we require ωi > 0. Defining

x =

r
∫

rc

2k̃ dr, η =
1
√

k̃
ψ, (2.38)

and recognizing that k̃ can be treated as a constant around corotation, we have

d2

dx2
ψ +

(

−1
4
+

ν

x + iǫ

)

ψ = 0 (2.39)

where ǫ = 2k̃rcωi/(qωr) and

ν =
1

qk̃

(

d
dr

ln
κ2

ΩΣ

)

c

=

(

c
qκ

d
dr

ln ζ

)

c

. (2.40)

In equation (2.39) ǫ > 0, consistent with the initial value problem in which the

perturbation is gradually turned on starting from t = −∞. The parameter ν

determines the width of the Rossby wave region, ∆rR = (2c/κ)|ν|. For d ln ζ/dr ∼

1/r, we have |ν| ∼ (H/r)c (H is the disk scale height). 4

Equation (2.39) is the differential equation for the Whittaker function in com-

plex variable z = x + iǫ with index 1/2 (Abramowitz & Stegun 1964). The two

4Note that the WKB wavenumber kr in the Rossby region ranges from∞ (at r = rc) to H−1 (at
r ∼ rc ±∆rR) [see equation (18)] while the width of the region is of order H2/r for most Keplerian
disks. Free Rossby waves tend to be sheared away by differential rotation (Tagger 2001).
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linearly independent solutions convenient for the connection are

ψ− =Wν,1/2(z), ψ+ = e−iπνW−ν,1/2(ze−iπ) +
1
2

T0Wν,1/2(z), (2.41)

where T0 is the Stokes multiplier defined below, and z is defined in the com-

plex plane so that arg(z) ranges from 0 to π. The particular linear combinations

of Whittaker functions in (2.41) are chosen so that appropriate asymptotic ex-

pansions can be obtained. To obtain these asymptotic expansions and the con-

nection formulae around the corotation, one must carefully consider the Stokes

phenomenon, which alters the form of the asymptotic expansion of a function

depending on the position of z in the complex plane. Since the appropriate

asymptotic expansions (which connect the solution W±ν,1/2 analytically in dif-

ferent regions of the complex plane) are not readily available, we relegate the

discussion of the Stokes phenomenon for the Whittaker function around the

corotation to Appendix A5. The resulting connection formulae are

δh− ∼
{

√
S/k exp

(

−
∫ r

rc
k̃ dr

)

r ≫ rc

√
S/k eiπν exp

(

+

∫ rc

r
k̃ dr

)

+
√

S/k T1
2 e−iπν exp

(

−
∫ rc

r
k̃ dr

)

r ≪ rc .

(2.42)

δh+ ∼
{

√
S/k exp

(

+

∫ r

rc
k̃ dr

)

r ≫ rc

√
S/k T0

2 eiπν exp
(

+

∫ rc

r
k̃ dr

)

+
√

S/k
(

1+ T1T0
4

)

e−iπν exp
(

−
∫ rc

r
k̃ dr

)

r ≪ rc

(2.43)

where T0 and T1 are the Stokes multipliers,

T0 =
2πi

Γ(ν)Γ(1+ ν)
, T1 =

2πi ei2πν

Γ(−ν)Γ(1− ν) . (2.44)

Note that for |ν| ≪ 1, [Γ(±ν)]−1
= ±ν + γν2

+ · · · , where γ = 0.5772is the Euler

constant.

5The Stokes phenomenon is present in our Lindblad resonance analysis as well, as we see,
for example, the asymptotic expansion for Bi′(−(3z/2)2/3) takes the form e+|z| for arg(z) = 3π/2 but
sin(z + π/4) (as opposed to eiz) for arg(z) = 0. The resulting connection formulae are well known
for the Airy functions.
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2.4 Global WKB Solutions and Calculation of Reflectivity

In this section we consider a wave train which approaches corotation from small

radii (r ≪ rIL ). Its propagation is impeded by the potential barrier between

rIL and rOL. The incident wave is partially transmitted beyond the OLR and a

reflected wave propagates from the ILR toward small radii. We will derive the

explicit expressions for the (complex) reflection coefficient R and transmission

coefficient T .

From the dispersion relation [equation (2.1), or equation (2.17) away from

corotation], we find that the radial group velocity of the waves is

cg =
dω
dkr
=

krc2

ω̃(1− κ2/ω̃2)
. (2.45)

Thus the sign of cg/cp (where cp = ω/kr is the phase velocity) is positive for r >

rOL and negative for r < rIL . This implies that in the r > rOL region, the outgoing

(transmitted) wave has the form exp(i
∫ r

kr dr) (assuming kr > 0). In the r < rIL

region, the incident wave (propagating from small radii toward corotation) has

the form exp(−i
∫ r

kr dr), while the reflected wave has the form exp(i
∫ r

kr dr).

A well-known property of density waves is that for r < rIL the wave carries

negative energy (or angular momentum), while for r > rOL the wave carries pos-

itive energy. An incident wave exp(−i
∫ r

kr dr), carrying energy of the amount

(−1), will give rise to a reflected wave R exp(i
∫ r

kr dr) and a transmitted wave

T exp(i
∫ r

kr dr). Let Dc be the energy dissipated at the corotation. Then energy

conservation gives −1 = (−1)|R|2 + |T |2 +Dc, or

|R|2 = 1+ |T |2 +Dc. (2.46)

Because of the singularity at corotation and the associated energy absorption,
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we first consider the simple case where the corotation singularity is neglected

(section 4.1) before examining the general case (section 4.2).

2.4.1 Neglecting Corotation Singularity: Corotation Amplifier

Here we consider the case where the vortensity has zero slope at corotation,

i.e., (dζ/dr)c = 0. This would occur for disk models where the specific angular

momentum r2
Ω is constant (as in the original Papaloizou & Pringle 1984 anal-

ysis), or for shearing sheet approximation (as in Narayan et al. 1987). In this

case, there is no corotation singularity and no absorption of wave energy, and

we always obtain super-reflection

|R|2 = 1+ |T |2 > 1. (2.47)

This is the essence of the corotation amplifier.

To derive the complex R and T , we assume that the outgoing wave in the

r > rOL region (region III in Fig.2.1) is given by [see eqs. (2.32)-(2.33)]

δh =
√

S/k exp





















i

r
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k dr +
π

4





















, (2.48)

where k2 ≡ −D/c2. The connection formulae (2.32)-(2.33) then give for the

evanescent zone (region II in Fig. 1):

δh ≃
√

S/k
2

exp


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+ i
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2
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|k|dr


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
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+ i
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S/k exp(+ΘII ) exp
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(2.49)

where

ΘII =

rOL
∫

rIL

|k| dr =

rOL
∫

rIL

√
|D|
c

dr. (2.50)
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Using the connection formulae at ILR [eqs. (2.34)-(2.35)], we find that for r < rIL

(region I in Fig. 1)

δh ≃
√

S/k
2

e−ΘII sin
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4
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√

S/keΘII cos





















rIL
∫

r

k dr +
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. (2.51)

Expressing this in terms of traveling waves, and defining y =
∫ r

rIL
kdr − π/4 we

have

δh ≃ i
√

S/k

[

e−iy

(

e+ΘII − 1
4

e−ΘII

)

+ e+iy

(

eΘII +
1
4

e−ΘII

)]

. (2.52)

Thus the reflection coefficient is

R =
eΘII +

1
4e−ΘII

eΘII − 1
4e−ΘII

. (2.53)

Comparing equation (2.52) with equation (2.48), we obtain the transmission co-

efficient

T = −i

e+ΘII − 1
4e−ΘII

. (2.54)

As expected, |R|2 = 1+ |T |2 > 1.

2.4.2 Including Corotation Singularity

As noted before, for disks with nonzero vortensity gradient (dζ/dr , 0), the sin-

gularity at corotation implies the absorption of wave energy (or angular mo-

mentum). Similar situations occur in geophysical wave systems (Dickenson

1968) and for waves in plasmas (Landau damping). In Appendix B, we dis-

cuss the toy problem of resonant tunneling which shares the similar energy ab-

sorption feature as the corotation singularity. Previous works on global modes

in disk tori (e.g. Papaloizou & Pringle 1987; Goldreich et al. 1986; Narayan et

al. 1987) suggest that the sign of dζ/dr determines whether the singularity acts
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to stabilize or destabilize a global mode. Here we derive the explicit expression

for the reflectivity and the related source term Dc.

As in section 4.1, we assume an outgoing wave in Region III, and the con-

nection formulae at the OLR then give for Region IIb of Fig. 2.2 or Fig. 2.3

δh ≃
√

S/k
2

exp(−ΘIIb) exp
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, (2.55)

where

ΘIIb =

rOL
∫

rc

|k| dr. (2.56)

Equation (2.55) is the asymptotic solution away from the rc in region IIb. The

corresponding general solution around rc is

δh =

√
S/k
2

exp(−ΘIIb)ψ+(r) + i
√

S/k exp(ΘIIb)ψ−(r), (2.57)

where ψ+ and ψ− are given by (2.41). Using equations (2.42) and (2.43) to match

asymptotes over the corotation singularity, we obtain in Region IIa

δh ≃
[

1
2

exp(−ΘIIb)(1+
1
4

T0T1) +
i
2

T1 exp(+ΘIIb)

]
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+i
[
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

. (2.58)
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Using the connection formulae at the ILR, we have for Region I:

δh ≃
[

1
2

exp(−ΘII )

(

1
1
4

T0T1

)

+
i
2

T1 exp(ΘIIb − ΘIIa)

]

√

S/k e−iπν sin
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1
4
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)

+
i
4
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]

i
√

S/k eΘII eiπνeiy

+

[

1− 1
4
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1+
1
4

T0T1
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− i
4

T1e−i2πνe−2ΘIIa − i
4

T0e−2ΘIIb

]

i
√

S/k eΘII eiπνe−iy, (2.59)

where y =
∫ r

rIL
kdr − π/4 and

ΘIIa =

rc
∫

rIL

|k| dr, ΘII = ΘIIa + ΘIIb =

rOL
∫

rIL

|k| dr. (2.60)

The reflection coefficient and transmission coefficient are then

R =
1+ 1

4 e−i2πνe−2ΘII
(

1+ 1
4T0T1

)

+
i
4T1e−i2πνe−2ΘIIa − i

4T0e−2ΘIIb

1− 1
4 e−i2πνe−2ΘII

(

1+ 1
4T0T1

)

− i
4T1e−i2πνe−2ΘIIa − i

4T0e−2ΘIIb

,

=

1+ 1
4

(

e−i2πν
+ sin2 πν

)

e−2ΘII +
πν
2

e−2ΘIIa

(Γ(1−ν))2 − πν
2

e−2ΘIIb

(Γ(1+ν))2

1− 1
4

(

e−i2πν + sin2 πν
)

e−2ΘII − πν
2

e−2ΘIIa

(Γ(1−ν))2 − πν
2

e−2ΘIIb

(Γ(1+ν))2

(2.61)

T = −i e−ΘII eiπν

1− 1
4 e−i2πνe−2ΘII

(

1+ 1
4T0T1

)

− i
4T1e−i2πνe−2ΘIIa − i

4T0e−2ΘIIb

=
−ie−ΘII eiπν

1− 1
4

(

e−i2πν + sin2 πν
)

e−2ΘII − πν
2

e−2ΘIIa

(Γ(1−ν))2 − πν
2

e−2ΘIIb

(Γ(1+ν))2

(2.62)

The dissipation term due to the corotation singularity obtained fromDc = |R|2−

1− |T |2 is

Dc =

πν
2

cos2 πν
(Γ(1+ν))2 e−2ΘII−2ΘIIb +

2πν
(Γ(1−ν))2 e−2ΘIIa

|1− 1
4

(

e−i2πν + sin2 πν
)

e−2ΘII − πν
2

e−2ΘIIa

(Γ(1−ν))2 − πν
2

e−2ΘIIb

(Γ(1+ν))2 |2
. (2.63)
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For |ν| ≪ 1 equations (2.61) and (2.62) can be simplified, and we have

R →
eΘII +

1
4e−ΘII

eΘII − 1
4e−ΘII

+
e+2ΘIIb − 1

4e−2ΘIIb

(

eΘII − 1
4e−ΘII

)2
πν + O[ν2], (2.64)

T → −i

eΘII − 1
4e−ΘII

− i
2

eΘIIb−ΘIIa − eΘIIa−ΘIIb

(

eΘII − 1
4e−ΘII

)2
πν + O[ν2], (2.65)

Dc →
2
(

eΘII +
1
4e−ΘII

) (

e2ΘIIb − 1
4e−2ΘIIb

)

+

(

eΘIIb−ΘIIa − eΘIIa−ΘIIb
)

(

eΘII − 1
4e−ΘII

)3
πν + O[ν2].(2.66)

Clearly, for ν = 0, equations (2.64)-(2.65) reduce to (2.53) and (2.54).

2.5 Wave Damping at Corotation: Alternative Calculation

In the previous section we obtained the expression for the dissipation term Dc

at the corotation resonance using the reflection and transmission coefficients.

Here we provide a more direct derivation of Dc using the change of angular

momentum flux across the corotation radius.

In the absence of self-gravity, the angular momentum flux carried by the the

waves in the disk is entirely due to advection. The time-averaged transfer rate

of the z-component of angular momentum across a cylinder of radius r (in the

outward direction) is given by (e.g. Goldreich & Tremaine 1979)

F(r) = r2
Σ(r)

2π
∫

0

dφRe[δur(r, φ, t)]Re[δuφ(r, φ, t)]. (2.67)

Using equations (2.9)-(2.10) to express δur and δuφ in terms of δh, this reduces to

(see Tanaka et al. 2002; Zhang & Lai 2006)

F(r) =
πmrΣ

D
Im

(

δh
dδh∗

dr

)

. (2.68)

25



In Region III (see Figs. 1-3) the outgoing wave has the enthalpy perturbation

given by (up to a proportional constant)

δh =
√

S/kT exp


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(2.69)

Calculating the angular momentum flux (setting the incoming wave flux to 1),

F(r ≫ rOL) ≃ πm|T |2, (2.70)

we see that angular momentum is transferred outwards (positive flux) since

waves in r > rOL carries positive angular momentum. For Region I we have [up

to the same proportional constant as in (2.69)]
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, (2.71)

which gives the angular momentum flux:

F(r ≪ rIL ) ≃ πm(|R|2 − 1). (2.72)

We see that the incident wave carries negative angular momentum outward,

and the reflected wave transfers positive angular momentum. The net angular

momentum transfer is positive (in the outward direction) for |R| > 1.

Now consider the angular flux near the corotation radius, at r = r−c (just

inside corotation ) and at r = r+c (just outside corotation). Integrating equa-

tion (2.36) across the singularity, we find the discontinuity in the enthalpy per-

turbation derivatives:

d δh
dr

∣

∣

∣

∣

∣

r+c

− d δh
dr

∣

∣

∣

∣

∣

r−c

=
2πi
q

(

d
dr

ln ζ

)

δh
∣

∣

∣

∣

∣

rc

= 2πνi
κ

c
δh

∣

∣

∣

∣

∣

rc

. (2.73)

Here we have chosen to integrate from r−c to r+c by going through the upper

complex plane, to be consistent with the physical requirement of a gradually
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growing perturbation, turned on at t = −∞. Thus the change in the angular

momentum flux across the corotation is

∆Fc = F(r+c ) − F(r−c ) = −2π2mrΣνκ
cD

|δh|2
∣

∣

∣

∣

∣

rc

. (2.74)

The wavefunction around rc is given by equation (2.57) multiplied by T . Noting

that

ψ−(rc) = Wν,1/2(0) =
1

Γ(1− ν) , (2.75)

ψ+(rc) = e−iπνW−ν,1/2(0)+
1
2

T0Wν,1/2(0) =
cosπν
Γ(1+ ν)

, (2.76)

where we have used the convenient identity Γ(ν)Γ(1 − ν) = π/ sinπν. We can

evaluate the enthalpy perturbation at the corotation, giving

δh(rc) =
√

S/kT
[

1
2

e−ΘIIb
cosπν
Γ(1+ ν)

+ ieΘIIb
1

Γ(1− ν)

]

. (2.77)

The change in angular momentum flux across the corotation is then

∆Fc = −πm|T |2ν
[

π

2
cos2 πν

(Γ(1+ ν))2
e−2ΘIIb +

2π
(Γ(1− ν))2

e2ΘIIb

]

. (2.78)

With F(r ≪ rIL ) = F(r−c ), F(r ≫ rOL) = F(r+c ), and thus F(r ≪ rIL ) = F(r ≫

rOL) − ∆Fc, we find

Dc = |T |2ν
[

π

2
cos2 πν

(Γ(1+ ν))2
e−2ΘIIb +

2π
(Γ(1− ν))2

e2ΘIIb

]

. (2.79)

This expression exactly agrees withDc given in section 4.2.

2.6 Results and Discussion

The key new results of this chapter consist of the analytical expressions for the

reflection coefficient R, transmission coefficient T and the dissipation term Dc
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when a wave impinges upon the corotation barrier from small radii. These ex-

pressions, (2.61)-(2.66) and (2.79), can be applied to disks with generic rotation

and surface density profiles.

For definiteness, here we illustrate our results using a (Newtonian) Keple-

rian disk model with

Ω = κ ∝ r−3/2, Σ ∝ r−p,
c

rΩ
= β, (2.80)

where p and β are constants. The important parameter that determines the be-

havior of the corotation singularity is [see eq. (2.40)]

ν =

(

2c
3κ

d
dr

ln ζ

)

c

=
2
3
β

(

p − 3
2

)

. (2.81)

Clearly the models are scale-free, and R, T and Dc depend only on the two

parameters p and β (or ν). Figure 4 depicts |R| as a function of β for different

values of p, while Figure 5 shows |R|, Dc and |T | as a function of ν for β = 0.05

and β = 0.1.

A key result of chapter is that wave absorption at the corotation resonance

plays an important role in determining the reflection and transmission of waves

across the corotation barrier. Without corotation resonance (as for disks with

zero vortensity gradient, or ν = 0), super-reflection is always achieved, but |R|2−

1 ≃ exp(−2ΘII ) (assuming ΘII ≫ 1, where ΘII = ΘIIa + ΘIIb =
∫ rOL

rIL
|k| dr, with

|k| = |D|1/2/c) is rather small. In the presence of wave absorption at the corotation

resonance (when ν , 0), we find (assuming ΘIIa ≫ 1 and |ν| ≪ 1),

|R|2 − 1 ≃ exp(−2ΘII ) + 2πν exp(−2ΘIIa), (2.82)

and super-reflection can be much more prominent. From Fig. 5 we see that the

transmission coefficient is generally much smaller thanDc. Thus the reflectivity

depends mainly on the wave damping at corotation.

28



Figure 2.4: The reflection coefficient as a function of β = c/(rΩ) for Keplerian
disks with surface density profile Σ ∝ r−p. Note that for p = 1.5, wave absorption
at the corotation resonance is absent.
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Figure 2.5: The reflection coefficient, wave damping coefficient and transmis-
sion coefficient as a function of ν for two different values of β = c/(rΩ). Note
that for ν = 0 (no corotation resonance), wave damping is zero (Dc = 0) and
|R|2 − 1 is positive.
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Equation (2.79) or (2.66) clearly shows that for ν > 0, the wave damping term

due to corotation resonance is positive, Dc > 0. This can be understood from

the fact that for ν > 0 the Rossby wave region lies outside rc (see Fig. 2.3), and

the dissipation at the corotation singularity carries away positive energy (just

like the transmitted wave) so that energy conservation [see eq. (2.46)] requires

−1 = −|R|2 + |T |2 + |Dc|. In this case the corotation singularity enhances super-

reflection, as seen in Figs. 4-5. On the other hand, for ν < 0, the Rossby wave

zone lies inside rc (Fig. 2.2) and the dissipation carries away negative energy

(like the reflected wave) so that −1 = −|R|2+ |T |2−|Dc|. In this case the corotation

singularity tends to reduce super-reflection, and there is a competition between

the effect of the corotation amplifier [the first term in eq. (2.64)] and the effect of

the corotational absorption [the second term]. To obtain |R| > 1 we require

ν > − 1
2π

1− 1
4e−2ΘII

e2ΘIIb − 1
4e−2ΘIIb

≃ − 1
2π

e−2ΘIIb , (2.83)

where the second inequality applies in the limit of ΘIIb ≫ 1. This puts a con-

straint on the disk thickness and the specific vorticity slope (note that the sound

speed c enters into both ν and ΘIIb) in order to achieve super-reflection. For ex-

ample, for a given c, the inequality (2.83) determines the critical value of p for

which |R| = 1.

Figures 4-5 also reveal an intriguing oscillatory behavior of the reflection,

transmission and damping coefficients. This non-monotonic behavior may be

qualitatively understood from the Rossby wave zone around rc (see Figs. 2-3).

The WKB wavenumber kr in the near vicinity of rc is given by

k2
r ≃ −

κ2

c2
+

2mΩ
rω̃

d
dr

ln ζ =
κ2

c2

(

−1+
2βνr
r − rc

)

. (2.84)

For ν > 0, the Rossby wave zone lies between rc and rc + ∆rR, where ∆rR = 2βνrc.

For quasi-normal modes to be “trapped in” the Rossby wave zone they must
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obey the the Sommerfeld “quantization” condition6
∫ rc+∆rR

rc
dr kr = πν ∼ nπ + π/2,

where n = 0, 1, 2, · · · . Thus when ν ≃ n+1/2, the wave propagating in the Rossby

zone (Fig. 3) is maximally reflected back to the singularity, leading to maximum

negative damping and enhanced net reflection, as seen in Fig. 2.5. For ν < 0 the

Rossby wave zone lies between rc − |∆rR| and rc (Fig. 2), the wave in the Rossby

zone is mostly absorbed at the corotation singularity. The asymmetry in the

ν > 0 case and the ν < 0 case can also be seen in the toy problem of resonant

tunneling (Appendix B). Note that for thin Keplerian disks, |ν| is much less than

unity for reasonable density profiles (|p| ∼ 1), so this non-monotonic behavior is

of no practical interest.

2.6.1 Numerical Calculation of Reflectivity and Improved WKB

Treatment

Our analytical expressions derived in section 4-5 are based on global WKB anal-

ysis and involves several approximations. In particular, in our treatment of the

corotation resonance (section 3.2), we assumed c ≪ rΩ— if this is not satisfied,

some of the neglected terms must be included in equation (2.36) and the numer-

ical values of our solution may be modified. Thus our results for β >∼ 0.1 − 0.2

should be treated with caution.

To assess the validity of our WKB analysis, we also carry out computation

of the reflectivity by numerical integration of equations (8)-(10). The outgoing

wave boundary condition, equation (2.48), is imposed at some radius rout≫ rOL,

6The phase factor π/2 arises from a detailed analysis of the wave behavior at r = rc and at
r = rc + ∆rR: The former gives a phase of −3π/4 and the latter gives π/4.
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Figure 2.6: Numerical calculation of wave reflection and transmission across
corotation for a Keplerian disk with ν = 0.033and β = 0.1. The top and middle
panel show the enthalpy perturbation δh, with the solid lines depicting the real
components and the dashed lines the imaginary components. Note that there
is a discontinuity in the derivative of δh at the corotation resonance, resulting
in an absorption of flux at the corotation. The bottom panel shows the angular
momentum flux carried by the wave [see eq. (67)]. Note that F(r) is conserved
away from corotation and the discontinuity in F at r = rc results from wave ab-
sorption. The Lindblad and corotation resonances are indicated by three vertical
dotted lines.
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such that

δh′ =

(

ik +
S ′

2S
− k′

2k

)

δh, (2.85)

where ′ specifies derivatives with respect to r. At some inner radius rin ≪ rIL ,

the solution takes the form of equation (71). The reflection coefficient can be

obtained from

|R| =

∣

∣

∣

∣

∣

∣

∣

∣

[(

S ′

2S −
k′

2k

)

− ik
]

δh − δh′
[(

S ′

2S −
k′

2k

)

+ ik
]

δh − δh′

∣

∣

∣

∣

∣

∣

∣

∣

rin

(2.86)

while the transmission is

|T | =

∣

∣

∣

∣

∣

∣

∣

∣

2k
[(

S ′

2S −
k′

2k

)

+ ik
]

δh − δh′

∣

∣

∣

∣

∣

∣

∣

∣

rin

|δh|rout . (2.87)

Because of the singularity at corotation, we include a small positive ωi = Im(ω)

for the frequency so that singularity can be avoided. Figure 2.6 depicts an ex-

ample calculation for a Keplerian disk with β = 0.1 and p = 2 (so that ν = 0.033).

Figure 2.7 shows our numerical result compared with the calculation from

the WKB analysis. There is qualitative agreement between these results. In

particular, both the numerical and WKB results show that wave absorption at

corotation plays the dominant role in determining |R|, and wave transmission is

unimportant even for small (but nonzero) ν.

However, the WKB solution matches the numerical result closely only for

|ν| ≪ 1, indicating that our WKB analysis can be improved. For the Keplerian

disk considered here, the variation in ν was achieved by changing the back-

ground density index p. The WKB results shown in Figs. 2.5-2.6 assume that

the quantities ΘIIa and ΘIIb are not effected by changing ν. However p plays a

non-negligible role in determining the effective wave number away from the

corotation and Lindblad resonances. Indeed, in obtaining equation (2.22) or

(2.36) from (2.15), we have neglected several terms that are negligible near rc or

34



Figure 2.7: The reflection coefficient as a function of ν calculated using the WKB,
improved WKB, and numerical methods for a scale free Keplerian disk with
sound speed c = 0.05Ωr.
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rIL/OL, but nevertheless important away from these resonances. Noting that our

connection formulae [equations (32)-(35) and (42)-(43) involve the asymptotic

expansions of local solutions around the resonances, we can improve our WKB

results by adopting the following ansatz: we modify the integrands in ΘIIa and

ΘIIb to include these dropped terms,

Θ =

∫

√

−k2
effdr, (2.88)

k2
eff = −

D
c2
− m2

r2
− p2 − 1

4r2
− D1/2

(

d
dr

D−1/2

)

1− p
2

. (2.89)

Note that in the expression above, we have left out the singular term (∝ ω̃−1) at

corotation and the dominant double singular term (∝ D−2) at the Linblad reso-

nances since they have already been accounted for by the connection formulae

in sections 3. As shown in Fig. 2.6, the improved WKB result matches the nu-

merical solution for a much larger range of ν. The increased values of ΘIIa and

ΘIIb for larger |p| act to suppress super-reflection, and drive reflection coefficient

toward |R| = 1.

2.7 Global Overstable Modes

As mentioned in Section 1, global disk instabilities are often related to the

super-reflection at the corotation barrier. To illustrate this, we consider a simple

boundary condition

δh(rin) = 0 (2.90)

at the inner radius of the disk, rin ≪ rIL . The outgoing boundary condition at

r > rOL implies that the solution in the region r < rIL is given by

δh =
√

S/k exp
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




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
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
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

. (2.91)
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Letting R = |R|eiϕ, and applying the boundary condition (2.91) yields the eigen-

value condition:

tan





















rIL
∫

rin

kdr − π/4− ϕ/2





















= −i

(

|R| − 1
|R| + 1

)

. (2.92)

Noting that for complex eigenvalue ω = ωr + iωi, the wavenumber k is also

complex

k = kr + iki =
1
c

√

(ω̃r + iω̃i)2 − κ2 ≃ 1
c

√

ω̃2
r − κ2 + i

ωiω̃r

c
√

ω̃2
r − κ2

, (2.93)

where we have assumed |ωi| ≪ |ωr|. ω̃r = ωr − mΩ (< 0 for region I) and thus the

real part of the eigenvalue condition gives

rIL
∫

rin

1
c

√

(ωr − mΩ)2 − κ2dr − π/4− ϕ/2 = nπ , (2.94)

where n is an integer. The imaginary part of (2.92) gives (assuming |ki| ≪ |kr |)
rIL
∫

rin

kidr ≃ −
(

|R| − 1
|R| + 1

)

, (2.95)

from which we find the growth rate

ωi =

(

|R| − 1
|R| + 1

)










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
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|ω̃r|/c
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


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





−1

. (2.96)

Thus the modes are overstable (ωi > 0) for |R| > 1, and stable (ωi < 0) for |R| < 1.

2.8 Conclusion

In this chapter we have derived explicit expressions for the reflection coeffi-

cient, transmission coefficient and wave absorption coefficient when a wave is

scattered by the corotation barrier in a disk. These expressions include both
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the effects of corotation amplifier (which exists regardless of the gradient of the

vortensity ζ = κ2/ΩΣ of the background flow) and wave absorption at the coro-

tation (which depends on dζ/dr). They demonstrate clearly that the corotation

wave absorption plays a dominant role in determining the reflectivity and that

the sign of dζ/dr determines whether the corotation singularity enhances or di-

minishes the super-reflectivity. Our result can be understood in terms of the

location of the Rossby wave zone relative to the corotation radius. We also car-

ried out numerical calculations of the reflectivity. Our result provides the con-

ditions (in terms of disk thickness, rotation profile and surface density profile)

for which super-reflection is achieved and global overstable modes in disks are

possible.

In future works we will explore global oscillation modes and their stabilities

in a variety of astrophysical contexts, ranging from accreting white dwarfs to

accreting black hole systems. The possible overstabilities of these modes are di-

rectly linked to the effects studied in this chapter and may provide explanations

for some of the quasi-periodic variabilities observed in these systems.
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CHAPTER 3

COROTATIONAL INSTABILITY OF INERTIAL-ACOUSTIC MODES IN

BLACK HOLE ACCRETION DISKS AND QUASI PERIODIC

OSCILLATIONS

3.1 Introduction

3.1.1 Models of Quasi-Periodic X-Ray Oscillations: A Brief Re-

view

Rapid X-ray variabilities from Galactic compact binary systems have been stud-

ied for decades (e.g. van del Klis 2006). In recent years, our knowledge of quasi-

periodic oscillations (QPOs) in black-hole X-ray binaries has greatly improved

(see Remillard & McClintock 2006 for a review), thanks in large part to NASA’s

Rossi X-ray Timing Explorer (Swank 1999). The low-frequency QPOs (about 0.1-

50 Hz) are common, observable when the systems are in the hard state and

the steep power-law state (also called “very high state”; see Done, Gierlinski

& Kubota 2007), and they typically have high amplitudes and high coherence

(Q > 10), and can vary in frequency on short timescales (minutes). However, it

is the weaker, transient High-Frequency QPOs (HFQPOs, 40–450 Hz) that have

attracted more attention, since their frequencies do not vary significantly in re-

sponse to sizable (factors of 3-4) luminosity changes and are comparable to the

orbital frequencies at the Innermost Stable Circular Orbit (ISCO) of black holes

with mass M ∼ 10M⊙. As such, HFQPOs potentially provide a probe to study

the effects of strong gravity. HFQPOs are usually observed in the very high
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state of the X-ray binaries, and have low amplitudes (0.5− 2% rms at 2-60 keV)

and low coherence (Q ∼ 2 − 10). Out of the seven black-hole binaries from

which HFQPOs have been reported, four show pairs of QPOs (first discovered

in GRO J1655-40; Strohmayer 2001) with frequency ratios close to 2 : 3 (300 and

450 Hz in GRO J1655-40, 184 and 276 Hz in XTE J1550-564, 113 and 168 Hz in

GRS 1915+105, 165 and 240 Hz in H1743-322; note that GRS 1915+105 also has a

second pair of QPOs with f = 41 and 67 Hz).

It is worth noting that QPO (with period of ∼ 1 hour) in X-ray emission has

recently been detected in the active galaxy RE J1034+396 (Gierlinski et al. 2008).

This could be the “supermassive” analog of the HFQPOs detected in black-hole

X-ray binaries.

Despite the observational progress, the origin of the HFQPOs remain un-

clear. A number of possibilities/models have been suggested or studied to var-

ious degrees of sophistication. We comment on some of these below:

– Stella, Vietri & Morsink (1999) and others (see Schnittman & Bertschinger

2004, Schnittman 2005) suggested that orbiting hot spots (blobs) in the disk oscil-

lating with epicyclic frequencies may provide variability in the X-ray emission.

However the radial positions of such blobs are free parameters, which must be

tuned to match the observed QPO frequencies, and it is also not clear that the

blobs can survive the differential rotation of the disk.

– Abramowicz & Kluzniak (2001) suggested that HFQPOs involve certain

nonlinear resonant phenomenon in the disk (e.g., coupling between the ra-

dial and vertical epicyclic oscillations of the disk fluid element; Kluzniak &

Abramowicz 2002). This was motivated by the observed stability of the QPO
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frequencies and the commensurate frequency ratio. However, so far analysis

has been done based only on toy models involving coupled harmonic oscilla-

tors (e.g. Rebusco 2004; Horak & Karas 2006) and no fluid dynamical model

producing these resonances has been developed (see Abramowicz et al 2007

and Rebusco 2008 for recent reviews). Petri (2008) considered the resonant os-

cillation of a test mass in the presence of a spiral density wave, but the origin of

the wave is unclear.

– Acoustic oscillation modes in pressure-supported accretion tori have been

suggested as a possible source of the observed QPOs (Rezzolla et al. 2003; Lee,

Abramowicz & Kluziniak 2004; see also Blaes, Arras & Fragile 2006; Schnittman

& Rezzolla 2006, Blaes et al 2007, Sramkova et al 2007). In this model, the com-

mensurate mode frequencies arise from matching the radial wavelength to the

size of the torus. Note that the QPO frequencies are determined mainly by the

radial boundaries of the torus, which must be tuned to match the observed QPO

frequencies. It is also not clear that the accretion flow in the very high state (in

which HFQPOs are observed) is well represented by such a torus (e.g. Done et

al 2007).

– Li & Narayan (2004) considered the dynamics of the interface between

the accretion disk and the magnetosphere of a central compact object (see also

Lovelace & Romanova 2007). The interface is generally Rayleigh-Tayor unstable

and may also be Kelvin-Helmholtz unstable. While such an interface is clearly

relevant to accreting magnetic neutron stars, Li & Narayan suggested that it may

also be relevant to accreting black holes and that the strongly unstable interface

modes may give rise to QPOs with commensurate frequencies.

– Perhaps the theoretically most appealing is the relativistic diskoseismic
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oscillation model, according to which general relativistic (GR) effects produce

trapped oscillation modes in the inner region of the disk (Kato & Fukue 1980;

Okazaki et al. 1987; Nowak & Wagoner 1991; see Wagoner 1999; Kato 2001 for

reviews; see also Tassev & Bertschinger 2007 for the kinematic description of

some of these wave modes). A large majority of previous studies have focused

on disk g-modes (also called inertial modes or inertial-gravity modes, whose

wavefunctions – such as the pressure perturbation, contain nodes in the verti-

cal direction), because the trapping of the g-mode does not require a reflective

inner/outer disk boundary. Kato (2003a) and Li, Goodman & Narayan (2003)

showed that the g-mode that contains a corotation resonance (where the wave

patten frequency equals the rotation rate of the background flow) in the wave

zone is heavily damped. Thus the only nonaxisymmetric (m , 0) g-modes of

interest are those trapped around the maximum of Ω + κ/m (where Ω is the ro-

tational frequency, κ is the radial epicyclic frequency and m is the azimuthal

mode number; see Fig. 1 below). Unfortunately, the frequencies of such modes,

ω ≃ mΩISCO, are too high (by a factor of 2-3) compared to the observed values,

given the measured mass and the estimated spin parameter of the black hole

(Silbergleit & Wagoner 2007; see also Tassev & Bertschinger 2007). Axisymmet-

ric g-modes (m = 0) may still be viable in the respect, and recent studies showed

that they can be resonantly excited by global disk deformations through non-

linear effects (Kato 2003a,2008; Ferreira & Ogilvie 2008). Numerical simulations

(Arras, Blaes & Turner 2006; Reynolds & Miller 2008), however, indicated that

while axisymmetric g-mode oscillations are present in the hydrodynamic disk

with no magnetic field, they disappear in the magnetic disk where MHD turbu-

lence develops. Also, Fu & Lai (2008) carried out an analytic study of the effect

of magnetic fields on diskoseismic modes and showed that even a weak (sub-
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thermal) magnetic field can “destroy” the self-trapping zone of disk g-modes,

and this may (at least partly) explain the disappearance of the g-modes in the

MHD simulations.

– Tagger and collaborators (Tagger & Pellat 1999; Varniere & Tagger 2002;

Tagger & Varniere 2006; see Tagger 2006 for a review) developed the theory of

accretion-ejection instability for disks threaded by strong (of order or stronger

than equipartition), large-scale poloidal magnetic fields. They showed that such

magnetic field provides a strong coupling between spiral density waves and

Rossby waves at the corotation, leading to the growth of the waves and energy

ejection to disk corona. Tagger & Varniere (2006) suggested that normal modes

trapped in the inner region of the disk become strongly unstable by a combi-

nation of accretion-ejection instability and an MHD form of the Rossby wave

instability (see Lovelace et al. 1999; Li et al. 2000; see section 6 below). The Tag-

ger model has the appealing feature that the instability leads to energy ejection

into the disk corona, and thus explains why HFQPOs manifest mainly as the

variations of the nonthermal (power-law) radiation from the systems.

3.1.2 Chapter Summary

In this chapter we study the global corotational instability of nonaxisymmetric

p-modes (also called inertial-acoustic modes) trapped in the inner-most region

of the accretion disk around a black hole. The p-modes do not have vertical

structure (i.e., the wavefunctions have no node in the vertical direction). We

focus on these modes because their basic wave properties (e.g. propagation

diagram) are not affected qualitatively by disk magnetic fields (Fu & Lai 2008)
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and they are probably robust under hydromagnetic effects and disk turbulence

(see Reynolds & Miller 2008).

The corotational instability of p-modes studied in this chapter relies on the

well-known GR effect of test-mass orbit around a black hole: Near the black

hole, the radial epicyclic frequency κ reaches a maximum (at r = 8GM/c2 for a

Schwarzschild black hole) and goes to zero at the ISCO (rISCO = 6GM/c2). This

causes non-monotonic behavior in the fluid vortensity, ζ = κ2/(2ΣΩ) (assum-

ing the surface density Σ is relatively smooth), such that dζ/dr > 0 for r < rpeak

(where rpeak is the radius where ζ peaks) and dζ/dr < 0 for r > rpeak. The vorten-

sity gradient dζ/dr plays an important role in wave absorption at the corotation

resonance (Tsang & Lai 2008a; see also Goldreich & Tremaine 1979 for coro-

tational wave absorption due to external forcing). We show that the p-modes

with frequencies such that the corotation radii lie inside the vortensity peak can

grow in amplitude due to absorption at the corotation resonance, and that the

overstability can be achieved for several modes with frequencies closely com-

mensurate with the azimuthal wavenumber m. Tagger & Varniere (2006) have

studied similar modes in disks threaded by strong magnetic fields, but in our

analysis magnetic fields play no role.

The trapping of the p-modes requires the existence of a (partially) reflecting

boundary at the disk inner edge, close to the ISCO. One may suspect that the

rapid radial inflow at the ISCO will diminish any potential instabilities in the

inner accretion disk (see Blaes 1987 for the case of thick accreting tori). Our

analysis of the wave perturbations in the transonic accretion flow (see section 5)

suggests that waves are partially reflected at the sonic point, and global over-

stable p-modes may still be produced under certain conditions (e.g., when the
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surface density of the flow varies on sufficiently small length scale around the

sonic point). Even better mode trapping (and therefore larger mode growth)

may be achieved when the system is an accretion state such that the inner disk

edge does not behave as a zero-torque boundary (see section 7 for discussion

and references).

This chapter is organized as follows. After summarizing the basic fluid equa-

tions for our problem in section 2, we give a physical discussion of the origin

of the corotational instability of disk p-modes in section 3. We present in sec-

tion 4 our calculations of the growing p-modes with simple reflective inner disk

boundary conditions. Section 5 contains our analysis of the effect of the tran-

sonic radial inflow at the ISCO on the p-mode growth rate. In section 6, we

discuss the role of the Rossby wave instability and show that it is not effective

in typical accretion disks under consideration. In section 7 we discuss the appli-

cation of our results to HFQPOs in black hole X-ray binaries.

3.2 Setup and Basic equations

We consider a geometrically thin disk and adopt cylindrical coordinate system

(r, φ, z). The flow is assumed to be barotropic, so that the vertically integrated

pressure, P =
∫

p dz, depends only on the surface density, Σ =
∫

ρ dz. We use the

pseudo-Newtonian potential of Paczynski & Wiita (1980)

Φ = − GM
r − rS

, (3.1)
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with rS = 2GM/c2 the Schwarzschild radius. The free-particle (Keplerian) orbital

and radial epicyclic (angular) frequencies are

ΩK =

(

1
r

dΦ
dr

)1/2

=

√

GM
r

1
r − rS

, κ =

[

2ΩK

r
d
dr

(r2
ΩK)

]1/2

= ΩK

√

r − 3rS

r − rS
. (3.2)

The function κ peaks at r = (2+
√

3)rS and declines to zero at rISCO = 3rS (while

for a Schwarzschild black hole in GR, κ peaks at r = 4rS ). The unperturbed flow

has velocity u0 = (ur, rΩ, 0). Since pressure is negligible for thin disks, we have

Ω ≃ ΩK .

Neglecting the self-gravity of the disk we have the linear perturbation equa-

tions:

∂

∂t
δΣ + ∇ · (Σ δu + u0 δΣ) = 0, (3.3)

∂

∂t
δu + (u0 · ∇)δu + (δu · ∇)u0 = −∇δh, (3.4)

where δΣ, δu and δh = δP/Σ are the (Eulerian) perturbations of surface density,

velocity and enthalpy, respectively. For barotropic flow, δh and δΣ are related by

δh = c2
s

δΣ

Σ
, (3.5)

where cs is the sound speed, with c2
s = dP/dΣ. We assume all perturbed quan-

tities to be of the form eimφ−iωt, where m is a positive integer, and ω is the wave

(angular) frequency. The perturbation equations then become

−iω̃
Σ

c2
s

δh +
1
r
∂

∂r
(Σrδur) +

im
r
Σδuφ +

1
r
∂

∂r
(rurδΣ) = 0, (3.6)

−iω̃δur − 2Ωδuφ +
∂

∂r
(urδur) = −

∂

∂r
δh, (3.7)

−iω̃δuφ +
κ2

2Ω
δur +

ur

r
∂

∂r
(rδuφ) = −

im
r
δh, (3.8)

where

ω̃ = ω − mΩ, (3.9)
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is the wave frequency in the frame corotating with the unperturbed fluid.

Except very near the inner edge of the disk, rin ≃ rISCO, the unperturbed

radial velocity is small, |ur| ≪ rΩ. In our calculations of the disk modes, we will

neglect ur and set the last terms on the left-hand sides of equations (3.6)-(3.8) to

zero (However, ur plays an important role in determining the inner boundary

condition of the fluid perturbations at rin; see section 5). Eliminating the velocity

perturbations in favor of the enthalpy, we obtain our master equation

[

d2

dr2
− d

dr

(

ln
D
rΣ

) d
dr
− 2mΩ

rω̃

(

d
dr

ln
ΩΣ

D

)

− m2

r2
− D

c2
s

]

δh = 0, (3.10)

where

D = κ2 − ω̃2. (3.11)

For concreteness we assume the surface density to have a the power-law form

Σ ∝ r−p, (3.12)

where p is the density index.

The above equations adequately describe disk p-modes (also called inertial-

acoustic modes), which do not have vertical structure. Other disk modes (g-

modes and c-modes) involve the vertical degree of freedom [see Kato 2001 for

a review; also see Fig. 1 of Fu & Lai (2008) for a quick summary], and their

stability properties are studied by Kato (2003a), Li et al. (2003) and Tsang & Lai

(2008b).

To determine the global modes of the disk, appropriate boundary conditions

must be specified. These are discussed in sections 4 and 5.
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3.3 P-modes and Their Growth Due to Corotation Resonance:

A Physical Discussion

A WKB analysis of the wave equation (3.10) yields the dispersion relation for

the local plane wave δh ∝ exp
[

i
∫ r

k(s)ds
]

:

k2
+

D
c2

s

+
2mΩ
rω̃

(

d
dr

ln
ΩΣ

D

)

≃ 0. (3.13)

Far from the singularity (ω̃ = 0) at the corotation radius rc, this reduces to the

well-known dispersion relation of spiral density wave with no self-gravity (e.g.,

Shu 1992), k2 ≃ −D/c2
s , or

ω̃2
= κ2
+ k2c2

s . (3.14)

Density waves (p-modes) can propagate inside the inner Lindblad resonance

radius rIL (defined by ω̃ = −κ), and outside the outer Lindblad resonance radius

rOL (defined by ω̃ = κ), i.e., in the region where ω/m < Ω−κ/m andω/m > Ω+κ/m,

respectively (see Fig. 1). Between rIL and rOL, waves are evanescent except that

a very narrow Rossby wave zone exists around the corotation radius. Indeed,

in the vicinity of ω̃ = 0, equation (3.13) reduces to

ω̃ ≃ 2mΩ
r(k2 + κ2/c2

s)

(

d ln ζ
dr

)

rc

, (3.15)

where

ζ =
κ2

2ΩΣ
(3.16)

is the vortensity of the (unperturbed) flow. For (dζ/dr)rc > 0, the Rossby wave

zone lies between rc and rc+∆rR, where ∆rR = (2cs/κ)|ν| and
∫ rc+∆rR

rc
k dr = πν, with

the number of wavelengths in the Rossby zone given by (Tsang & Lai 2008a)

ν =

(

cs

qκ
d ln ζ

dr

)

rc

=
cs

qκ

[

d
dr

ln

(

κ2

Ω

)

+
p
r

]

rc

, (3.17)
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where q ≡ − (d lnΩ/d ln r)rc
, and the second equality assumes Σ ∝ r−p. For

(dζ/dr)rc < 0, the Rossby wave zone lies inside rc, between rc − |∆rR| and rc (see

Fig. 1). Note that since ν ∼ cs/(κr) ∼ H/r ≪ 1, no standing Rossby wave can exist

in the Rossby zone (see also section 6).

Assuming that there exists a reflecting boundary at the inner disk radius

rin ≃ rISCO (see sections 4.3 and 5), normal modes can be produced, with the

waves partially trapped between rin and rIL – these are the p-modes that we will

focus on in this chapter. The mode eigen-frequency ω = ωr + iωi is generally

complex, with the real part ωr determined approximately by the Sommerfeld

“quantization” condition

rIL
∫

rin

1
cs

√

ω̃2
r − κ2dr = nπ + ϕ, (3.18)

where ω̃r = ωr − mΩ, n is an integer and ϕ (of order unity) is a phase factor

depending on the details of the (inner and outer) boundary conditions. The

overstability of the p-mode is directly related to the reflectivity of the corotation

barrier between rIL and rOL. In the WKB approximation, the imaginary part of

the mode frequency is given by (Tsang & Lai 2008a; see also Narayan et al. 1987,

who considered shearing-sheet model)

ωi =

(

|R| − 1
|R| + 1

)





















rIL
∫

rin

|ω̃r |
cs

√

ω̃2
r − κ2

dr





















−1

, (3.19)

where R is the reflectivity (see below). Thus the mode becomes overstable (ωi >

0) for |R| > 1 (termed “super-reflection”) and stable (ωi < 0) for |R| < 1.

Super-reflection in fluid disks arises because the waves inside the corotation

radius and those outside carry energy or angular momentum of different signs:

Since the wave inside rc has pattern speed ωr/m less than the fluid rotation rate
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Figure 3.1: Wave propagation diagram for non-axisymmetric p-modes in thin
accretion disks around black holes. In the upper panel, the three solid curves
depict the disk rotation profile Ω(r) and Ω ± κ/m (where κ is the radial epicyclic
frequency); note that the three curves join each other at the disk inner radius
rin = rISCO (the inner-most circular orbit) since κ(rISCO) = 0. The wavy lines (of
height ω/m) indicate the propagation zones for inertial-acoustic waves. Disc p-
modes are trapped between rin and the inner Lindblad resonance radius (where
ω/m = Ω − κ/m), but can tunnel through the corotation barrier. The lower panel
depicts the disk vortensity profile, ζ = κ2/(2ΩΣ), which has a maximum at the
radius rpeak (as long as the surface density Σ does not vary too strongly with
r). P-modes with ω/m > Ωpeak = Ω(rpeak) (the upper wavy line) are overstable
due to wave absorption at the corotation resonance radius rc (where ω/m = Ω)
since (dζ/dr)rc > 0. P-modes with ω/m < Ωpeak (the lower wavy line) tend to
be damped by wave absorption at rc since (dζ/dr)rc < 0. Note that a narrow
Rossby wave zone (labeled by thick horizontal bars) exists just outside or inside
the corotation radius — the location of this Rossby zone determines the sign of
the corotational wave absorption.
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Ω(r), it carries negative energy; outside rc, we haveωr/m > Ω(r), the wave carries

positive energy. Consider an incident wave δh ∝ exp(−i
∫ r

k dr), carrying energy

of the amount (−1), propagating from small radii toward the corotation barrier 1.

The wave reflected at rIL takes the form δh ∝ R exp(i
∫ r

k dr), and the transmitted

wave in the region r > rOL is δh ∝ T exp(i
∫ r

k dr). Because of the corotation

singularity, the wave energy can also be transferred to the background flow

and dissipated at the corotation radius. Energy conservation then gives −1 =

(−1)|R|2 + |T |2 +Dc, or

|R|2 = 1+ |T |2 +Dc, (3.20)

whereDc is the wave energy dissipated at the corotation.

Tsang & Lai (2008a) derived the analytical expressions (in the WKB approxi-

mation) for T , R andDc. Two effects determine the reflectivity. (i) The transmit-

ted wave (corresponding to the |T |2 term) always carries away positive energy

and thus increases |R|2. (ii) Wave absorption at the corotation can have both

signs, depending on ν: For ν > 0, the Rossby wave zone lies outside rc, positive

wave energy is dissipated and we have Dc > 0; for ν < 0, the Rossby zone lies

inside rc and we haveDc < 0 (see Fig. 1). Tsang & Lai (2008a) showed explicitly

that under most conditions, |Dc| ≫ |T |2 (except when ν ≃ 0, for which Dc ≃ 0).

In the limit of |ν| ≪ 1, we have

|T |2 ≃ exp(−2ΘII ), Dc ≃ 2πν exp(−2ΘIIa), (3.21)

where

ΘII ≡
rOL
∫

rIL

√

κ2 − ω̃2
r

cs
, ΘIIa ≡

rc
∫

rIL

√

κ2 − ω̃2
r

cs
(3.22)

[these expressions are valid for ΘII ,ΘIIa ≫ 1; see Tsang & Lai (2008a) for more

general expressions]. Thus super-reflectivity (|R|2 > 1) and growing modes (ωi >

1Note that since the group velocity of the wave has opposite sign as the phase velocity for

r < rIL , the wave of the form exp(−i
∫ r

k dr) (with k > 0) is outward propagating.
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0) are achieved when

ν > νcrit = −
1
2π

exp(−2ΘIIb), with ΘIIb = ΘII − ΘIIa =

rOL
∫

rc

√

κ2 − ω̃2
r

cs
. (3.23)

Note that typically |νcrit| ≪ 1; if |T |2 is neglected compared toDc, then νcrit = 0.

As mentioned before, since κ is non-monotonic near the black hole, the

vortensity ζ is also non-monotonic, attaining a peak value at r = rpeak before

dropping to zero at the ISCO. Therefore, p-modes with frequencies such that the

corotation radius rc lies inside rpeak are expected to be overstable by the corota-

tional instability discussed above. In other words, when ωr/m > Ωpeak≡ Ω(rpeak),

the corotation resonance acts to grow the mode. Note that Ωpeak depends on the

surface density profile as well as the spacetime curvature around the black hole

(see Fig. 2). On the other hand, when ωr/m < Ωpeak (ν < 0), the corotational wave

absorption acts to damp the mode. However, when ωr/m is only slightly smaller

than Ωpeak (νcrit < ν < 0) mode growth can still be obtained due to wave leakage

beyond the outer Lindblad resonance, though the growth rate will be small (see

section 4.4 for examples).

3.4 Calculations of Trapped, Overstable P-modes

To determine the eigenvalues ωr and ωi of the trapped modes, we solve equa-

tions (3.6)-(3.8) (with ur = 0) or equation (3.10) subjected to appropriate bound-

ary conditions at rin and rout.

52



Figure 3.2: Critical mode frequency for corotational instability as a function of
the disk surface density index p (with Σ ∝ r−p). Wave absorption at the corota-
tion resonance acts to grow the mode only if the corotation occurs in the region
of positive vortensity gradient, i.e., if the mode pattern frequency ω/m > Ωpeak

(see Fig. 1). P-mode trapping also requires ω/m < ΩISCO = Ω(rISCO). Note that
weak mode growth can still occur when ω/m is slightly below Ωpeakdue to wave
leakage beyond the outer Lindblad resonance radius. See text for detail.
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3.4.1 “Landau” Integration Contour

When solving eigenvalue problem using the standard method (e.g. the shooting

method as described in Press et al 1998), we encountered a conundrum: For

ν > 0, we could find both a growing mode and a decaying mode, with almost the

same ωr but opposite ωi. This appears to contradict our discussion in section 3.

This conundrum arises because our numerical integration is confined to the real

r axis. However, analogous to Landau’s analysis of wave damping in a plasma

(e.g., Lifshitz & Pitaevskii 1981), care must be taken in defining appropriate

contour of integration across the corotation resonance. Indeed, at corotation,

equation (3.10) contains a singular term, proportional to

1
ω̃
∝ 1

r − Rc
, (3.24)

where Rc ≡ rc − ircωi/(qωr) is the complex pole, rc is determined by ωr = mΩ(rc)

and q = −(d lnΩ/d ln r)c > 0.

As discussed in Lin (1955) in the context of hydrodynamical shear flows, to

obtain physically relevant solutions of the fluid system, it is necessary that the

integration contour lies above the pole. This is the Landau contour. In essence,

only by adopting such a Landau contour can one obtain the correct wave ab-

sorption (dissipation) at the corotation. For growing modes (ωi > 0), Im(Rc) < 0,

our numerical integration along the real r axis constitutes the correct Landau

contour. On the other hand, for decaying modes (ωi < 0), the real r axis is not

the correct Landau contour as Im(Rc) > 0. Instead, to obtain physical solutions

for these decaying modes, the integration contour must be deformed so that Rc

lies below it (see Fig. 3). As we are primarily interested in over-stable modes in

this chapter, it is adequate to integrate along the real r axis in our calculation.
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c i

Re(r)

c i

Im(r)

Im(r)

Figure 3.3: “Landau” contour for integration across the corotation resonance.
To calculate the growing mode (ωi > 0), it is adequate to integrate the fluid
perturbation equations along the real r axis (upper panel). To obtain the physical
solution for the shrinking mode (ωi < 0), the integration contour must deformed
so that the corotational pole Rc lies below the contour.
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3.4.2 Outer Boundary Condition

As we are interested in self-excited modes in the inner region of the disk, we

adopt the radiative outer boundary condition. Specifically, far from the outer

Lindblad resonance (r > rOL) we demand that only an outgoing wave exists:

δh ∝ A exp



















i

r
∫

k dr



















, with A =
( D
rΣk

)1/2

, (3.25)

where k =
√

−D/c2
s (see Tsang & Lai 2008a). This gives the boundary condition

at some rout > rOL:

δh′(rout) = δh(rout)

(

ik +
1
A

dA
dr

)

rout

. (3.26)

In practice, we find that rout ∼ 2rOL would yield sufficiently accurate results.

3.4.3 Inner Boundary Conditions

To obtain global trapped modes, at least partial wave reflection must occur at

rin. To focus on the effect of corotational instability discussed in section 3, in

this section we consider two simple inner boundary conditions. We defer our

analysis of the effect of radial inflow on the p-modes to section 5.

(i) At the ISCO, the flow plunges into the black hole, we expect a sudden

decrease in the surface density of the disk. Thus, it is reasonable to consider

the free surface boundary condition, i.e., the Lagrangian pressure perturbation

∆P = 0. Using δur = −iω̃ξr (where ξr is the radial Lagrangian displacement), and

∆P = δP + ξrdP/dr, we have

(

∆P
Σ

)

rin

=

(

δh − pc2
s

iδur

rω̃

)

rin

= 0, (3.27)
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where we have used dP/dr = (dP/dΣ)(dΣ/dr) = −pc2
sΣ/r for barotropic, power-

law disks (Σ ∝ r−p).

(ii) We assume that the radial velocity perturbation vanishes at the inner

boundary, i.e., δur = 0. This was adopted by Tagger & Varniere (2006) in their

calculations of overstable global modes due to accretion-ejection instability.

Both of these boundary conditions correspond to zero loss of wave energy at

the inner boundary: If a wave from large radii impinges toward rin, the reflected

wave will have the same amplitude. However, the phase shifts due to reflection

differ in the two cases, and the resulting mode frequenciesωr are different. Since

the corotational wave amplification depends onωr, the mode growth rate ωi will

also be different.

3.4.4 Numerical Results

We solve for the complex eigen-frequency ω = ωr + iωi using the shooting

method, with a fifth-order Runge-Kutta integrator (Press et al. 1992). As dis-

cussed in section 4.1 we only calculate the growing modes (ωi > 0). We consider

disk models with different surface density profile (characterized by the index

p), sound speed cs, and inner boundary conditions. For a given set of disk pa-

rameters and the azimuthal mode wavenumber m, the lowest order (highest

frequency) mode has the best chance of being overstable. This is easily under-

stood from our discussion in section 3 (see Fig. 1): a low-frequency wave has to

penetrate a wider evanescent barrier for the corotational amplifier to be effec-

tive, and when ωr < mΩpeakthe corotation resonance acts to damp the mode. For

most disk models we have considered, the lowest order mode (of a given m) is
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Figure 3.4: Example wavefunction for disk p-modes. The upper and middle
panels show δh and iδur (the solid lines for the real part and dashed lines for
the imaginary part), the lower panels show the angular momentum flux, all in
arbitrary units [with δh(rout) = 1]. The radius r is in units of GM/c2. The disk
sound speed is cs = 0.1rΩ, and the m = 2 modes are obtained using the inner
boundary condition ∆P(rISCO) = 0. This shows the p-mode for the disk with a
density profile Σ ∝ r−1, with the eigenvalues ωr = 0.467mΩISCO, ωi/ωr = 0.0029
[whereΩISCO = Ω(rISCO). The inserts show the blowups of the real wavefunctions
near the corotation radius.
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Figure 3.5: Example wavefunction for disk p-modes. The upper and middle
panels show δh and iδur (the solid lines for the real part and dashed lines for the
imaginary part), the lower panels show the angular momentum flux, all in arbi-
trary units [with δh(rout) = 1]. The radius r is in units of GM/c2. The disk sound
speed is cs = 0.1rΩ, and the m = 2 modes are obtained using the inner boundary
condition ∆P(rISCO) = 0. This shows the mode for the disk with constant surface
density profile (p = 0), with eigenvalues ωr = 0.464mΩISCO, ωi/ωr = 0.00073.
Note that the model shown in the previous figure has rc < rpeak (the radius of
peak vortensity) and thus F(rc+) < F(rc−), while the model shown here has
rc > rpeak and F(rc+) > F(rc−). In both models there is a positive flux for r > rc

due to the outward propagating wave.
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Figure 3.6: The real and imaginary frequencies of disk p-modes (with azimuthal
wave numbers m = 1, 2, 3) as a function of the surface density index p (where
Σ ∝ r−p). The modes are calculated assuming the inner boundary condition
∆P(rISCO) = 0 and cs = 0.1rΩ. The dotted lines denote the lower bound ωr/m =
Ωpeak for which the corotational wave absorption acts to enhance mode growth.
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Figure 3.7: The real and imaginary frequencies of disk p-modes (with azimuthal
wave numbers m = 1, 2, 3) as a function of the surface density index p (where
Σ ∝ r−p). The modes are calculated assuming the inner boundary condition
∆P(rISCO) = 0and cs = 0.2rΩ. The dotted lines denote the lower bound ωr/m =
Ωpeak for which the corotational wave absorption acts to enhance mode growth.

61



Figure 3.8: The real and imaginary frequencies of disk p-modes (with m = 2, 3)
as a function of the normalized sound speed cs/(rΩ). The disk is assumed to
have a constant density profile (p = 0), and the inner boundary condition is
∆P(rISCO) = 0. The bottom panel shows the ν parameters for the modes.
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Figure 3.9: The real and imaginary frequencies of disk p-modes (with azimuthal
wave numbers m = 1, 2, 3) as a function of the surface density index p (where
Σ ∝ r−p). The modes are calculated assuming the inner boundary condition
δur(rISCO) = 0, and cs = 0.1rΩ. The dotted lines denote the lower bound ω/m =
Ωpeak for which the corotational wave absorption acts to enhance mode growth.
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Figure 3.10: The real and imaginary frequencies of disk p-modes (with az-
imuthal wave numbers m = 1, 2, 3) as a function of the surface density index
p (where Σ ∝ r−p). The modes are calculated assuming the inner boundary con-
dition δur(rISCO) = 0, and cs = 0.2rΩ. The dotted lines denote the lower bound
ω/m = Ωpeak for which the corotational wave absorption acts to enhance mode
growth.
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the only mode that has ωi > 0.

Our numerical results are presented in Figures 3.4–3.10. Figure 4 gives two

examples of the eigenfunctions of overstable trapped p-modes, obtained with

the inner boundary condition ∆P = 0. In addition to δh and δur, we also plot the

angular momentum flux carried by the wave across the disk (e.g., Goldreich &

Tremaine 1979; Zhang & Lai 2006)

F(r) = πr2
ΣRe

(

δurδu
∗
φ

)

=
πmrΣ

D
Im

(

δh
dδh∗

dr

)

, (3.28)

where the second equality follows from equations (3.6)-(3.8) (with ur = 0). We

see from Fig. 4 that outside the corotation radius (rc), F is nearly constant since

only the outgoing wave exists in this region and the wave action is conserved

in the limit of ωi ≪ ωr. Inside rc, the interference between the ingoing and

outgoing waves gives rise to the variation of F. At rISCO, F approaches zero since

no wave action is lost through the disk inner boundary when ∆P = 0.2 Figure

4 also shows a flux jump across the corotation. In the limit of ωi ≪ ωr, dδh/dr,

δur and δuφ are discontinuous across rc (although δh is continuous), giving rise

to the flux discontinuity (see Tsang & Lai 2008a):

F(rc+) − F(rc−) = −2π2mrΣνκ
csD

|δh|2
∣

∣

∣

∣

rc

. (3.29)

This discontinuity signifies the corotational wave absorption, the sign of which

depends on ν ∝ (dζ/dr)rc , as discussed in section 3. Thus, the model shown

on the left panels of Fig. 4 has rc < rpeak and ν > 0, and the mode growth is

primarily driven by wave absorption at the corotation. The model shown on

the right panels of Fig. 4, on the other hand, has rc > rpeak and ν < 0, thus the

corotational wave absorption acts to damp the mode, and the overall growth of

2Note that equation (3.28) is the time averaged flux and is defined for waves with real ω.
Using equation (3.27) and Dδur = iω̃dδh/dr− (2imΩ/r)δh (obtained from eqs. [3.7]-[3.8]) it is easy
to show that F(rin) = 0 exactly for real ω.
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the mode is due to the outgoing wave beyond rc, and the growth rate is much

smaller than the model shown on the left panels.

Figures 5–6 show the frequencies of the fundamental (no node/highest fre-

quency) growing p-modes (with m = 1, 2, 3) for various disk parameters, again

obtained with the inner boundary condition ∆P = 0. We consider p in the range

between −1.5 and 1.5, and cs up to 0.3rΩ. For a given sound speed, the real

mode frequency ωr depends very weakly on p, but the growth rate ωi increases

with p (see Fig. 5) since a larger value of p leads to a larger ν and enhanced wave

absorption at the corotation [see equation (3.17)]. In general, as the sound speed

increases, the effective wavelength of the mode increases, and ωr decreases in

order “fit in” the trapping zone between rin and rIL (see Fig. 6). The mode growth

rates ωi depends on cs in a non-monotonic way because of two competing ef-

fects: As cs increases, less attenuation occurs in the evanescent zone, and more

wave energy can be absorbed at the corotation and propagate to the outer edge

of the disk; these tend to increase ωi. On the other hand, increasing cs also leads

to smaller ωr, which shifts the corotation resonance to a larger radius and leads

to decreasing ν and ωi.

Note that the growing modes shown in Fig. 5 extend below the ωr/m = Ωpeak

boundary due to the propagation of waves beyond the corotation radius, as

discussed in section 3 [see eqs. (3.23)]. Such modes (with νcrit < ν < 0) grow

significantly slower than the modes with ν > 0 as the flux is attenuated by the

entire barrier between rIL and rOL.

For comparison, Figure 7 shows the disk mode frequencies and growth rates

when the inner boundary condition δur = 0 is adopted. The different boundary

condition leads to a different phase shift ϕ and higher mode frequency, but the
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results are similar to those illustrated in Fig. 5. In particular, as p increases, ωr

remains approximately constant while ωi increases.

3.5 Effect of Radial Inflow on the P-Mode Growth Rate

Our mode calculations presented in section 4 neglect the radial velocity of the

accretion flow and assume a loss-less inner disk boundary condition (either

∆P = 0 or δur = 0 at rISCO). In real disks, the radial inflow velocity ur is not

negligible as r approaches rISCO, and the flow goes through a transonic point

(where ur = −cs) at a radius very close to rISCO. We expect that part of the fluid

perturbations may be advected into the black hole and the inner disk boundary

will not be completely loss-less. Here we study the effect of the transonic flow

on the p-mode growth rate.

We note that just as the accretion disk is not laminar but turbulent, the accre-

tion flow around rISCO is complicated. General relativistic MHD simulations in

3D are only beginning to shed light on the property of the black hole accretion

flow (e.g., Beckwith, Hawley & Krolik 2008; Shafee et al. 2008; Noble, Krolik

& Hawley 2008), and many uncertainties remain unresolved. Here, to make

analytic progress, we adopt a simple viscous transonic flow model, which qual-

itatively describes the inner accretion flow of the black hole as long as the flow

remains geometrically thin (see Afshordi & Paczynski 2003).
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3.5.1 Boundary Condition at the Sonic Point

We rewrite equations (3.6)-(3.7) as

ur

c2
s

δh′ + δu′r =

[

iω̃
c2

s

− ur

(

c−1
s

)′
]

δh +
u′r
ur
δur −

im
r
δuφ ≡ A1, (3.30)

δh′ + ur δu
′
r = (iω̃ − u′r) δur + 2Ω δuφ ≡ A2, (3.31)

where ′ stands for d/dr and we have used rΣur = constant for the background

flow. Solving for δh′ and δu′r we have

δh′ =
A2 − A1ur

1− u2
r/c2

s

, (3.32)

δu′r =
A1 − (ur/c2

s)A2

1− u2
r/c2

s

. (3.33)

Clearly, in order for the perturbation to be regular at the sonic point rs, where

ur = −cs, we require

A2 + csA1 = 0 at r = rs. (3.34)

For definiteness, we characterize the variations of Σ and cs at the sonic point

rs ≃ rISCO by the two length scales:
(

Σ
′

Σ

)

rs

=
1
LΣ
,

(

c′s
cs

)

rs

=
1
Lc
. (3.35)

From rΣur = constant, we also have u′r = cs(r−1
s + L−1

Σ
) at r = rs. Then equation

(3.34) becomes
(

iω̃
cs
− 2

Lc

)

δh +

[

iω̃ − 2cs

(

1
r
+

1
LΣ

)]

δur +

(

2Ω − imcs

r

)

δuφ = 0 at r = rs. (3.36)

This is the boundary condition for the fluid perturbations at the sonic point.

3.5.2 Properties of the Transonic Flow

Before exploring the effect the radial inflow on the disk modes, we first estimate

the length scale for the surface density variation, LΣ, using the viscous slim disk
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model (e.g., Muchotrzeb & Paczynski 1982; Matsumoto et al. 1984; Abramowicz

et al. 1988)

The basic steady-state slim disk equations are

Ṁ = −2πrΣur, (3.37)

uru
′
r = −c2

s

Σ
′

Σ
+ (Ω2 − Ω2

K)r, (3.38)

Ṁl0 = Ṁl + 2πνvisr
3
ΣΩ
′, (3.39)

where l = r2
Ω is the specific angular momentum of the flow, Ω is the actual

rotation rate, ΩK is given by equation (3.2), νvis is the kinetic viscosity, and l0 is

the eigenvalue that must be solved so that flow pass through the sonic point

smoothly. We shall use the α-disk model, so that νvis = αHcs, with H ≃ cs/ΩK .

To estimate LΣ, we assume l(r) ≃ r2
ΩK(r) for r >∼ rISCO and l0 ≃ lK(rISCO).

Equation (3.39) gives

ur(1− l0/l) ≃ −3νvis/(2r) = −3αHcs/(2r), (3.40)

valid for r >∼ rISCO. At the radius r = rISCO + ∆r, we have ur(∆r/rISCO)2 ≃

−4αHcs/rISCO. The sonic point (ur = −cs) is at ∆r ≃ 2
√
αHrISCO, and ur = −cs/2 at

∆r ≃ 2
√

2αHrISCO. Thus u′r(rs) ∼ cs/LΣ, with

LΣ =

(

Σ

Σ′

)

rs

∼ 2
√

αHrs = 2
√

αβ rs, (3.41)

where β = cs/(rΩ). This should be compared to the disk thickness H = βr:

depending on the value of α, both LΣ < H and LΣ > H are possible.

The value and sign of Lc depend on the thermodynamical and radiative

properties of the flow, and cannot be estimated in a simple way. It is reason-

able to expect |Lc| ∼ rs.
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3.5.3 Reflectivity at the Sonic Point

We can understand qualitatively the effect of the transonic boundary condition

on the p-mode by calculating the reflectivity Rs of the inner boundary.

Consider a density wave δh ∝ exp(i
∫ r

k dr) in the wave zone rin = rs < r < rIL ,

traveling toward the inner disk boundary. 3. Upon reflection, the wave becomes

δh ∝ Rs exp(−i
∫ r

k dr). Including the correct WKB amplitude (see Tsang & Lai

2008a), the wave outside the sonic point can be written as (up to a constant

prefactor)

δh = A
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k dr
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k dr
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





, (rs < r < rIL ) (3.42)

where

k =
(−D)1/2

cs
, A =

( D
rΣk

)1/2

. (3.43)

To apply the boundary condition (3.36) to equation (3.42), we neglect ur in equa-

tions (3.6)–(3.8) at r = rs + ε, with ε≪ rs and rs ≃ rISCO. Implicit in this procedure

is the assumption that the fluid perturbations do not vary significantly between

rs and rs + ε. We then obtain

Rs =
ik + L−1

A + K − 2mΩ/(rω̃)

ik − L−1
A − K + 2mΩ/(rω̃)

∣

∣

∣

∣

∣

∣

rs

, (3.44)

where

L−1
A =

(

A′

A

)

rs

, (3.45)

and

K =

(

ω̃2LΣ
2c2

s

) 1− (mcs/rω̃)2 − i
[

2mcsΩ/(rω̃2) − 2cs/(ω̃Lc)
]

1+ (LΣ/r) − i(ω̃LΣ/2cs)

∣

∣

∣

∣

∣

∣

rs

. (3.46)

3Note that since the group velocity of the wave has opposite sign as the phase velocity for

r < rIL , the wave of the form exp(i
∫ r

k dr) (with k > 0) is inward propagating.
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Figure 3.11: The wave reflectivity at the transonic point of the inner disk as a
function of the parameter LΣ/H, for rs/Lc = 0. The heavier lines are for cs =

0.1rΩ and the lighter lines for cs = 0.05rΩ. The short-dashed, solid and long-
dashed lines are for m = 1, 2, 3, respectively. The wave frequency is set to be
ω = 0.7mΩ(rs).
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Figure 3.12: The wave reflectivity at the transonic point of the inner disk as a
function of the parameter LΣ/H, for rs/Lc = −3 (the right panel). The heavier
lines are for cs = 0.1rΩ and the lighter lines for cs = 0.05rΩ. The short-dashed,
solid and long-dashed lines are for m = 1, 2, 3, respectively. The wave frequency
is set to be ω = 0.7mΩ(rs).
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When considering the damping of the p-mode due to the transonic flow, the

quantity |Rs|2 − 1 is the most relevant (see section 5.4 below). Let

K = |K| exp(−iψ), (3.47)

we have

|Rs|2 − 1 = − 4k |K| sinψ

(L−1
A + |K| cosψ)2 + (k + |K| sinψ)2

∣

∣

∣

∣

∣

∣

rs

. (3.48)

Using β = cs/(rΩ), ω̃ = −ω̂mΩISCO (where 0 < ω̂ < 1), we find from equation

(3.46) that

ψ = tan−1

(

2β
mω̂2

1+ rsω̂/Lc

1− β2/ω̂2

)

+ tan−1

(

mω̂LΣ
2βrs

1
1+ LΣ/rs

)

. (3.49)

Figures 3.11 and 3.12 shows how the reflectivity depends on various param-

eters of the disk inner edge. In particular, for small LΣ/H = LΣ/(βrs), i.e., when

the surface density of the disk decreases rapidly at the sonic point, |Rs|2 is only

slightly smaller than unity and the wave loss at the inner edge of the disk is

small.

3.5.4 Mode Growth Rate in the WKB Approximation

Consider the p-mode trapped between rin = rs ≃ rISCO and rIL . With the reflectiv-

ity at rIL given by R (see section 3), we can write the wave amplitude for r < rIL

as4

δh ∝
( D
rΣk

)1/2
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, (rs < r < rIL ) (3.50)

4Note that this definition of R differs from that in Tsang & Lai (2008a) by a phase factor of
exp(iπ/4).
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On the other hand, with the reflectivity at rin = rs given by Rs, the wave can also

be expressed as (3.42). For stationary waves we therefore require

exp(2iΘ) = RRs, with Θ =

rIL
∫

rin

k dr = Θr + iΘi, (3.51)

where Θr and Θi are real. The real eigen-frequency ωr is given by

Θr =

rIL
∫

rin

kr dr =

rIL
∫

rin

√

ω̃2
r − κ2

cs
dr = nπ +

ϕ

2
, (3.52)

where RRs = |RRs| exp(iϕ), and n is an integer. The mode growth rate ωi is deter-

mined by |RRs| = exp(−2Θi), or

tanhΘi = −
(

|RRs| − 1
|RRs| + 1

)

. (3.53)

For Θi =
∫ rIL

rin
ki dr ≪ 1 and ki ≃ ωiω̃r/(cs

√

ω̃2
r − κ2), we obtain

ωi =

(

|RRs| − 1
|RRs| + 1

)





















rIL
∫

rin

|ω̃r|
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









−1

, (3.54)

where we have assumed ω̃r < 0. Equation (3.54) is to be compared with (3.19),

where perfect reflection at rin is assumed. Clearly, to obtain growing modes we

require |RRs| > 1. For a given |R| > 1, growing modes are possible only when the

loss at the sonic point is sufficiently small (i.e., |Rs| is sufficiently close to unity).

3.5.5 Numerical Results

We solve equations (3.6)-(3.8) (with ur = 0) subjected to the radiative outer

boundary condition (3.26) and the transonic inner boundary condition (3.36).

Figure 3.13 depicts an example of the p-mode wavefunctions. Again, the

discontinuity in the angular momentum flux F at rc signifies wave absorption;
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Figure 3.13: Wavefunctions for a disk p-mode. The notations are the same
as in Fig. 3.4. The disk has sound speed cs = 0.1rΩ and constant density
profile (p = 0), and the m = 2 mode is calculated using the transonic inner
boundary condition (3.36) with LΣ/H = 0.25 and Lc = ∞. The eigenvalues are
ωr = 0.725mΩISCO and ωi/ωr = 0.00267.
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Figure 3.14: The real and imaginary frequencies of disk p-modes (with az-
imuthal wave numbers m = 1, 2, 3) as a function of LΣ/H [see eq. (3.35)] The
modes are calculated using the transonic inner boundary condition (3.36) with
Lc = ∞. The disk has a constant surface density profile and the sound speed is
cs = 0.1rΩ.
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Figure 3.15: The real and imaginary frequencies of disk p-modes (with az-
imuthal wave numbers m = 1, 2, 3) as a function of LΣ/H [see eq. (3.35)] The
modes are calculated using the transonic inner boundary condition (3.36) with
Lc = ∞. The disk has a constant surface density profile and the sound speed is
0.05rΩ (right panels).
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Figure 3.16: The real and imaginary frequencies of disk p-modes (with az-
imuthal wave numbers m = 1, 2, 3). The modes are calculated using the tran-
sonic inner boundary condition (3.36). The disk has a constant surface density
profile and the sound speed is cs = 0.1rΩ. This figure shows the cases with
Lc = −rs/3 by varying LΣ/H [see eq. (3.35)].
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Figure 3.17: The real and imaginary frequencies of disk p-modes (with az-
imuthal wave numbers m = 1, 2, 3). The modes are calculated using the tran-
sonic inner boundary condition (3.36). The disk has a constant surface density
profile and the sound speed is cs = 0.1rΩ. This figure shows the cases with
LΣ/H = 0.25by varying rs/Lc [see eq. (3.35)].
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since rc < rpeak, this leads to mode growth. Comparing with Figures 3.4 and

3.5, here the angular momentum flux at rin is significantly nonzero, indicating

wave loss through the sonic point. Nevertheless, the corotational instability is

sufficiently strong to overcome the loss and makes the mode grow.

Figures 3.14-3.17 show the fundamental p-mode frequencies and growth

rates as a function of the disk parameters. Consistent with the result of section

5.3 (see Fig. 8), growing modes are obtained for sufficiently small LΣ. Negative

Lc also tends to reduce wave loss at rs and make the growing modes possible.

Such values of LΣ and Lc are not unreasonable for black hole accretion disks.

It is important to note that while the mode growth rates ωi depend sensi-

tively on the inner disk parameters, particularly the physical property of the

transonic flow near the ISCO, the real mode frequencies ωr show only weak de-

pendence on the inner disk parameters (e.g., ωr decreases with increasing sound

speed; see Fig. 3.8). Thus we may expect that kHz QPOs appear only in certain

accretion states of the black hole, and the frequencies do not vary much as the

accretion rate changes.

3.6 The Role of Rossby Wave Instability

Lovelace et al. (1999) (see also Li et al. 2000) have shown that when the vorten-

sity ζ = κ2/(2ΩΣ) has an extremum at a certain radius (rpeak) in the disk5, it is pos-

sible to form normal Rossby modes around rpeak. If the trapped Rossby waves

can propagate on both sides of the corotation, a standing pattern of waves of

5Lovelace et al. considered non-barotropic flows, so the “generalized vortensity” depends
on the entropy profile of the disk.
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opposite energies are formed, making the mode unstable — This is the “Rossby

wave instability”. Tagger & Varniere (2006) have considered the MHD version

of the instability and suggested that it played a role in the diskoseismic modes

around black holes (see also Tagger 2006).

We do not find any trapped Rossby modes in our calculation. To clarify

the issue in light of works by Lovelace et al. and by Tagger & Varniere, let us

consider equation (3.10) and define the effective potential

Veff(r) =
2mΩ
rω̃

(

d
dr

ln
ΩΣ

D

)

+
m2

r2
+

D
c2

s

. (3.55)

The wave equation can be approximated by (d2/dr2 − Veff)δh ≃ 0 (see Tsang &

Lai 2008a). We will focus on modes with rc very close to rpeak (i.e., |rc − rpeak| ≪ rc,

so that ωr ≃ mΩpeak; see Fig. 1). For |r − rpeak| ≪ rpeak in a thin disk (so that m2/r2

can be neglected compared to κ2/c2
s), the effective potential becomes

Veff(r) ≃ −2mΩ
rω̃

(

d
dr

ln ζ

)

+
κ2

c2
s

≃ 2

qL2
ζ

(

r − rpeak

r − Rc

)

+
κ2

c2
s

, (3.56)

where in the second equality we have used Rc = rc − i(rcωi/qωr), Ω ∝ r−q, and

defined Lζ via

d ln ζ
dr
= −

r − rpeak

L2
ζ

, (for |r − rpeak| ≪ rpeak). (3.57)

Consider the case rc < rpeak and assume ωi ≪ ωr. The Rossby wave zone (where

Veff < 0) lies between rc and rc + ∆rR, with

∆rR ≃
rpeak− rc

(q/2)(Lζ/H)2
, (3.58)

where H ≃ cs/κ, and we have used Lζ/H ∼ r/H ≫ 1. The number of wavelengths

in the Rossby zone is

rc+∆rR
∫

rc

k dr =

rc+∆rR
∫

rc

(−Veff)
1/2 dr ∼

4H(rpeak− rc)

qL2
ζ

(3.59)
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Two points should be noted: (i) Since
∫ rc+∆rR

rc
k dr ≪ 1 for Lζ ∼ rpeak, no stationary

wave can form in the Rossby zone; (ii) since the Rossby zone lies only on one

side of the corotation radius, even if the mode can be trapped it will not grow by

the Rossby wave instability mechanism. Similar result can be obtained for the

rc > rpeak case. We conclude that for the “smooth” vortensity maximum (with

length scale Lζ ∼ r; see the lower panel of Fig. 1) considered in this chapter,

there is no trapped Rossby mode around rpeakand the Rossby wave instability is

ineffective.

In the hypothetical situation where the vortensity ζ has a minimum at r = rmin,

equation (3.56) should be replaced by

Veff(r) ≃ − 2

qL2
ζ

(

r − rmin

r − Rc

)

+
κ2

c2
s

, (3.60)

where we have used

d ln ζ
dr
=

r − rmin

L2
ζ

, (for |r − rmin| ≪ rmin). (3.61)

In this case, for a mode with ωr = mΩ(rmin) (or rc = rmin), we find Veff(rc) ≃

−2/(qL2
ζ ) + 1/H2 (for ωi ≪ ωr). When Veff(rc) < 0, or when

Lζ <

(

2
q

)1/2

H, (3.62)

Rossby waves can propagate on both sides of the corotation, leading to mode

growth — this is the Rossby wave instability. Thus, the Rossby wave instability

would operate if there existed a “sharp” vortensity minimum in the disk (with ζ

varying on the lengthscale comparable or less than the disk thickness) — this is

not the case for typical black hole accretion disks considered in this chapter.
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3.7 Discussion

High-frequency QPOs (HFQPOs) in black-hole X-ray binaries have been stud-

ied observationally for more than a decade now and they provide a potentially

important tool for studying the strong gravitational fields of black holes (see

Remillard & McClintock 2006). Despite much theoretical effort, the physical

mechanisms that generate these QPOs remain unclear (see section 1.1 for a brief

review of existing theoretical models). Ultimately, numerical simulations of re-

alistic accretion disks around black holes may provide the answer. However,

such simulations are still at their early stage of development and have their own

limitations (e.g., De Villiers & Hawley 2003; Machida & Matsumoto 2003; Ar-

ras et al. 2006; Fragile et al. 2007; Reynolds & Miller 2008; Beckwith et al. 2008;

Shafee et al. 2008; Noble et al. 2008), semi-analytical study remains a useful,

complementary approach in order to identify the key physics involved.

In this chapter, we have studied the global instability of the non-

axisymmetric p-modes in black-hole accretion disks. These modes have fre-

quencies ω ∼ (0.5 − 0.7)mΩISCO (where m is the azimuthal wave number, ΩISCO

is the disk rotation frequency at the inner-most stable circular orbit), where the

pre-factor (0.5-0.7) depends on the inner disk structure. Recent works (Arras et

al. 2006; Reynolds & Miller 2008; Fu & Lai 2008) suggested that, unlike other

diskoseismic modes (g-modes and c-modes), the p-modes may be robust in the

presence of disk magnetic fields and turbulence. Our linear analysis showed

that due to GR effects, the p-modes may grow in amplitude due to wave absorp-

tions at the corotation resonance. For a given m, only the lowest-order p-mode

has sufficiently high frequency (ω > mΩpeak; see Fig. 1) to be driven overstable

by the corotational instability, while high-order (lower frequency) modes are
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damped by the corotational wave absorption.

The greatest uncertainty of our calculation of the p-mode growth rate con-

cerns the boundary condition at the inner disk edge near the ISCO. In particu-

lar, the rapid radial inflow at the ISCO has the tendency to damp the mode (see

Blaes 1986). While our analysis in section 5 indicates that this damping does not

completely suppress the mode growth under certain disk conditions, it suggests

that mode growth may not always be achieved in real black-hole accretion disks.

Observationally, it is of interest to note that HFQPOs are observed only when

the X-ray binaries are in the steep power-law state, while they do not appear in

other spectral states (Remillard & McClintock 2006). In particular, HFQPOs are

absent in the thermal (soft-high) state, believed to correspond to geometrically

thin disks extending down to the ISCO. It is reasonable to expect that in this

state p-modes are damped due to the rapid radial inflow.

Our current understanding of the steep power-law state (also called very

high state) of black-hole X-ray binaries is rather limited. A thermal-radiation-

emitting disk is suggested by spectral modelings, but it is not clear whether

the disk is truncated at the ISCO or slightly larger radius (see Done et al. 2007).

The observed power-law radiation component requires a significant corona that

Compton up-scatters the disk thermal radiation. It is possible that in the steep

power-law state, the inner disk behaves as a more reflective boundary (modeled

in section 4) than a transonic flow (modeled in section 5), and thus more robust

p-mode growth can be achieved. One possibility is that a significant magnetic

field flux can accumulate in the inner disk when the disk accretion rate is suffi-

ciently high (see Bisnovtyi-Kogan & Lovelace 2007; Rothstein & Lovelace 2008

and references therein). Such a magnetic field may also enhance the corotational
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instability and induce variability in the power-law radiation flux (see Tagger &

Varniere 2006).

Although the p-mode growth rates depend sensitively on a number of (un-

certain) disk parameters (particularly those related to the inner disk boundary),

the mode frequencies are more robust (see Figs. 5-7, 10-11). More precisely, the

real mode frequency can be written as ωr = ω̄mΩISCO, where ω̄ < 1 depends

weakly on m and has only modest dependence on disk parameters (e.g. sound

speed). This implies a commensurate frequency ratio as observed in HFQPOs

(note that in some of our models, the m = 2, 3 modes have the largest growth

rates; see Fig. 5). The fact that ω̄ < 1 would also make the numerical values

of the p-mode frequencies more compatible with the measurements of the QPO

frequencies and black hole masses.

We note that our calculations in this work are done with a pseudo-

Newtonian potential. For direct comparison with observations a fully general

relativistic calculation6 is needed including a careful treatment of the corotation

singularity. Including the effect of black hole spin would likely increase the

value of ω by modifying rISCO and ΩISCO, while ω̄ will likely remain similar to

the non-spinning case discussed above. We plan to study these effects in future

work.

6Previous work on relativistic diskoseismic g-modes has been done by Perez et al. (1992) and
Silbergleit & Wagoner (2008) while the c-mode was studied by Silbergleit et al. (2001). Axisym-
metric p-modes were studied using a general relativistic formalism by Ortega-Rodriguez et al.
(2002), but these do not include the effect of the corotation singularity.

85



CHAPTER 4

COROTATIONAL ABSORPTION OF DISKOSEISMIC C-MODES IN

BLACK HOLE ACCRETION DISKS

4.1 Introduction

Diskoseismic oscillations of accretion disks around relativistic objects have been

studied for over two decades (e.g., Kato & Fukue 1980; Okazaki et al. 1987;

Nowak & Wagoner 1991, see Wagoner 1999, Kato 2001 for reviews), and have

been used as models for the time variability and quasi-periodic oscillations

(QPOs) in X-ray emissions from black-hole X-ray binaries.

The c-modes (or so-called corrugation waves) were first proposed to explain

low-frequency variabilities as their oscillation frequencies are lower than the

associated g-modes and p-modes (see section 3). Kato (1983) and Okazaki &

Kato (1985) showed the existence of one-armed (m = 1), low-frequency modes

in nearly Keplerian (Newtonian) disks, while later work (Kato 1989; Silbergleit

et al. 2001) demonstrated the presence of low-frequency c-modes in relativis-

tic accretion disks, particularly the one-armed corrugation waves with a single

node (n = 1; see section 3 below) in the vertical direction, which oscillate at

(approximately) the Lense-Thirring precession frequency evaluated at the outer

edge of the trapping region.

In the previous chapter, we studied the global corotational instability of

non-axisymmetric p-modes (n = 0) in black hole accretion disks. The mode

is trapped inside the corotation resonance radius rc (where the wave pattern ro-

tation speed ω/m equals the disk rotation rate Ω) and carries a negative energy.
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We showed that when the mode frequency ω is sufficiently high, positive wave

energy is absorbed at the corotation resonance, leading to the growth of mode

amplitude. The mode growth is further enhanced by wave transmission beyond

the corotation barrier. Non-axisymmetric g-modes, on the other hand, may con-

tain a corotation resonance in the wave zone. Kato (2003) and Li, Goodman

& Narayan (2003) showed that such g-modes are heavily damped as the wave

propagate through the corotation resonance (see also Zhang & Lai 2006).

Diskoseismic c-modes are trapped in the inner most regions of black hole

accretion disks. Although their primary wave zones are separated from the

corotation resonance, the wave can tunnel through the evanescent barrier and

propagate again around the corotation. In this chapter we calculate the analytic

damping rate of c-modes due to wave absorption at the corotation resonance.

In section 2 we briefly review the basic properties of perturbations in a thin

isothermal disk, and present the basic working perturbation equations. In sec-

tion 3 we discuss the propagation regions associated with various diskoseismic

modes, while in section 4 we demonstrate the effect of the corotation resonance

on wave propagation. In section 5 the effect of the corotation on the c-mode is

studied and the c-mode damping rates are calculated for different disk param-

eters. Section 6 contains our conclusion.

4.2 Basic Setup and Equations

Consider a thin isothermal disk with the unperturbed velocity uo = (0, rΩ, 0) in

the cylindrical coordinates. The vertical density profile is given by (for small
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z≪ r)

ρo(r, z) =
Σ(r)
√

2πH
exp

(

−z2/2H2
)

. (4.1)

Here Σ(r) is the (vertically integrated) surface density and H = cs/Ω⊥ is the

vertical scale height, where Ω⊥ is the vertical oscillation frequency and cs is the

isothermal sound.

Perturbing the mass and momentum conservation equations gives

∂

∂t
δρ + ∇ · (ρoδu + uoδρ) = 0 , (4.2)

∂

∂t
δu + (uo · ∇)δu + (δu · ∇)uo = −∇δh , (4.3)

with the enthalpy perturbation δh ≡ δP/ρ = c2
sδρ/ρ, where we assume that

the perturbations are also isothermal. Assuming perturbations of the form

δP, δu, δρ ∝ exp(imφ − iωt), we have

−iω̃
ρo

c2
s

δh +
1
r
∂

∂r
(rρoδur) +

im
r
ρoδuφ +

∂

∂z
(ρδuz) = 0 (4.4)

−iω̃δur − 2Ωδuφ = −
∂

∂r
δh (4.5)

−iω̃δuφ +
κ2

2Ω
δur = −

im
r
δh (4.6)

−iω̃δuz = −
∂

∂z
δh (4.7)

where ω̃ = ω−mΩ. Following Okazaki et al. (1987), we assume a z-dependence of

the perturbations such that δh, δur, δuφ ∝ Hn(z/H) where Hn(z/H) is the Hermite

polynomial of order n. Then equation (4.4) reduces to

−iω̃
ρo

c2
s

δh +
1
r
∂

∂r
(rρoδur) +

im
r
ρoδuφ −

nρo

iω̃
δh = 0 (4.8)

Neglecting terms proportional to dH/dr ∼ O(1/r), and eliminating the velocity

perturbations δur and δuφ from equations (4.5), (4.6) and (4.8), we obtain (see

eq. [29] in Zhang & Lai [2006])

d2

dr2
δh −

(

d
dr

ln
D
rΣ

)

d
dr
δh +

[

2mΩ
rω̃

d
dr

ln
D
ΩΣ
− m2

r2
− D(ω̃2 − nΩ2

⊥)
c2

sω̃
2

]

δh = 0 , (4.9)
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where D = κ2 − ω̃2. This is our basic working equation.

The approach above is Newtonian. More rigorous fully relativistic deriva-

tions of the dispersion relation have been given by Ipser (1994, 1996), Perez et

al. (1997), and Silbergleit et al. (2001). Some aspects of the general relativis-

tic effects can be incorporated into our analysis by using the Paczynski-Witta

psuedo-Newtonian potential, which gives κ < Ω = Ω⊥. For our purposes of esti-

mating the c-mode damping rates, it suffices to employ equation (4.9) but with

the relevant fully general relativistic frequencies (e.g., Aliev & Gal’tsov 1981;

Okazaki et al. 1987)

Ω =
1

r3/2 + a
, (4.10)

Ω⊥ = Ω

(

1− 4a
r3/2
+

3a2

r2

)1/2

, (4.11)

κ = Ω

(

1− 6
r
+

8a
r3/2
− 3a2

r2

)1/2

, , (4.12)

where the frequencies are in units of c3/GM, r in units of GM/c2, and a is the

spin parameter of the black hole.

4.3 Propagation Diagram and C-Modes

There are three possible critical resonant points in the disk: the Lindblad reso-

nances (LRs) where D = 0, the vertical resonances (VR) where ω̃2
= nΩ2

⊥, and the

corotation resonance (CR) where ω̃ = 0. Far from these critical points, the WKB

dispersion relation [for δh ∝ exp(i
∫

k dr)] takes the form (Okazaki et al. 1987)

c2
sk

2
=

(κ2 − ω̃2)(nΩ2
⊥ − ω̃2)

ω̃2
. (4.13)

The modes with n = 0 have no vertical structure, and are referred to as p-modes

– their stability properties are studied in Lai & Tsang (2008). We focus on the
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Figure 4.1: The propagation diagram for non-axisymmetric g-modes and c-
modes. Note that the curves mΩ−κ and mΩ+κ meet at r = rISCO since κ(rISCO) = 0
due to general relativistic effects. The g-modes are trapped between the in-
ner Lindblad resonance (where ω = mΩ − κ) and the outer Lindblad resonance
(where ω = mΩ + κ), or around the peak of the mΩ + κ curve.
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modes with n ≥ 1 and m ≥ 1 in this chapter. Wave propagation is allowed in

regions where ω̃2 < κ2 < nΩ2
⊥ or ω̃2 > nΩ2

⊥ > κ2 (note that κ < Ω⊥ in GR). The

former defines the g-mode propagation zone: the mode is trapped in the region

where mΩ − κ < ω < mΩ + κ; the latter leads to c-modes, for which the wave

zone is specified by ω < mΩ −
√

nΩ⊥ (see Fig. 1). Clearly, the c-modes exist only

when mΩ −
√

nΩ⊥ > 0 and wave reflection occurs at r = rin = rISCO, the radius

of the Inner-most Stable Circular Orbit. For Newtonian disks, since Ω⊥ = κ = Ω

the c-modes can only exist if m >
√

n; for relativistic disks, however, Ω > Ω⊥ (for

spinning black holes), we can obtain modes for m =
√

n that may have very low

frequencies. The “fundamental” c-mode, with m = n = 1 is of particular interest

(Kato 1990), since it corresponds to the Lense-Thirring precession of the inner,

tilted disk. Note that for extremely low mode frequencies, the terms of order 1/r

previously ignored may become important, and care must be taken to obtain the

real eigenfrequencies for trapped modes. Here we ignore these complications

and refer to Silbergleit et al. (2001) for a more thorough relativistic analysis.

4.4 Wave Absorption at the Corotation Resonance

The Lindblad resonances (D = 0) are apparent singularities of the master equa-

tion (4.9) [this can be seen easily by writing (4.9) as two coupled first-order dif-

ferential equations], and no wave absorption occurs at the Lindblad resonances

(e.g., Goldreich & Tremaine 1979; Li et al. 2003; Zhang & Lai 2006). The vertical

resonances (where ω̃2
= nΩ2

⊥) act purely as turning points, and no wave ab-

sorption occurs there either. However, the corotation resonance must be treated

more carefully (Kato 2003; Li et al. 2003; Zhang & Lai 2006).
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Here we follow the analysis of Zhang & Lai (2006). Near the corotation (r =

rc, where ω = mΩ), equation (4.9) can be written as

d2

dr2
δh − D(ω̃2 − nΩ2

⊥)
c2

sω̃
2

δh ≃ 0, (4.14)

since for a thin disk the sound speed cs ≪ rΩ and the last term in (4.9) dominates

the other terms. Defining x ≡ (r − rc)/rc and expanding (4.14) around x = 0, we

have

d2

dx2
δh +

C
(x + iǫ)2

δh = 0, (4.15)

where

C ≡ n
m2

(

κΩ⊥

csdΩ/dr

)2

rc

≫ 1. (4.16)

In equation (4.15), we have inserted a small imaginary part iǫ (with ǫ > 0) in 1/x2

because we consider the response of the disk to a slowly growing perturbation.

The two independent solutions to equation (4.15) are

δh± = z1/2z±iν
= z1/2e±iν ln z (4.17)

where ν =
√

C − 1
4 ≫ 1 and z = x + iǫ. The solution z1/2ziν has a local wavenum-

ber k = d(ν ln z)/dr = ν/(rcx), with the group velocity vg = dω/dk = −ω̃/k =

−qrcx2ω/ν < 0 (where we have assumed Ω ∝ r−q, with q > 0), thus it represents

waves propagating toward small r. Similarly, the solution z1/2z−iν has vg > 0 and

represents waves propagating toward large r.

As shown in Zhang & Lai (2006), waves with n ≥ 1 can propagate into the

corotation region and be absorbed there. Consider an incident wave propagat-

ing from the x < 0 (or r < rc) region toward x = 0, with the amplitude (up to a

constant factor)

δh(x < 0) = z1/2e−iν ln z
= ieπν(−x)1/2e−iν ln(−x), (incident wave). (4.18)
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The transmitted wave is simply

δh(x > 0) = x1/2e−iν ln x, (transmitted wave), (4.19)

and there is no reflection. Thus the amplitude of the transmitted wave is de-

creased by a factor of e−πν (Zhang & Lai 2006). Similarly, a wave incident from

the r > rc region toward rc encounters the same attenuation. Since ν ≫ 1 for

thin disks, We readily conclude that all waves incident upon the corotation will

be absorbed (Kato 2003; Li et al. 2003; see Zhang & Lai 2006 and Lai & Zhang

2008 for applications of this result to the problem of wave excitation by external

forces).

4.5 Corotational Damping of C-modes

The result of section 4 shows that waves propagating through the corotation are

heavily damped. Since g-modes trapped between the inner and outer Lindblad

resonances must cross the corotation, they are damped very quickly by coro-

tation absorption, as shown by Kato (2003) and Li et al. (2003). Only higher

frequency g-modes which are trapped around the peak of mΩ+κ (see Fig. 1) can

avoid such corotational damping; these modes have frequencies ω ≃ mΩ(rISCO).

In this section we calculate the damping rate of the c-mode. The damping

mechanism is illustrated in Fig. 2, where we also plot the effective potential:

Veff(r) =
D(ω̃2 − nΩ2

⊥)
c2

sω̃
2

+
m2

r2
+

2mΩ
rω̃

(

d
dr

ln
ΩΣ

D

)

. (4.20)

Based on the result of section 4, we will adopt the approximation that waves

transmitted through the barrier between the inner vertical resonance (IVR) and
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Figure 4.2: The wave propagation diagram (upper panel) and effective potential
(lower panel) for c-modes. The modes are trapped in region I (between rin =

rISCO and the inner vertical resonance rIVR), but can tunnel through an evanescent
barrier (region II, between the IVR and the inner Lindblad resonance rILR) and
propagate into the corotation (rc), where they are absorbed.
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the inner Lindblad resonance (ILR) are absorbed at the corotation. We will also

assume that the inner disk boundary is completely reflective (see section 6).

4.5.1 Reflection Coefficient

We first calculate the reflection coefficient Rwhen a wave in region I (see Fig. 2)

propagates outward and is reflected back at the IVR.

From the dispersion relation (4.13), the group velocity of the wave is given

by

vg ≡
dω
dk
=

kc2
s

ω̃
[

1− (κ/ω̃)2(nΩ2
⊥/ω̃

2)
] . (4.21)

The relative sign of vg and the phase velocity vp = ω/k is important. In region III

(rILR < r < rc), vg and vp have the same sign, thus waves propagating outwards

correspond to k > 0. In region I (r < rIVR), vg and vp have opposite signs, so that

waves propagating outwards have k < 0 and waves propagating inwards have

k > 0.

As shown in the previous section we can, to good approximation, assume

that waves propagating into the corotation are completely damped. Thus, only

an outward-propagating wave exists in region III (see Fig. 2), with the wave

amplitude (up to a constant prefactor) given by

δh = A exp





















i

r
∫

rILR

k dr +
π

4





















, (4.22)

where k > 0 is given by equation (4.13) and and A ≡
√

D/rkΣ is the WKB ampli-

tude. The connection formulae for the ILR (Tsang & Lai 2008) are

δh1 ∼
{ 1

2A exp
(

−
∫ rILR

r
|k| dr

)

for r ≪ rILR

A cos
(∫ r

rILR
k dr + π/4

)

for r ≫ rILR

(4.23)
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δh2 ∼
{

A exp
(∫ rILR

r
|k| dr

)

for r ≪ rILR

A sin
(∫ r

rILR
k dr + π/4

)

for r ≫ rILR .

(4.24)

These then give for the evanescent zone (region II in Fig. 2):

δh ≃ A
2

exp





















−
rILR
∫

r

|k| dr





















+ iA exp





















rILR
∫

r

|k|dr





















=
A
2

exp(−ΘII ) exp





















r
∫

rIVR

|k|dr





















+ iA exp(+ΘII ) exp





















−
r

∫

rIVR

|k|dr





















(4.25)

where

ΘII =

rILR
∫

rIVR

|k| dr. (4.26)

The connection formulae at the IVR can be similarly derived; they are 1

δh1 ∼
{ 1

2A exp
(

−
∫ r

rIVR
|k| dr

)

for r ≫ rIVR

A sin
(∫ rIVR

r
k dr + π/4

)

for r ≪ rIVR

(4.27)

δh2 ∼
{

A exp
(∫ r

rIVR
|k| dr

)

for r ≫ rIVR

A cos
(∫ rIVR

r
k dr + π/4

)

for r ≪ rIVR

(4.28)

(Abramowitz & Stegun 1964). Thus, we find that for r < rIVR (region I in Fig. 2),

δh ≃ A
2

e−ΘII cos





















rIVR
∫

r

k dr +
π

4





















+ i2AeΘII sin





















rIVR
∫

r

k dr +
π

4





















. (4.29)

Expressing this in terms of traveling waves and defining y =
∫ r

rIVR
kdr − π/4, we

have

δh ≃ iA

[

e−iy

(

e+ΘII +
1
4

e−ΘII

)

− e+iy

(

eΘII − 1
4

e−ΘII

)]

, (4.30)

where the first term (∝ e−iy) corresponds to the incident (outgoing) wave and

the second term (∝ eiy) the inward going wave reflected from the IVR. Thus the

1Note that around the IVR, the differential equation is matched by the Airy functions, rather
than by the Airy function derivatives as in the case of the ILR.
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Figure 4.3: The reflection coefficient, R, of waves incident upon the inner ver-
tical resonance (IVR), as a function of the (real) wave frequency ωr (in units of
mΩin, where Ωin is the disk rotation rate at r = rin), for various black hole spin pa-
rameters (a) and sound speeds cs = βrΩin. The upper panels are for m = 2, n = 1
and the lower panels for m = n = 1.
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reflection coefficient is

R = −
eΘII − 1

4e−ΘII

eΘII +
1
4e−ΘII

, (4.31)

and the transmission coefficient (through region II) is

T = i

eΘII +
1
4e−ΘII

. (4.32)

We can clearly see that |R|2 < 1.

4.5.2 Trapped C-modes and their Damping Rates

Assuming a reflective boundary exists at r = rin < rIVR , we can develop trapped

c-modes in the inner disk, between rin and the IVR. To illustrate this we consider

a simple boundary condition at r = rin:

δh(rin) = 0. (4.33)

From section 5.1, the wave in region I can be written as

δh = A exp(−iy) + RA exp(iy), with y =

r
∫

rIVR

k dr − π/4. (4.34)

where k = kr+iki is complex. Applying the boundary condition (4.33) to equation

(4.34) yields the eigenvalue condition:

exp(2iΘ) = −i|R|, with Θ =

rIVR
∫

rin

k dr = Θr + iΘi, (4.35)

where Θr and Θi are real. The real eigen frequency ωr is given by

Θr =

rIVR
∫

rin

kr dr =

rIVR
∫

rin

√

(κ2 − ω̃2
r )(nΩ

2
⊥ − ω̃2

r )

cs|ω̃r|
dr = µπ +

3π
4
, (4.36)
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where µ = 0, 1, 2, · · · is an integer and ω̃r = ωr − mΩ < 0 in the trapping region

between rin and rIVR. The imaginary part of the frequency ωi is determined by

|R| = exp(−2Θi), or

tanhΘi = −
(

|R| − 1
|R| + 1

)

. (4.37)

Note that Θi =
∫ rIVR

rin
ki dr ≪ 1 and

ki = ωi
dk
dω

∣

∣

∣

∣

ωr

=
ωiω̃r

krc2
s

(

1− nκ2
Ω

2
⊥

ω̃4
r

)

. (4.38)

We then obtain

ωi ≃ −
1
4

exp(−2ΘII )





















rIVR
∫

rin

|ω̃r|2
√

(κ2 − ω̃2)(nΩ2
⊥ − ω̃2)

(

1− nκ2
Ω

2
⊥

ω̃4
r

)

dr
cs





















−1

. (4.39)

Note that in the trapping region (between rin and rIVR), nκ2
Ω

2
⊥/ω̃

4 < 1. Thus the

mode is always damped (ωi < 0).

4.5.3 Numerical Results

Figure 3 depicts the reflection coefficients for waves impinging upon the inner

vertical resonance (IVR) from r < rIVR as a function of the wave frequency. We

consider both the m = 2, n = 1 and the m = 1, n = 1 modes. The real frequency

ranges from 0 to (mΩ−
√

nΩ⊥)|rin . Waves with higher frequencies are “protected”

by a larger potential barrier in the evanescent zone (larger ΘII ) and have |R|2

closer to unity.

Figures 4-5 show the real and imaginary c-mode frequencies, computed us-

ing the WKB expressions derived in section 5.2. Waves with higher frequencies

have smaller damping rate |ωi|, consistent with the reflectivity results shown in

Fig. 3. The damping rate is also smaller for cooler (smaller β) disks. For the
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Figure 4.4: The real and imaginary frequencies for the primary trapped c-mode
with the δh(rin) = 0 boundary condition and rin = rISCO for various sound speeds
versus the black hole spin parameter.
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Figure 4.5: The real and imaginary frequencies for the primary trapped c-mode
with the δh(rin) = 0 boundary condition and rin = rISCO for various sound speeds
versus the black hole spin parameter. The legend is the same as figure 4.4. Note
that there is no mode for the one-armed corrugation wave for sound speed cs =

0.1rΩin.
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m > n case (e.g. Fig. 4, left panel), the dimensionless damping rate |ωi|/mΩin

increases with increasing a (while ωr/mΩin remans approximately constant), be-

cause the width of the region between rIVR and rILR is smaller for larger a. For

the m = n = 1 case (Fig. 4, right panel) the range of possible c-mode frequen-

cies is bounded from above by the Lense-Thirring precession frequency at the

inner boundary. Thus ωr → 0 when a → 0. This leads to larger |ωi/ωr| for small

a since the potential barrier in the evanescent zone decreases with decreasing

ωr/mΩin. Note that although we use the relativistic frequencies (4.10)-(4.12) our

calculations not fully relativistic, and the real frequencies calculated shown in

Fig. 4, particularly for the m = n = 1 mode with large black hole spin parameter

a, are correct only in orders of magnitude [Fully relativistic calculation of the

real frequencies of these trapped modes was done by Silbergleit et al. (2001).]

Also note that adopting different inner disk boundary conditions would lead to

different real mode eigenfrequencies than presented in Fig. 4.

Finally, we note that equation (4.39) is valid only when there is no loss of

wave energy at the inner disk boundary rin. In the presence of the rapid radial

inflow at the ISCO, we would expect additional mode damping due to the leak-

age of waves into the plunging region of the disk (see Lai & Tsang 2008 for a

study of such leakage for p-modes). Alternatively, a sufficiently strong excita-

tion mechanism is needed to overcome the corotational damping and make the

c-modes grow.
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Figure 4.6: The damping rate |ωi| for various sound speeds and black hole spin
parameters for c-modes with purely reflective boundary conditions at rin as a
function of the real mode frequencies ωr. The upper panels show the results for
the m = 2, n = 1 modes and the lower panels show the m = n = 1 modes. The
sound speeds are taken to be constant, cs = βrΩin.
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4.6 Conclusion

In this chapter, we have shown that diskoseismic c-modes suffer corotational

damping due to wave absorption at the corotation resonance. These modes are

trapped between the inner disk edge and the inner vertical resonance (where

ω − mΩ = −
√

nΩ⊥, with m, n ≥ 1), but can tunnel through the evanescent zone

and leak out to the corotation zone where wave absorption occurs. The mode

damping rates are generally much smaller than the mode frequencies, and de-

pend sensitively on the disk sound speed and the black hole spin parameters.

With this chapter, we now have in hand a complete picture of how the corota-

tion resonance affects various diskoseismic modes in black-hole accretion disks,

at least in the linear regime: Non-axisymmetric g-modes are heavily damped

at the corotation resonance (Kato 2003; Li et al. 2003), while p-modes (inertial-

acoustic modes) can be overstable due to the corotational wave absorption (see

Lai & Tsang 2008 and references therein). The corotational damping rates of

c-modes are much smaller than those of g-modes.

Diskoseismic c-modes have been invoked to explain low-frequency variabil-

ities in black-hole X-ray binaries (van der Klis 2006; Remillard & McClintock

2006). Fu & Lai (2008) showed that the basic properties of c-modes are largely

unaffected by the disk magnetic fields and thus these modes are be present in

real disks. The results presented in this chapter show that in order for the c-

modes to be observable, a sufficiently strong excitation mechanism is needed to

overcome the corotational damping.
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CHAPTER 5

INTERFACE MODES AND THEIR INSTABILITIES IN ACCRETION DISK

BOUNDARY LAYERS

5.1 Introduction

Quasi-periodic variabilities have been observed in the timing data of various

types of accreting objects. Several types of quasi-periodic oscillations (QPOs)

are observed in X-ray binaries with accreting black holes (BHs) or neutron stars

(NSs) (e.g., Remillard & McClintock 2006; Van der Klis 2006). Oscillations are

also seen in the outbursts of accreting white dwarf (WD) systems (e.g., Patterson

1981; see Warner 2004 for a review).

In accreting NS and BH X-ray binaries the observed QPO frequencies (40−

450Hz for the high-frequency QPOs in the BH systems and & 300Hz for kHz

QPOs in the NS systems) imply a source close to the central compact object

where the Keplerian orbital frequencies are high. Since the BH systems lack a

hard surface where oscillations may occur, it is likely that the source of the vari-

ability is in the inner regions of the disc itself or in some interface regions be-

tween the disc and the plunging flow. Gilfanov et al (2003), however, found that,

based on spectral analysis of the disc emission components, the quasi-periodic

variability in Low Mass NS X-ray Binary systems are most likely caused by vari-

ations in the disc boundary layer, rather than the disc itself.

In Cataclysmic Variables (CVs) the Dwarf Nova Oscillations (DNOs) seen

during during outbursts have frequencies roughly corresponding to the Keple-

rian rotation rate at the WD surface (e.g., Patterson, 1981; Warner, 2004; Knigge
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et al, 1998), which imply an origin at or near the inner disk boundary.

Several models involving accretion disk boundary dynamics have been

proposed in different contexts. Popham (1999) studied the effect of a non-

axysymmetric bulge at the optically thick to optically thin transition radius as

a model for DNOs. Piro & Bildsten (2004) examined the surface wave oscilla-

tions that would occur within the thin equatorial belt around a non-magnetized

WD formed by the accretion spreading layer, while Warner & Woudt (2002)

considered accretion onto a slipping belt. In the context of accreting magnetic

(neutron) stars, Arons & Lea (1976) and Elsner & Lamb (1977) considered the

interchange instability at the magnetosphere boundary. Spruit & Taam (1990)

and Spruit, Stehle & Papaloizou (1995) investigated the stability of thin rotating

magnetized discs. Of particular relevance to the present chapter is the work

of Li & Narayan (2004), who examined a simplified cylindrical model of the

Rayleigh-Taylor and Kelvin-Helmholtz instabilities at the boundary between

a magnetosphere and an incompressible rotating flow. There have also been

a number of numerical simulations of the interface at the magnetosphere-disc

boundary (see Romanova et al., 2008 and Kulkarni & Romanova, 2008 and ref-

erences therein).

In this chapter we study global non-axisymmetric oscillation modes con-

fined near inner boundary of the accretion disc (interface modes). We consider

two simple models. The first model involves the magnetosphere-disc boundary

similar to the model of Li & Narayan (2004): we consider an uniformly rotating

incompressible magnetosphere with low gas density (where magnetic pressure

dominates), which truncates a thin barotropic accretion disc (where gas pres-

sure dominates). This situation may arise from magnetic field build up due
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to accretion (e.g., Bisnovatyi-Kogan & Ruzmaikin, 1974, 1976; Igumenshchev

et al., 2003; Rothstein & Lovelace, 2008) or by the magnetosphere of a central

(neutron) star. Unlike Li & Narayan (2004), who restricted their model to in-

compressible fluid, our discs are compressible and we show that because of the

differential rotation of the disc, finite disc sound speed plays an important role

in the development of the instability of the interface modes.

In our second model we examine the interface modes for accretion onto

a non-magnetic stellar surface. Though the structure of the boundary layer

is non-trivial and may affect boundary modes (see, e.g., Carroll et al., 1985;

Collins et al., 2000), we consider the instabilities for a thin disc truncated by

a sharp transition to a dense uniformly rotating stellar atmosphere. This sim-

plified model may provide insight for modes with characteristic radial length

scale much greater than the radial length scale of the boundary layer.

In Section 2 we describe the basic setup for the magnetospheric boundary

model, and in Section 3 we discuss the resulting interface mode instabilities. We

describe the star-disc boundary and analyze its possible instabilities in Section

4. We then conclude in Section 5 with a discussion of possible applications of

our findings.

5.2 Magnetosphere-Disc Setup

We begin by considering a simplified model of the magnetosphere-disc bound-

ary similar to the one considered by Li & Narayan (2004). The magnetic field is

assumed to be negligible in the disc region (r > rin), while the magnetosphere

region (r < rin) is assumed to be incompressible and have low density compared
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to the disc region, with purely vertical magnetic field. Unlike Li & Narayan

(2004), who assumed infinite sound speed in the disc, our disc has sound speed

cs much less than the disk rotation speed rΩ.

In terms of the vertically integrated density (Σ), pressure (P), magnetic field

(B) and fluid velocity (u) the ideal MHD equations are:

∂Σ

∂t
+ ∇ · (Σu) = 0 (5.1)

∂u
∂t
+ (u · ∇)u = −1

Σ
∇Π − ∇Φ + 1

Σ
T (5.2)

∂B
∂t
= ∇ × (u × B). (5.3)

where Π ≡ P+ B2/8π is the total pressure, T = 1
4π (B · ∇)B is the magnetic tension,

andΦ is the gravitational potential due to the central object (e.g. Fu & Lai, 2008).

Using cylindrical coordinates (r, φ, z), we consider the case where the magnetic

field is purely poloidal and B = Bzẑ in the disc plane, which gives T = 0. We

assume an axisymmetric background flow with fluid velocity u = rΩ(r)φ̂. The

unperturbed flow satisfies the condition

geff ≡ −
1
Σ

dΠ
dr
=

dΦ
dr
−Ω2r . (5.4)

The linearized equations of (5.1) and (5.2) with perturbations of the form

eimφ−iωt (assuming no vertical dependence) take the form:

−iω̃δΣ +
1
r
∂

∂r
(Σrδur) +

imΣ
r
δuφ = 0 , (5.5)

−iω̃δur − 2Ωδuφ = −geff
δΣ

Σ
− 1
Σ

∂

∂r
δΠ , (5.6)

−iω̃δuφ +
κ2

2Ω
δur = −

im
Σr
δΠ , (5.7)

where ω̃ = ω − mΩ is the Doppler shifted frequency, κ =
[

2Ω
r

d
dr (r

2
Ω)

]1/2
is the

radial epicyclic frequency, and δΣ, δΠ and δu are the Eulerian perturbations of
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the fluid variables. Additionally, assuming a barotropic flow we have

δΣ =
1
c2

s

δP =
1
c2

s

(δΠ − 1
4π

B · δB) . (5.8)

with the sound speed cs ≡ (dP/dΣ)1/2.

5.2.1 The Magnetosphere

In the inner, magnetically dominated region (r < rin), we assume the flow to

be incompressible, and have uniform rotation (Ω = Ω− = const) and uniform

surface density (Σ = Σ− = const). Equations (5.5) - (5.7) then reduce to

1
r
∂

∂r
(Σrδur) +

imΣ
r
δuφ = 0 (5.9)

−iω̃δur − 2Ωδuφ = −
1
Σ

∂

∂r
δΠ (5.10)

−iω̃δuφ +
κ2

2Ω
δur = −

im
Σr
δΠ, (5.11)

As in Li & Narayan (2004) we define W ≡ rδur and find δuφ = (i/m)dW/dr and

1
r

d
dr

(

r
dW
dr

)

− m2

r2

[

1− r
mω̃

d
dr

(

κ2

2Ω

)]

W = 0 . (5.12)

For uniform rotation, κ = 2Ω, equation (5.12) has the solution W ∝ r±m. Since r <

rin, we take the positive sign to be the physical solution so that the perturbation

falls off away from the interface. Thus the exact solution for the r < rin region is

δur = δur(rin)

(

r
rin

)m−1

. (5.13)

5.2.2 The Disc

In the disc (r > rin), we take the magnetic field to be small, such that P ≫ B2/(8π),

and the angular velocity of the unperturbed flow to be nearly Keplerian, such
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Figure 5.1: The wavefunctions for the interface mode for m = 4, cs = 0.1rΩ,
Σ−/Σ+ = 1/99 and Ω−/Ωin = 1, with the mode frequency ω/Ωin = 4.275+ 0.1914i,
where Ωin ≡ Ω(rin+) ≃ Ωk(rin). The real components are shown in solid lines,
while the imaginary components are dashed lines. Note that for the interface
modes only the outer Lindblad resonance (rOL, denoted by the dotted line) exists
outside rin
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that Ω(r) ≈ Ωk(r) ≡
√

1
r

dΦ
dr . Rewriting equations (5.5) - (5.7) we have

−iω̃
Σ

c2
s

δh +
1
r
∂

∂r
(Σrδur) +

imΣ
r
δuφ = 0 , (5.14)

−iω̃δur − 2Ωδuφ = −
∂

∂r
δh , (5.15)

−iω̃δuφ +
κ2

2Ω
δur = −

im
r
δh , (5.16)

where

δh ≡ c2
s

δΣ

Σ
=
δP
Σ

(5.17)

is the enthalpy perturbation. Eliminating the velocity perturbations in favor of

the enthalpy, we obtain the second order ODE for the enthalpy perturbation in

the disc,

[

d2

dr2
− d

dr

(

ln
D
rΣ

) d
dr
− 2mΩ

rω̃

(

d
dr

ln
ΩΣ

D

)

− m2

r2
− D

c2
s

]

δh = 0 . (5.18)

where D ≡ κ2 − ω̃2. For concreteness we will assume a power-law disc surface

density profile Σ ∝ r−p.

5.2.3 Matching Conditions Across the Interface

The matching conditions across the interface at rin between the magnetosphere

and the disc region are given by demanding the continuity of the Lagrangian

displacement in the radial direction ξr = iδur/ω̃, and the total Lagrangian pres-

sure perturbation ∆Π = δΠ + ξr
dΠ
dr across the boundary. The former gives

iδur+

ω̃+
=

iδur−

ω̃−
, (5.19)
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where the subscript “±” implifes that the quantities are evaluated at r = rin±.

The total Lagrangian pressure perturbation for r = rin− is given by

∆Π− = Σ−

[(

iκ2

2mΩ
+

i
rω̃

dΠ
dr

)

W +
irω̃
m2

dW
dr

]

rin−

= Σ−

[

2rΩω̃
m
− geff− +

rω̃2

m

]

iδur

ω̃

∣

∣

∣

∣

∣

rin−

. (5.20)

In the disc region, we have

∆Π+ = ∆P+ = Σ+

(

δh +
iδur

ω̃

1
Σ

dP
dr

)

rin+

= Σ+

(

ω̃δh
iδur
− pc2

s

r

)

iδur

ω̃+

∣

∣

∣

∣

∣

rin+

. (5.21)

The condition ∆Π+ = ∆Π− then gives

Σ+

(

ω̃δh
iδur
− pc2

s

r

)

rin+

= Σ−

(

2rΩω̃
m
− geff +

rω̃2

m

)

rin−

. (5.22)

5.3 Interface Modes at the Magnetosphere-Disc Boundary

Perturbations mainly confined to the magnetosphere-disc interface can become

unstable due to Rayleigh-Taylor or Kelvin Helmholtz instability. In order to cal-

culate the growth rates, we must solve the eigenvalue problem given by equa-

tion (5.18) with an outgoing wave boundary condition at some outer radius, and

equation (5.22) at the interface radius rin.

5.3.1 Numerical Solution

We adopt the radiative outer boundary condition in the outer wave zone of the

disc, such that far from the outer Lindblad resonance radius rOL (where ω−mΩ =
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Figure 5.2: Real and imaginary frequencies for interface modes for various m as
a function of the disc sound speed cs for Σ−/Σ+ = 0. The solid lines show the
eigenfrequencies for m = 5 modes, the dash-dotted lines for m = 4, the long-
dashed lines for m = 3, the short-dashed lines for m = 2, and the dotted lines for
m = 1.
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Figure 5.3: Real and imaginary frequencies for interface modes for various m
as a function of sound speed cs for Σ−/Σ+ = 1/9, with Ω−/Ωin = 1, where Ωin ≡
Ωk(rin). The solid lines show the eigenfrequencies for m = 5 modes, the dash-
dotted lines for m = 4, the long-dashed lines for m = 3, the short-dashed lines
for m = 2, and the dotted lines for m = 1.
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Figure 5.4: Real and imaginary frequencies for interface modes for various m as
a function of sound speed cs for Σ−/Σ+ = 1/99 with Ω−/Ωin = 0.5. The solid lines
show the eigenfrequencies for m = 5 modes, the dash-dotted lines for m = 4, the
long-dashed lines for m = 3, the short-dashed lines for m = 2, and the dotted
lines for m = 1.
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Figure 5.5: Real and imaginary frequencies for interface modes for various m
(denoted as in Figure 2) as a function of sound speed cs for Σ−/Σ+ = 1/9 with
Ω−/Ωin = 0.5. The solid lines show the eigenfrequencies for m = 5 modes, the
dash-dotted lines for m = 4, the long-dashed lines for m = 3, the short-dashed
lines for m = 2, and the dotted lines for m = 1.
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κ) we have the solution of the form:

δh ∝ A exp



















i

r
∫

kdr



















, (5.23)

with A = (D/rΣk)1/2 and k = (−D/c2
s )

1/2 (see Tsang & Lai 2008, Lai & Tsang, 2008).

This gives the boundary condition at r = rout > rOL:

δh′(rout) = δh(rout)

(

ik +
1
A

dA
dr

)

rout

. (5.24)

We adopt (5.22) as the inner boundary condition for the disc and solve the eigen-

value problem using a standard shooting method (Press et al 1998). For the

numerical solutions below, the density profile of the disk was assumed to be

Σ ∼ r−3/2 so that corotation absorption plays no role in determining the mode

stability (Tsang & Lai 2008). An example wavefunction for an interface mode is

shown in Figure 1, for typical disc parameters.

The numerical eigenvalues are shown in Figure 2 and Figure 3 for various

disc and magnetosphere parameters, for m = 1, 2, . . . , 5.

5.3.2 Discussion of Numerical Results

Figure 2 shows the complex eigenvalues as a function of sound speed cs, for

density contrasts corresponding to Σ− = 0 and Σ− =
1
9Σ+, with magnetosphere ro-

tation rate equal to the Kepler frequency at the interface [Ω− = Ω(rin+) ≃ Ωk(rin)].

For this case we see that there exists a cutoff in the disc sound speed below

which no growing interface modes are found. This arises from the stabilizing

effect of the background differential rotation, and can be understood as follows.

Setting Σ− = 0 and rewriting (5.22) in terms of the radial velocity perturba-
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tion δur, we have:

ζ+ω̃ +
ω̃2

mΣ+δur

d
dr

(Σ+rδur) + geff+

(

rω̃2

mc2
s

− m
r

)

= 0 (5.25)

where geff+ = pc2
s/r [see Eq. (5.4)] and ζ ≡ κ2/(2Ω) is the vorticity, and where all

quantities are evaluated at the interface rin+. For the wave frequencies of interest,

the waves are evanescent in the region of the disk just outside the interface. Let

k̃ ≡ −δu′r/δur > 0. Equation (5.25) can be solved in terms of k̃, giving

ω̃ =
mζ
2γ
± i

√

geff+m2

rγ
− m2ζ2

4γ2
(5.26)

where γ ≡ k̃r − 1. The terms inside the square root correspond to the mode

growth due to Rayleigh-Taylor instability and the suppression due to vorticity,

respectively. With geff+ = pc2/r we find the critical sound speed

ccrit ≈

√

ζ2r2

4pγ
, (5.27)

above which the perturbations will be unstable.

Figure 3 shows cases where the inner region is uniformly rotating at an angu-

lar frequency of one half the Kepler frequency at the interface [Ω− = 0.5Ω(rin+)].

When Σ− > 0 this leads to the development of the Kelvin-Helmholtz instability,

and both this and the Rayleigh-Taylor instability play a role in the mode growth.

In the Appendix we derive the expression for the plane-parallel Rayleigh-Taylor

and Kelvin-Helmholtz instabilities for a compressible upper region (with den-

sity ρ+ and horizontal velocity u+), and incompressible lower region (with den-

sity ρ− and horizontal velocity u−). For ρ− ≪ ρ+ we have ω ≈ ku+ ± iωi where k is

the horizontal wavenumber and

ωi =

√

kk̃(u+ − u−)2

(

ρ−

ρ+

)

+ gk̃ ≡
√

ω2
KH + ω

2
RT. (5.28)
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Here k̃ ≈ 1
2Hz

[
√

1+ H2
z k2 − 1

]

, g is the acceleration due to gravity in the vertical

direction, and Hz is the vertical scale height in the upper region.The Kelvin-

Helmholtz term is approximately

ω2
KH ≈ kk̃(u+ − u−)

2

(

ρ−

ρ+

)

. (5.29)

For kHz ≫ 1 this reduces to the incompressible limit with ω2
KH ≈ k2(u+−u−)2ρ−/ρ+.

For kHz ≪ 1 we have ω2
KH ≈ (Hzk)k2(u+ − u−)2ρ−/ρ+, a factor of Hzk smaller than

the incompressible result.

For the rotating system under consideration, the imaginary part of the mode

frequency can be written schematically as [cf. equation (5.28)]

ωi ≈
√

ω2
KH + ω

2
RT + ω

2
vort. (5.30)

We also have Hz ∼ c2
s/geff ∼ r and k ∼ m/r so kHz ∼ m. Thus ω2

KH ∼ (∆Ω)2
Σ−/Σ+,

and ω2
KH depends weakly on sound speed. On the other hand, from equa-

tion (5.26) we see that the vorticity suppresses mode growth through the term

ω2
vort = −m2ζ2/(4γ2). For sufficiently small cs, equation (5.18) indicates δh ∝ e−κr/cs ,

i.e. k̃ ∼ κ/cs. Therefore the vorticity term scales with sound speed as ω2
vort ∼

−m2c2
s/r

2, and can be dominated by the Kelvin-Helmholtz term for small enough

sound speed. In the left panel of Figure 3, the mode growth (ωi > 0) for small

cs is mainly driven by the Kelvin-Helmholtz instability. For m ≥ 5 the sound

speed ranges where ω2
RT and ω2

KH dominate over ω2
vort overlap, and hence the

critical sound speed in equation (5.27) is not relevant. For larger values of Σ−

these regions can overlap for all m.
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Figure 5.6: Real and imaginary frequencies for interface modes for various m
as a function of sound speed cs with rin = rISCO for the pseudo-newtonian GR
potential. There is no sound speed cutoff for unstable modes as the vorticity is
zero at the interface. Σ− = 0. The solid lines show the eigenfrequencies for m = 5
modes, the dash-dotted lines for m = 4, the long-dashed lines for m = 3, the
short-dashed lines for m = 2, and the dotted lines for m = 1.
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Figure 5.7: Real and imaginary frequencies for interface modes for various m
(denoted as in Figure 2) as a function of sound speed cs with rin = rISCO for the
pseudo-newtonian GR potential. There is no sound speed cutoff for unstable
modes as the vorticity is zero at the interface. Σ− =

1
99Σ+, and Ω− = 0.5Ωin. The

solid lines show the eigenfrequencies for m = 5 modes, the dash-dotted lines for
m = 4, the long-dashed lines for m = 3, the short-dashed lines for m = 2, and the
dotted lines for m = 1.
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5.3.3 Effect of a Relativistic Potential

While in Section 3.2 and other sections of the chapter we focus on Newtonian

discs, it is of interest to consider how general relativity may modify our re-

sults. The effect of general relativity can be approximated by using the pseudo-

Newtonian Paczynski & Wiita (1980) potential:

Φ = − GM
r − rS

, (5.31)

with rS = 2GM/c2 the Schwarzschild radius. This gives the Keplerian orbital

frequency (Ωk) and epicyclic frequency (κ) as:

Ωk =

(

1
r

dΦ
dr

)1/2

=

√

GM
r

1
r − rS

, κ =

[

2Ωk

r
d
dr

(r2
Ωk)

]1/2

= Ωk

√

r − 3rS

r − rS
. (5.32)

with κ → 0 at rISCO = 3rS = 6GM/c2.

For rin ≫ rISCO the interface modes are the same as for the Newtonian case.

However, as rin → rISCO the suppression effect of ω2
vort [see Eq. (5.26)] is reduced

as the vorticity goes to zero at rISCO, so that for rin = rISCO there is no cutoff

sound speed (see Figures 2-3) for interface mode instability. This is illustrated

in Figure 4. Thus if the magnetosphere boundary is at rISCO, the interface modes

will always be present and highly unstable for any sound speed.

5.3.4 P-modes with Magnetosphere Boundary

The boundary condition given by equation (5.22) also provides an inner reflec-

tion boundary for disc p-modes, which were studied in detail in Lai & Tsang

(2008). These modes have wavefunctions primarily “trapped” in the wave re-

gion between the disc boundary rin and the inner Lindblad resonance radius,
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Figure 5.8: The p-mode wavefunctions for m = 4, cs = 0.1rΩ, Σ−/Σ+ = 1/99,
Ω−/Ω+ = 1 with ω/Ωin = 1.914+ 0.000127i. The real components are shown in
solid lines, while the imaginary components are dashed lines. For p-modes the
inner and outer Lindblad resonances and the corotation resonance are outside
rin, denoted by the dotted lines. The solid lines show the eigenfrequencies for
m = 5 modes, the dash-dotted lines for m = 4, the long-dashed lines for m = 3,
and the short-dashed lines for m = 2.
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rILR, where ω −mΩ = −κ. Figure 5 depicts an example of the p-mode wave func-

tion for the same disc model as in Figure 1. The growth rates of these p-modes

are determined primarily by the outgoing flux at the outer boundary and the

effect of the corotation resonance, as discussed in Lai & Tsang (2008). In Figure

6 the eigenfrequencies are shown for p-modes in a disc with the density profile

Σ ∝ r−p, where p = 3/2 so that wave absorption at the corotation resonance is

inactive (since in this case the vortensity κ2/(2ΩΣ) is constant). For the density

profile p < 3/2, the corotation absorption tends to damp the mode, while for

p > 3/2 the corotation absorption enhances it.

5.4 Interface Modes at the Star-Disc Boundary

5.4.1 Star-Disc Boundary Condition

In the case of accretion on to a non-magnetic star, our model consists of a

dense uniformly rotating compressible stellar atmosphere truncating the accre-

tion disc. This model ignores the structure of the boundary layer. However the

qualitative properties of the dynamics should be captured for modes with char-

acteristic radial length scale much greater than the radial scale of the boundary

layer.

Several studies of CVs (e.g. by examining the rotationally broadened line

emissions from the stellar surface) have shown that the stellar rotation rates

are significantly below the breakup rotation rate (see Warner, 2004), and we

limit our examinations to systems with |Ω−| ≤ 0.5Ω(rin+). As in the case of the

disc, we consider only the effect of perturbations on a cylindrical equatorial
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Figure 5.9: Real and imaginary frequencies for p-modes for the magnetosphere
boundary condition with Σ− = (1/99)Σ+ and Ω− = 0.5Ωin. For Σ− ≪ Σ+ the
p-mode frequencies have very little dependence on Ω−. Here the disc surface
density profile is chosen to be Σ ∝ r−3/2, so that the corotation absorption is
inactive and mode growth is purely due to propagation outward at rout.
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surface of the stellar atmosphere (i.e., we are considering a ”cylindrical” star). In

this region equation (5.18) also describes the enthalpy perturbations within the

stellar atmosphere. Inside the atmosphere, we assume a small constant density

scale height, −Σ/Σ′ ≡ HΣ ≪ r. Equation (5.18) then becomes

δh′′ − 1
HΣ

δh′ −
(

2mΩ
rω̃HΣ

+
D
c2

s

)

δh ≈ 0. (5.33)

For HΣ ≪ r and HΣ ≪ cs/Ω, this has the solution

δh ∝ exp[(r − rin)/HΣ]. (5.34)

The Lagrangian pressure perturbation at the stellar surface is then

∆P− = Σ−

[

ω̃δh
iδur
− r(Ω2

k −Ω2)

]

rin−

iδur

ω̃

=















κ2 − ω̃2

2Ωm
rω̃ −

1
HΣ

− r(Ω2
k −Ω2)















rin−

Σ−
iδur

ω̃
. (5.35)

Once again matching the Lagrangian displacement and pressure perturbation

at the interface gives the boundary condition for the interface modes for the

star-disc boundary case:

Σ+

[

ω̃δh
iδur
− pc2

s

r

]

rin+

= Σ−















κ2 − ω̃2

2Ωm
rω̃ −

1
HΣ

+ r(Ω2 − Ω2
k)















rin−

. (5.36)

5.4.2 Numerical Results

We repeat the numerical procedure of Section 3 using the radiative outer bound-

ary condition [equation (5.24)] and using equation (5.36) as the inner disc

boundary condition. A sample wavefunction for the star-disc interface mode

is shown in Figure 7. For typical mode frequencies the region just outside the

boundary is an evanescent zone; wave propagation becomes possible only be-

yond the outer Lindblad resonance (rOL). Figure 8 shows the eigenfrequencies
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for the lowest order modes with m = 1, 2, . . . , 5 as a function of disc sound speed,

for representative parameters HΣ = 0.01rin, Σ− = 10Σ+ and Ω− = 0.1Ω+. Figure 9

shows the dependence of the mode eigenfrequencies on the density (Σ−), rota-

tion rate (Ω−), and scale height (HΣ) of the star. We see that both the real mode

frequency ωr and the growth rate ωi do not depend strongly on these parame-

ters.

5.4.3 Discussion of Numerical Results

When the disc is truncated by the star’s surface, the effective gravity acts to

stabilize the perturbations (since Σ− > Σ+), as does the vorticity. Thus compared

to the interface mode in the magnetosphere-disc case (Sections 3.1 – 3.2), the

mode growth rates here are much smaller and are primarily driven by wave

propagation through the corotation, beyond the outer Lindblad resonance. In

the left panels of Figure 8 the eigenfrequencies are shown for typical parameters

[Σ− = 10Σ+(rin), Ω− = 0.1Ω(rin+), HΣ = 0.01rin], and disc density index p = 3/2,

so that the corotation absorption plays no role. For other density indices, wave

absorption at the corotation can act to either damp or grow the interface modes

(Tsang & Lai 2008; Lai & Tsang 2008). For example, in the Shakura-Sunyaev

α-disc model the disc solution for the outer disc solution (with free-free opacity

and gas pressure dominating) has the surface density Σ ∝ r−3/4, hence the modes

would be stabilized by absorption at the corotation resonance. However, for

models where the disc has density index p > 3/2 at corotation, the corotational

absorption acts to enhance mode growth, as shown in the right panels of Figure

8.
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Figure 5.10: An example wavefunction for a disc/non-magnetized star interface
with m = 2, Σ− = 10Σ+, Ω− = 0.1Ωin and HΣ = 0.01rin with the eigenfrequency
ω/Ωin = 1.378+0.0030i. The left side (r < rin) of the plot denotes the perturbation
eigenfunctions inside the star, while the right side shows the disc perturbations.
The vertical dotted lines denote the corotation resonance radius (rc) and the
outer Lindblad resonance radius (rOL).
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Figure 5.11: Interface modes for the star/disc boundary for HΣ = 0.01rin, Σ− =
10Σ+, Ω− = 0.1Ωin, as a function of sound speed, for m = 1 . . .5. The vertically
integrated surface density of the disc is given by Σ+ ∝ r−p with p = 3/2, so that
corotation absorption plays no role. The solid line shows the eigenfrequencies
for m = 5 modes; the dashed and dotted line, m = 4; long dashed line, m = 3;
short dashed line, m = 2; and dotted line m = 1.
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Figure 5.12: Interface modes for the star/disc boundary for HΣ = 0.01rin, Σ− =
10Σ+, Ω− = 0.1Ωin, as a function of sound speed, for m = 1 . . .5. The vertically
integrated surface density of the disc is given by p = 2 for the right panels,
so that corotation absorption acts to enhance the mode growth. The solid line
shows the eigenfrequencies for m = 5 modes; the dashed and dotted line, m = 4;
long dashed line, m = 3; short dashed line, m = 2; and dotted line m = 1.

labelfig5.12
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The mode eigenfrequencies have very little dependence on the properties of

the stellar atmosphere (Σ−,Ω−,HΣ), as shown in Figure 9. The mode frequencies

instead primarily depend on the disc sound speed, which in turn depends on

the accretion rate. Observations of CVs indicate that DNOs are usually only de-

tected in high Ṁ states, with the oscillation period decreasing with increasing

luminosity (Warner 2004). The downward trend of the ωr/mΩin as a function of

cs in Figure 8 would appear to contradict the observed period-luminosity anti-

correlation. But note that in our model, the interface mode frequency depends

on the sound speed at the inner-most disc region and boundary layer, and it

will be necessary to model the thermodynamic and radiative properties of the

boundary layer in order to compare with observation directly. Also, the oscilla-

tions of the type considered here would yield periods shorter than the surface

Keplerian period, except for the m = 1 mode. Though higher-m modes would

be more difficult to observe due to the averaging out of the luminosity varia-

tion, most observed DNOs, even those with 1:2:3 harmonic structure (Warner

& Woudt, 2005) occur with period roughly at or greater than the corresponding

surface Keplerian period. These long-period oscillations cannot be explained by

the model considered here.

5.5 Conclusions

We have studied the non-radial oscillation modes at the interface between an

accretion disc and a magnetosphere or stellar surface. Although the models

explored in this chapter are perhaps too simplified compared to realistic situa-

tions, they offer some insight into the behavior of the interface modes in various

astrophysical contexts.
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Figure 5.13: Eigenfrequencies for disc-star interface modes as a function of star
density (Σ−), rotation rate (Ω−), and characteristic scale height (Σ−/Σ

′
− = HΣ).

The canonical values for various parameters are: cs = 0.2rinΩin, Ω− = 0.1Ωin,
HΣ = 0.01rin and Σ− = 10Σ+.
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Our study of the interface modes at the magnetosphere-disc boundary ex-

tended the work by Li & Narayan (2004), who considered incompressible disc

flow (and therefore could not treat real discs). The model can have very strongly

unstable modes due to Rayleigh-Taylor and Kelvin-Helmholtz instabilities. In

systems where the magnetosphere has developed from advection of frozen

magnetic flux, the magnetosphere is expected to be roughly rotating with at the

Keplerian rate. Since there is no shear at the interface, only the Rayleigh-Taylor

instability may occur. However the disc vorticty (due to differential rotation)

acts to suppress the instability, leading to a cutoff below a critical sound speed.

Thus a sufficiently hot disc is required to generate unstable low-m modes. For

magnetospheres rotating with the central star, shearing is expected between the

magnetosphere and disc, and the Kelvin-Helmholtz instability becomes active.

This can help to drive the instability for low-m modes to overcome the vorticity

in low sound-speed discs. In discs that terminate near the ISCO in a general

relativistic potential, the vorticity approaches zero at the inner disc radius, and

unstable interface modes can be found for any sound speed.

We can expect a strong dependence of the interface mode growth rates on

the sound speed, and thus accretion rate, while the real frequencies of these

oscillations remain close to (1 − 1.3)mΩin, and do not depend strongly on the

sound speed. It is worth noting that the same boundary condition that gives rise

to the interface modes also gives rise to intertial-acoustic modes (or p-modes) in

the disc.

Although higher-m interface modes are more unstable in our model, these

are less likely to be observed due to the averaging out of the luminosity vari-

ation over the observable emitting region. In addition, if the effect of viscous
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damping is considered (e.g., Wang & Robertson 1985), small wavelength or

high-m, perturbations are suppressed.

These results are for perturbations with no vertical structure, and are ap-

plicable mainly to the midplane of accretion discs interacting with a magne-

tosphere. Global 3D numerical studies of Rayleigh-Taylor instability induced

accretion onto magnetized stars have been performed by Romanova, Kulkarni

& Lovelace (2008) and Kulkarni & Romanova (2008), and show such small m

instabilities in the disk midplane. The low-m oscillations at the magnetosphere-

disc interface may be relevent to the high-frequency QPOs observed in some NS

and BH X-ray binary systems (Li & Narayan, 2004; see Section 1 of Lai & Tsang

for a critical review of various theoretical models), although to obtain the cor-

rect QPO frequencies for the BH systems, the disc inner radius must lie outside

the inner-most stable circular orbit.

For the star-disc boundary model considered in in this chapter, the interface

mode growth rates are much smaller than for the magnetospheric case, since

the effective gravity now acts to stabilize the system, and the Rayleigh-Taylor

instability is inactive. The modes discussed here are unstable due primarily to

propagation through the corotation. With sufficiently steep disc density profile

(Σ ∝ r−p with p > 3/2), corotation absorption can also help to drive these modes,

as studed previously by Tsang & Lai (2008) and Lai & Tsang (2008). Such modes

may be responsible for the high-frequency (of order the Keplerian frequency at

the stellar surface) dwarf nova oscillations observed in CVs, although oscilla-

tions with longer periods would require a different explanation.
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CHAPTER 6

RAYTRACING IN THE KERR METRIC

6.1 Introduction

In previous chapters we developed models for the growth rate of density wave

perturbations in accretion disks near compact objects. However, the mapping

of density perturbation to observable is non-trivial for several reasons, includ-

ing, the unknown structure of the upscattering corona or advection dominated

accretion flow (ADAF) necessary for converting thermal photons emitted by the

disk into observed X-rays, as well as the effect of the space-time curvature of the

compact object itself on the emitted photons. In this chapter we study the latter

effect by performing relativistic raytracing in the Kerr metric.

Many papers have been written discussing the treatment of X-ray emissions

from accretion discs around black holes. Emission from the high velocity matter

in theses discs will be distorted by the high gravity regime surrounding the

black hole, resulting in changes in the observed energy (doppler shifting and

gravitational redshifting), time delay, and light path. Many of these effects were

first calculated by Cunningham (1975), who used a transfer function approach

in calculating the effects of relativity, allowing the resulting observed spectrum

to be found by a convolution of the local emission spectrum and the relativistic

transfer function.

One of the main thrusts of research has been the study of sharp disc emis-

sions resulting from flourescence lines from X-rays incident on the disc, such

as the 6.4keV FeKα line. The advantage of considering such sharp emissions is
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that the relativistic effects may be seen more clearly, as the intrinsic disc emis-

sion mechanisms are not well understood. Iwasawa et al showed in 1996 that

the observation of the MCG 6-30-15 line exhibited a broadening of the red wing

and a disapearnce of the blue wing of the typical double horned curve. This is

taken by several authors to indicate an emission from the inner 6M radius of the

black hole region, which can not be supported by a Schwarzschild geometry,

and thus perhaps providing us with a probe of the geometry around a rotating

black hole.

If the X-rays incident on the accretion disc are from a flaring region in the

disc corona, different regions will emit the flouresence lines at different arrival

times. Thus the observed spectra will vary over time, due to the light crossing

time, and light bending effects. Such “reverberation” effects have been studied

by Reynold et al. (1998).

Iron line emissions have been studied extensively, as ASCA observations of

Seyfert I galaxies exhibit reprocessed x-ray emissions, specifically broadened

iron line emissions that may be explained by the effect of strong gravity. In

particular several papers (Dabrowski et al 1997, Dovciak et al 2004 etc) have

analysed observations of MCG-6-30-15(Tanaka et al 1995), a particlarly bright

source, using disc-line models to determine the local spacetime structure.

Similar methods are used to study QPOs with emission in the X-ray regime.

Schnittman and Bertschinger (2004) study the emission of a hot spots in a back-

ground daccretion discs. We utilize raytracing methods to construct a tool for

generating observables for emissions around black holes.
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6.2 Geodesic Raytracing

In order to calculate various spectrum and light curve properties we must first

construct a simulated image of the black hole and accretion disc in the ob-

server’s frame. In this frame the image is broken down into individual pixels of

equal solid angle, and each corresponding to a single ray emmitted by the accre-

tion disc. At the observer each pixel can be indexed by the impact parameters

α(⊥ to the spin axis projection), and β (‖ to the spin axisprojection).

Solving for the geodesics, each of these rays can be backtraced to their

source, allowing us to construct a complete image of the disc as seen by a distant

observer.

The contravariant components of photon momenta in a kerr metric can be

given in Boyer Linquist coordinates, assuming G = c = MBH = 1 (e.g. MIsner,

Thorne & Wheeler, 1973)

( dt
dλ

)

= ρ−2
[r2
+ a2

∆
[E(r2

+ a2) − Lz] − a(aE sin2 θ − Lz)
]

(6.1)

( dr
dλ

)

= ρ−2[(E(r2
+ a2) − Lza)2 − ∆((Lz − aE)2

+ Q)]1/2 (6.2)

(dθ
dλ

)

= ρ−2[Q − cos2 θ(L2
z csc2 θ − E2a2)]1/2 (6.3)

(dφ
dλ

)

= ρ−2
[

−aE + Lz csc2 θ +
a
∆

(E(r2
+ a2) − Lza)

]

(6.4)

where a is the black hole spin, λ is the affine parameter, and ∆ = r2 − 2r + a2.

E, the photon energy, Lz the angular momentum, and Q, Carter’s constant, are

constants of motion.

This form allows the use of simple Runge-Kutte routines to integrate out the

photon paths, and are used by many authors as a comprimise between code

complexity and computational speed. Care must be taken at the turning points
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of the u and µ variables to ensure proper integration.

Utilizing elliptical integrals, and hence greater code complexity, Cunning-

ham and Bardeen (1973) outline a quicker method of calculating the photon tra-

jectories using a Hamilton-Jacobi method. Here we follow a related procedure.

Rearranging and switching variables from the affine parameter to a “Mino pa-

rameter” (see e.g. Drasco & Hughes, 2004) λ′ : dλ
dλ′ = ρ

−2E we get the following

coupled first order ODEs for the coordinates as a function of mino-parameter,

( dt
dλ′

)

= T (r, θ) =
[(r2
+ a2)2

∆
− a2 sin2 θ

]

+ al
[

1− r2
+ a2

∆

]

(6.5)

( dr
dλ′

)2

= R(r) = (r2
+ a2 − la)2 − (r2 − 2r + a2)[(l − a)2

+ q2] (6.6)

( dθ
dλ′

)2

= Θ(θ) = q2 − l2 cot2 θ + a2 cos2 θ (6.7)

( dφ
dλ′

)

= Φ(r, θ) = l csc2 θ + a
(r2
+ a2

∆
− 1

)

− a2l
∆
. (6.8)

where l = Lz/E, q2
= Q/E2. The constants of motion l and q2 are related to the

impact parameters (α, β) by l = −α
√

1− µ2
o and q2

= β2
+ µ2

o(α
2 − a2).

We can solve these ODE’s in an semi-analytic fashion using the Jacobi elliptic

functions and elliptic integrals. We first solve for the two independant variables,

r(λ′) and θ(λ′)

6.2.1 The R equation

The roots of the equation

R(r) = (r2
+ a2 − al)2 − (r2 − 2r + a2)[(l − a)2

+ q2] = 0 (6.9)
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can be expressed (Cadez et al., 2003) as

r1 =
1
2

B +
1
2

√

−A + 2D − 4C/B (6.10)

r2 =
1
2

B +
1
2

√

−A + 2D − 4C/B (6.11)

r3 = −
1
2

B +
1
2

√

−A + 2D + 4C/B (6.12)

r4 = −
1
2

B +
1
2

√

−A + 2D + 4C/B (6.13)

where

C = (a − l)2
+ q2 (6.14)

D =
2
3

(q2
+ l2 − a2) (6.15)

E =
9
4

D2 − 12a2q2 (6.16)

F = −27
4

D3 − 108a2q2D + 108C2 (6.17)

B =

√
A + D (6.18)

with

A =
1
3

(F +
√

F2 − 4E3

2

)1/3

+
1
3

(F −
√

F2 − 4E3

2

)1/3

(6.19)

For numerical evaluation this is better expressed (if F2 ≥ 4E3)

A =
1
3

(F +
√

F2 − 4E3

2

)1/3

+
E
3

( 2

F +
√

F2 − 4E3

)1/3

(6.20)

and if F < 4E3 we take the principal value of

A =
2
3

√
E cos[

cos−1(F/2E3/2)
3

] (6.21)

139



Allowing us to rewrite the differential equation for dr/dλ′ as

dr
dλ′

=

√

R(r) (6.22)

= −
√

(r − r1)(r − r2)(r − r4)(r − r3) (6.23)

∆λ′ = −
r

∫

ro

dr
√

(r − r1)(r − r2)(r − r4)(r − r3)
(6.24)

=
2

√
(r2 − r4)(r1 − r3)

F
(

sin−1

√

(r − r1)(r2 − r4)
(r − r2)(r1 − r4)

,

√

(r1 − r4)(r2 − r3)
(r2 − r4)(r1 − r3)

)

∣

∣

∣

∣

∣

∞

r
(6.25)

=
2

√
(r2 − r4)(r1 − r3)

sn−1
(

√

(r − r1)(r2 − r4)
(r − r2)(r1 − r4)

,

√

(r1 − r4)(r2 − r3)
(r2 − r4)(r1 − r3)

)

∣

∣

∣

∣

∣

∞

r
(6.26)

where sn is the Jacobi elliptic function and F is the Jacobi elliptic integral of the

first kind. 1

With the negative value of the momentum corresponding to backtraced pho-

ton decreasing in r. Solving for r(∆λ′) we get

r(∆λ′) =
r1(r2 − r4) − r2(r1 − r4) sn2(u, κr)

(r2 − r4) − (r1 − r4) sn2(u, κr)
(6.27)

where

κr =

√

(r1 − r4)(r2 − r3)
(r2 − r4)(r1 − r3)

(6.28)

u =

√
r2 − r4)(r1 − r3)∆λ′

2
− u∞ (6.29)

u∞ = sn−1
(

√

r2 − r4

r1 − r4
, κr

)

(6.30)

even for complex values of rn.

To calculate the value of ∆λ′(r) we must carefully consider any turning points

that may be encountered in r. If any root rn is a positive real value greater than

1We calculate the Jacobi elliptic functions and elliptic integrals utilizing standard recurrence
relations modified to work with values on part of the complex plane, combined with the Lan-
den’s transforms to change the complex arguments (see Appendix D)
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the horizon radius then the photon may have a turning point in r. If no turning

point is encountered before the emission point then the value of ∆λ′(r) is given

by

∆λ′(r) =
2

√
(r2 − r4)(r1 − r3)

[

F
(

sin−1ψ∞, κr

)

− F
(

sin−1ψ(r), κr

)]

(6.31)

where ψ(r) =
√

(r−r1)(r2−r4)
(r−r2)(r1−r4) and ψ∞ = ψ(r)|r→∞ =

√

(r2−r4)
(r1−r4) .

If a photon turning point is encountered by the backtrace before reaching the

emission point (ie ∆λ′ > ∆λ′(rturn)) then the corresponding value of ∆λ′ is given

by

∆λ′(r) =
2

√
(r2 − r4)(r1 − r3)

[

F
(

sin−1ψ(r), κr

)

∣

∣

∣

∣

∣

∞

rturn

+ F
(

sin−1ψ(r), κr

)

∣

∣

∣

∣

∣

rem

rturn

]

(6.32)

As the change in sign corresponds to the change in the sign of the photon mo-

menta at the turning point.

6.2.2 The Θ equation

Examining the θ equation we perform the substitution z = cos2 θ such that

dθ
dλ′

= ±
√

−a2z2 − z[q2 + l2 − a2] + q2

1− z
(6.33)

= ±
√

a2(z+ − z)(z − z−)
1− z

(6.34)

where z± = −q2
+l2−a2

2a2 ±
√

(q2+l2−a2)2

4a4 +
q2

a2 If we take χ : z = z+ cos2 χ we have

dχ
dθ
= ±

√

1− z
(z+ − z)

(6.35)

which gives

dχ
dλ′
=

dχ
dθ

dθ
dλ′

=

√

a2(z − z−) (6.36)

=

√

a2(z+ cos2 χ − z−) (6.37)
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which gives the integral

λ′(χ) − λ′(χo) =

χ
∫

χo

dχ
√

a2(z+ cos2 χ − z−)
(6.38)

=
1

a
√

z + −z−

[

F
(

χ,

√

z+
z+ − z−

)

− F
(

χo,

√

z+
z+ − z−

)]

(6.39)

where F(ψ, k) is the elliptic integral of the first kind. (In Abramowitz and Stegun

notation this is F = F(ψ|m), where m = k2.)

Inverting this equation and solving for θ we finally obtain:

θ(λ′) = cos−1(
√

z+ cn(a
√

z+ − z−λ
′
+ uθo , κθ)) (6.40)

where

uθo = sgn(β) cn−1(cos(θo)/
√

z+, κθ) (6.41)

κθ =

√

z+
z+ − z−

(6.42)

and cn(u, κ) is the Jacobi elliptic function which has inverse cn−1(u, κ) =

F(cos−1(u), κ).

In order to calculate the mino-parameter corresponding to a particular value

of θ we see

∆λ′(θ) =
1

a
√

z+ − z−

[

F
(

χ,

√

z+
z+ − z−

)

− F
(

χo,

√

z+
z+ − z−

)]

(6.43)

where

χ = cos−1
(cosθ
√

z+

)

(6.44)

χo = sgn(β) cos−1
(cosθo√

z+

)

(6.45)

thus we can solve for λ′ corresponding to intersection of the ray with simple

fixed θem disc configurations. The flat disc model of θem = π/2 is of particular

interest.
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6.2.3 The Φ Equation

The φ(λ′) differential equation is more complicated than the equations for the

first two spatial coordinates, however the differential equation can be solved by

breaking the integration into two parts, integration over θ and integration over

r.

First rewriting the Φ(r, θ) equation we see

dφ
dλ′
=

l
1− cos2 θ

+ a
2r + la

r2 − 2r + a2
(6.46)

Integrating the first term we see

∆φ1 =

λem
∫

λ′o

ldλ′

1− cos2 θ
(6.47)

=

λ′em
∫

λ′o

ldλ′

1− z+ cn2(a
√

z+ − z−λ′ + uθo , kθ)
(6.48)

=

λem
∫

λ′o

ldλ′

1− z+(1− sn2)
(6.49)

=
l

(1− z+)

λ′em
∫

λ′o

dλ′

1+ z+
1−z+

sn2
(6.50)

=
l/a

(1− z+)
√

z+ − z−

uem
∫

uo

du
1+ z+

1−z+
sn2(u, kθ)

(6.51)

=
l/a

(1− z+)
√

z+ − z−
Π

(

χ,
z+

1− z+
, κθ

)

∣

∣

∣

∣

∣

χem

χo

(6.52)

where u = a
√

z+ − z−λ′+uo, χ = am(u, κθ) is the Jacobi amplitude of u, andΠ(ψ, n, κ)

is the elliptic integral of the third kind. All these values are real, and there is no

difficulty in evaluating Π(ψ, n, κ) through the standard recurrence relations.
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The second term proves slightly more complicated:

∆φ2 = a

λ′em
∫

λ′o

(2r + la)dλ′

r2 − 2r + a2
(6.53)

= a

rem
∫

∞

2r + la
(r − r+)(r − r−)

dλ′

dr
dr (6.54)

= a
(2r+ + al

r+ − r−

)

∞
∫

rem

1
(r − r+)

dr
√

(r − r1)(r − r2)(r − r3)(r − r4)

−a
(2r− + al

r+ − r−

)

∞
∫

rem

1
(r − r−)

dr
√

(r − r1)(r − r2)(r − r3)(r − r4)
(6.55)

= a
[ 2r2 + al

r2
2 − 2r2 + a2

]

∆λ′ +
2a

√
(r1 − r3)(r2 − r4)

( r1 − r2

r+ − r−

)

×
[ 2r− + al
(r1 − r−)(r2 − r−)

Π− −
2r+ + al

(r1 − r+)(r2 − r+)
Π+

]∞

rem

(6.56)

where

r± = 1±
√

1− a2 (6.57)

Π± = Π(ψ(r), n±, κr) (6.58)

n± = ψ2(r)
∣

∣

∣

∣

∣

r=r±

. (6.59)

Thus we have

∆φ(∆λ′) = ∆φ1 + ∆φ2 (6.60)

Note that when a turning point is encountered in r, the ∆φ2 must be evaluated

with the appropriate sign change as for ∆λ′(r).

In general the parameters of the elliptical integrals of the third kind will be

complex. This limits evaluation of ∆φ2 using recurrence relations to a particular

domain of complex parameter space. Evaluations outside of this domain can be

performed using numerical quadrature.
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6.2.4 The T Equation

The solution to the time coordinate is the most complicated of the four Boyer-

Linquist coordinates.Simplifying the T (r, θ) equation we have:

dt
dλ′
= −a2 sin2 θ +

(r2
+ a2)2

+ 2alr
r2 − 2r + a2

(6.61)

The first term can be integrated in a relatively straightforward fashion as:

∆t1 =
∫

a2(1+ cos2 θ)dλ′ (6.62)

= a2
∆λ′ −

∫

a2z+ cn2(uθ, κθ))
duθ

a
√

z+ − z−
(6.63)

= a2
∆λ′ − az+√

z+ − z−

1

κ2
θ

[

E(am(uθ), κθ) − (1− κ2
θ)uθ

]uem

uo

(6.64)

= a2
[

a +
z+(1− κ2

θ)

κ2
θ

]

∆λ′ − az+
κ2
θ

√
z+ − z−

E(χ, κθ)
∣

∣

∣

∣

∣

χem

χo

(6.65)

For the second term,∆t2, the analytic solution can be determined as a very

long combination of elliptical integrals of the first, second and third kinds as

well as the Jacobi elliptic functions.

However, the values of observer time elapsed for the intervals between pho-

ton emission and observation at infinity are necessarily divergent. Though one

could simply evaluate ∆t2 only up to a large arbitrary value of r, it is better to in-

stead subtract off the same infinite constant for each ray, as our interest is limited

to the elapsed observer time difference between different rays ,by considering

the Kerr time.

Remembering that the time in Kerr-coordinates is given by a transformation:

dtKerr = dtBL +

( r2
+ a2

r2 − 2r + a2

)

dr (6.66)
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we can then subtract off the same constant for each ray by taking

∆t′ = ∆tKerr −
rbitrary
∫

rem

r2
+ a2

r2 − 2r + a2
dr (6.67)

= ∆tBL +

rem
∫

∞

r2
+ a2

r2 − 2r + a2
dr −

rbitrary
∫

rem

r2
+ a2

r2 − 2r + a2
dr (6.68)

= ∆t1 + ∆t2 −
∞

∫

rbitrary

r2
+ a2

r2 − 2r + a2
dr (6.69)

= ∆t1 +

rbitrary
∫

rem

(r2
+ a2)2

+ 2alr
r2 − 2r + a2

dr
√

R(r)

+

∞
∫

rbitrary

[(r2
+ a2)2

+ 2alr
r2 − 2r + a2

1
√

R(r)
− r2

+ a2

r2 − 2r + a2

]

dr. (6.70)

where rbitrary is some r beyond the disc range.

These integrations are best performed with numerical quadrature as evalua-

tion of the elliptic integrals and Jacobi elliptic functions prove less efficient than

the numerical integration. In addition the 1/
√

R(r) term makes it difficult to re-

move the divergent components of the analytic solution so it may be evaluated

numerically.

6.3 Calculation of Observables

We know that along each ray Iν/ν3 is lorentz invariant, and the redshift is defined

as g = νobs/νem. Hence we have Iνobs = g3Iνem along a particular ray.

However including lensing/magnification effects we see that over a ray bun-

dle of area dS

Iνobs = g3Iνem

∣

∣

∣

∣

∣

dS ⊥
dS obs

∣

∣

∣

∣

∣

(6.71)
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where dS ⊥ is the area element perpendicular to the ray bundle at the emission

point, in the local disc frame.

Covariantly the redshift can be given as:

g =
pobsµUobsµ

pemνUν
em

= − 1
pemνUν

em

(6.72)

for a distant stationary observer, where Uem is the four velocity of the disc mate-

rial.

The most important observable to be calculated for each pixel is the observed

flux. We have

Fνobs =

∫

dFνobs

dΩ
dΩ (6.73)

=

∫

IνobsdΩ (6.74)

=
1

D2

∫

g3Iνem

∣

∣

∣

∣

∣

dS ⊥
dS obs

∣

∣

∣

∣

∣

D2dΩ (6.75)

=
1

D2

∫

g3Iνem

∣

∣

∣

∣

∣

dS ⊥
dS obs

∣

∣

∣

∣

∣

dS obs (6.76)

where dS ⊥ can be expressed covariantly as:

dS ⊥ = −
Uγ

em pδemdS γδ

Uν
em pem ν

(6.77)

with dS γδ, the area tensor, given by

dS γδ

dS obs
=

dxµ

dα
dxν

dβ
εγδµν (6.78)

and ε is the levi-civita tensor.

Thus we have

Fνobs =
1

D2

∫∫

g3Iνem

∣

∣

∣

∣

∣

− Uγ
em pδem

Uǫ
em pem ǫ

dxµ

dα
dxν

dβ
εγδµν

∣

∣

∣

∣

∣

dαdβ (6.79)
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Figure 6.1: A simple example of a 200x200 pixel image and line profile generated by the raytracer interface.
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Figure 6.2: A simple example of a 100x100 pixel image and line profile generated by the raytracer interface for a disk with
a hotspot in the user defined emitted intensity.
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6.3.1 Line Profiles

Line profile calculation is usually done using either of two methods, tracing for-

wards from the emission point or backwards from the observer. In the former

case a ray tracing routine is used to trace forward a calculated emission from

a given point. If an emission angle is traced forward and reaches the observer

at infinity (observer angle θobs), the impact paramter, redshift, and observed in-

tensity etc are stored. In the back-tracing case the geodesics with for each set of

impact parameters (α, beta) are traced forward until intersection with the disc or

horizon

In the Schwarzschild case (Fabian et al 1989) the ray tracing is reduced to a

simple analytic calculation with

g =
(

1− 3M
rs

)1/2{

1+
cosβ

[rs(1+ tan2 ξ)/M − 2]1/2

}−1

(6.80)

where β is the angle between the disc plane and the plane of the photon trajec-

tory, and ξ + π/2 is the angle between the direction of photon emission and the

black hole-observer axis.

A double horned shape is common to most of these relativistic disc line pro-

files, due to the doppler shifting from either side of the spinning discs. The

transverse doppler shift, and the gravitational redshift cause the assymetry be-

tween the two peaks, lowering the red peak, but broadening the red wing. The

inner radius does not seem to effect the profile much, except in the red tail,

whereas shifting the outer radius of the disc causes a widening (more extreme

doppler shifting from either side of a larger keplarian disc) of the double horned

shape, however a hard blue edge is maintained. The effect of the inclination an-

gle is most apparent, with the lowering of inclination angle the effects of the
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transverse Doppler and gravitational dominate with the mean photon energy

tending towards the red, and the line shape becoming single peaked for very

low inclination angle (or large ro).

Several authors (Laor 1991, Kojima 1991, Dabrowski et al 1997, Fanton et

al 1997) have explored a similar case for the Kerr black hole. More recent cal-

culations by Beckwith and Done (2004) and Dovciak, Karas and Yaqoob (2004)

have introduced new computational techniques to calculate the line profiles in

strong gravity. For the most part their calculations develop and refine the cal-

culations done previously, comparing their models to those produced by the

XSPEC packages “diskline” and “laor”.

The raytracer interface depicted in Figure 6.1 is used for generating line pro-

files and disk images. Figure 6.2 shows a disk image and line-profile based on a

user-defined functional input for the disk emission profile showing a hotspot. It

was developed using a Tcl/Tk & Python interface to the semi-analytic raytrace

engine described above. Here the line profiles are calculated by summing the

specific intensities into a number of redshift bins over all pixels.

Higher resolution disk images are shown in Figure 6.3, while Figure 6.4

demonstrates sample line profile calculations for 1000x1000 pixel images of a

maximally spinning black hole with simple r−2 emission profile.
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Figure 6.3: Example 500x500 pixel disk images for emission law ∝ r−2 for inclination angle 30◦ (left), 70◦ (right)
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Figure 6.4: Example line profiles for emission law ∝ r−2 for various inclination angles on disk with outer radius 10M and
inner radius at the ISCO for a maximally spinning black hole.
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6.3.2 Polarization

Another observable of such emissions that can be measured is the polarization.

First discussed by Connors, Piran and Stark (1980), the space-time geometry

is found to play an important role in determining the polarization features of

isotropic disc emission near black holes. In particular, for an isotropic electron

scattering emission, there is found to be a dependance on photon energy and the

degree and angle of polarization. These result from the tendancy for photons of

a certain energy to emerge mostly from a certain radius and thus suffer related

polarization effects.

More recent work by Chen and Eardley (1991) examine the polarization

properties of line emissions from an accretion disc around a Schwarzschild

black hole and show that the red wing is always more polarized than the blue

wing as the emission angle in the emitting frame is larger for the receding (red)

part of the disc than it is for the approaching (blue) part of the disc.the polar-

ization angle was also found to decrease with observed frequency. Chen and

Eardley propose to take these two polarization effects as a signature of relativis-

tic line emission in strong gravity. Ogura Ohuo and Kojima (2000) extend this

work to the maximal Kerr case, and find that the polarization effects change

signficantly with higher spin and rISCO closer to the black hole.
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Figure 6.5: Example polarization angle ψ as a function of redshift g for various inclination angles for a disk around a
maximally rotating black hole. The emission law is assumed to be ∝ r−2 with the disk extending to r = 10M.
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The polarization state for a given photon can be calculated using the raytrac-

ing procedure by considering the Penrose-Walker constant.

κPW = κr − ıκi

= (ǫ − ıξ)(r − ıa sinθ)

where f µ is the polarization vector, (defined with k · f = 0 and f · f = 1, and

depending on the disc properties) and

ǫ = (kt f r − kr − f t) + a sin2 θ(kr f φ − kφ f r)

ξ = [(r2
+ a2)(kφ f θ − f φkθ) − a(kt f θ − −kθ f t)] sinθ

We can define this polarization four vector for an electron scattering disc by

taking the polarization 3-vector in the local (rotating) frame, f ′i = {−k′(φ
′), 0, k′(r

′)}

(perpendicular to the wave-vector, but parallel to the disc surface) and changing

it to a spacelike 4-vector,

f ′µ = {0,−k′(φ
′), 0, k′(r

′)}

where k′(µ
′) is the wave-vector in the local rotating frame.

In order to obtain the polarization vector in the non-rotating frame we must

use the transformation described by Connors Piran and Stark, as

f µnr = f µ − f tkµ

kt

where f µ is f ′(µ
′) vector lorentz tranformed to the observer’s frame. We then use

f µnr and kµ to calculate κPW .
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For electron scattering (no circular polarization) we are concerned with the

linear polarization at inifinity,

X∞ = Q∞/I∞ = δ(S κi − Tκr)/(S
2
+ T 2)

Y∞ = U∞/I∞ = δ(−S κr − Tκi)/(S
2
+ T 2)

where δ is the degree of polarization (lorentz invariant), and

S = λ/ sinθobs − a sinθobs

T = sgn(kθ)∞
√

q2 − λ2 cotθobs + a2 cos2 θobs

With the wave vector determined, and a disc model assumed, the degree of

the redshift g, degree of polarization δ, polarization angle ψ = 1
2 tan−1 Y∞/X∞, and

Intensity I∞(α, β) = g3Iem(rem) can be determined and output for each pixel.

Example polarization vs redshift plots are shown in Figure 6.5 for various

inclination angles.

6.3.3 Appearance of Disc Perturbations

Lastly we provide an example of the observed intensity variation due to a disk

perturbation such as those described in Chapter 3. Though the perturbations

calculated in Chapter 3 were for a pseudo-Newtonian potential, we nevertheless

utilize the full raytracing engine in the Kerr metric to demonstrate its efficacy.2

Here we utilize the emissivity law estimated by Falanga et al. (2007) and

take the intensity variation disk emitted Intensity Iem to be given by

Iem ∝ Σ15/4r−13/8 (6.81)

2The general setup for perturbations of a thin disk in a Kerr spacetime is discussed briefly in
Appendix E.
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Figure 6.6: False color images of the observed perturbed disk emissions, with
(left to right) m = 1, 2, 3, 4, and (top to bottom) cosi = 0.2, 0.4, 0.6, 0.8.
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From Chapter 2 we have for barotropic flow δh = c2
sδΣ/Σ and our assumed

surface density profile Σ ∝ r−p our perturbed disk emission will then be

δIem ∝
15
4

c2
sδh r−

30p+13
8 . (6.82)

The complex value of δh allows for us to calculate a complex local emission

intensity Ĩνem. This in turn allows us to write from equation (6.79)

F̃νobs =
1

D2

∫∫

g3Ĩνem exp[iωr∆t′(α, β) − iωrt]
∣

∣

∣

∣

∣

− Uγ
em pδem

Uǫ
em pem ǫ

dxµ

dα
dxν

dβ
εγδµν

∣

∣

∣

∣

∣

dαdβ (6.83)

where the perturbation has eigenfrequencyωr+iωi, and∆t′(α, β) is the time delay

of each pixel given by equation (6.70).

We can then Fourier transform equation (6.83) to get the power spectrum

due to the disk perturbations.

F [F̃νobs ] =

[

1
D2

∫∫

g3Ĩνem exp[iωr∆t′(α, β)]
∣

∣

∣

∣

∣

− Uγ
em pδem

Uǫ
em pem ǫ

dxµ

dα
dxν

dβ
εγδµν

∣

∣

∣

∣

∣

dαdβ

]

δ(ω − ωr)

(6.84)

6.4 Conclusions

We have developed a tool for relativistic raytracing in the Kerr metric that al-

lows us to calculate several observables useful for the analysis of disk emissions,

including line profiles, disk images, polarization and time dependent emissions

from disk perturbations. While the use of the general Kerr metric is not strictly

necessary for examining the emissions due to the pertrubations discussed in

earlier chapters, future work will include fully relativistic disk perturbations

(see Appendix E) for which these techniques will be necessary.
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APPENDIX A

STOKES PHENOMENON AND THE MATCHING CONDITION ACROSS

THE COROTATION SINGULARITY

As we saw in section 2.3.2 the perturbation equation near the corotation res-

onance can be solved in terms of the Whittaker function. However in order to

provide the matching conditions we must carefully consider the effect of the

Stokes Phenomenon on the asymptotic expansions.

Stokes phenomenon causes the functional form of the asymptotic expansion

of an entire function to be different at different points in the complex plane. The

general asymptotic solution of the Whittaker equation for |z| ≫ 1 can be written

as a linear combination of two functions

P(z) = ez/2z−ν, Q(z) = e−z/2zν, (A.1)

i.e., AP(z)+BQ(z). However, because of the Stokes phenomenon, the coefficients

A and B can change when crossing the Stokes lines. For Whittaker functions,

the Stokes lines are the positive real axis (where P is dominant and Q is sub-

dominant) and negative real axis (where Q is dominant and P is sub-dominant).

Consider specific solution to the Whittaker equation, with the asymptotic

expansion (|z| ≫ 1) given by

F(z)→ AP(z) + BQ(z), (for arg(z) = 0) (A.2)

on the real axis. Our goal is to derive the expansion coefficients of F(z) on the

negative real axis (arg(z) = π). To achieve this, we use the general results ob-

tained by Heading (1962):
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(1) “The coefficient of the subdominant term after crossing the Stokes line =

the coefficient of the subdominant term before crossing the Stokes line + Tn× the

coefficient of the dominant term on the Stokes line.”

(2) “The coefficient of the subdominant term on the Stokes line = the coeffi-

cient of the subdominant term before the Stokes line +1
2Tn× the coefficient of the

dominant term on the Stokes line.”

Here Tn is the Stokes multiplier for crossing the Stokes line arg(z) = nπ in the

direction of increasing arg(z) given by 1

Tn =
2πie−2πinsν

Γ(sν)Γ(1+ sν)
(A.3)

where s = (−1)n. Note that since the pole of equation (2.39) lies below the real

axis, arg(z) increases as we we move along the contour from z positive and real

(arg(z) = 0) to z negative and real (arg(z) = π).

Since equation (A.2) is given on one of the Stokes line, we first determine

F(z) in the region −π < arg(z) < 0:

F(z) ∼ AP(z) +

(

B − 1
2

T0A

)

Q(z), (for − π < arg(z) < 0). (A.4)

Then in region 0 < arg(z) < π we have

F(z) ∼ AP(z) +

(

B +
1
2

T0A

)

Q(z), (for 0 < arg(z) < π). (A.5)

Thus on the negative real axis, we obtain

F(z) ∼
[

A +
1
2

T1

(

B +
1
2

T0A

)]

P(z) +

(

B +
1
2

T0A

)

Q(z), (for arg(z) = π). (A.6)

1Note that a typo in equation (18) of Heading (1962) has been corrected here.

161



The connection formulae for the two independent Whittaker functions for

|z| ≫ 1 are

ψ− = Wν,1/2(z) ∼
{

Q(z) arg(z) = 0

Q(z) + 1
2T1P(z) arg(z) = π

(A.7)

ψ+ = e−iπνW−ν,1/2(ze−iπ)+
1
2

T0Wν,1/2(z). ∼
{

P(z) arg(z) = 0

1
2T0Q(z) +

(

1+ 1
4T0T1

)

P(z) arg(z) = π,

(A.8)

where P(z) and Q(z) have the asymptotic behavior

P(z) = e+z/2−ν log(z) ∼
{ exp

(∫ r

rc
k̃ dr

)

for r ≫ rc

e−iπν exp
(

−
∫ rc

r
k̃ dr

)

for r ≪ rc .

(A.9)

Q(z) = e−z/2+ν log(z) ∼
{ exp

(

−
∫ r

rc
k̃ dr

)

for r ≫ rc

eiπν exp
(∫ rc

r
k̃ dr

)

for r ≪ rc .

(A.10)

for |z| ≫ 1, since in this limit |z| ≫ log |z|.
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APPENDIX B

RESONANCE TUNNELING

To help understand the effect of wave absorption at the corotation singu-

larity we consider the following toy problem. For a 1-D quantum mechanical

potential of the form

V(x) =
C
x
, (B.1)

we have the time-independent wave equation

(

1
2

d2

dx2
+ E − C

x + iǫ

)

ψ = 0, (B.2)

where we have set the Planck constant and particle mass to unity. In equation

(B.2), a small imaginary part iǫ is added to x, to account for the physical require-

ment of a growing incoming perturbation. The sign of ǫ must be the same as the

sign of C, so as to give us the correct physical behavior. For concreteness we will

assume C > 0 (and thus ǫ > 0), though the same calculation can be performed

for C < 0 (ǫ < 0) with similar results.

Let y = 2ik(x + iǫ), where k =
√

2E, we have

d2ψ

dy2
+

(

−1
4
+
ν

y

)

ψ = 0, with ν = iC/k, , (B.3)

which we recognize as the Whittaker differential equation. With C > 0, y lies

in the domain π/2 ≤ arg(y) ≤ 3π/2. Using the same procedure as discussed

in Appendix A, we obtain the connection formulae for the general solution of

equation (B.3) as

ψ→
{

AP(z) + BQ(z) for arg(z) = π/2

(A + T1B)P(z) + BQ(z) for arg(z) = 3π/2.
(B.4)
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Consider a wave propagating from x = −∞ and impinging on the potential.

The transmitted wave at x > 0 has the form

ψ+ → ey/2y−ν = eikx−i(C/k) ln |2kx|+πC/2k for x ≫ 1/k. (B.5)

The corresponding wave solution in the x < 0 region has the asymptotic form

ψ+ → ey/2y−ν = eikx−i(C/k) ln |2kx|+3πC/2k for x ≪ −1/k. (B.6)

This gives

|R| = 0, |T | = e−πC/k (B.7)

for a wave incident from x < 0.

Now consider a wave incident from the x > 0 region towards small x. The

transmitted wave is given by

ψ− → e−y/2y+ν = e−ikx+i(C/k) ln |2kx|−3πC/2k for x ≪ −1/k. (B.8)

Connecting to the x > 0 region, we have

ψ− → e−y/2y+ν−T1ey/2y−ν = e−ikx+i(C/k) ln |2kx|−πC/2k−T1eikx−i(C/k) ln |2kx|+πC/2k for x ≫ 1/k.

(B.9)

This gives the reflection and transmission coefficients

|R| = eπC/k|T1|

=
2πe−πC/k

|Γ(−iC/k)Γ(1− iC/k)| = 2e−πC/k sinh(πC/k) = 1− e−2πC/k, (B.10)

|T | = e−πC/k, (B.11)

for a wave incident from the positive side of the singularity [a similar result was

obtained by Budden (1979) in the context of wave propagation in cold plasma].

We can define the wave absorption coefficient at the singularity as

D = 1− |T |2 − |R|2 (B.12)
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For the forward moving incident wave (+) and the backwards moving incident

wave (−), we have

D+ = 1− e−2πC/k, D− = e−2πC/k
(

1− e−2πC/k
)

. (B.13)
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APPENDIX C

PLANE PARALLEL FLOW WITH A COMPRESSIBLE UPPER LAYER

Consider a system consisting of two fluids in the gravitational field g = −gẑ.

The upper fluid (z > 0) has density ρ = ρ+e−z/Hz (with Hz = c2
s/g, where cs is the

sound speed) and horizontal velocity u+ along the x-axis; the lower fluid (z < 0)

is incompressible with density ρ− and horizontal velocity u−.

The linear perturbation equations for the upper fluid are

∂

∂t
δρ + ∇ · (ρδu + uδρ) = 0 (C.1)

∂

∂t
δu + (u · ∇)δu + (δu · ∇)uo = −∇δh (C.2)

where δh = δP/ρ. For perturbations of the form eikx−iωt , these become

−iω̃δρ + ikρδux +
∂

∂z
(ρδuz) = 0, (C.3)

iω̃δuz =
∂

∂z
δh, (C.4)

iω̃δux = ikδh, (C.5)

where ω̃ = ω − ku with u = u+. Assuming the perturbation is isothermal, so that

δP = c2
sδρ we obtain

δh′′(z) − 1
Hz
δh′(z) − (k2 − ω̃2/c2)δh(z) = 0. (C.6)

The two independent solutions of equation (C.6)

δh ∝ exp

[

z
2Hz

(

1±
√

1+ 4H2
z k2

z

)

]

(C.7)

where k2
z = (k2 − ω̃2/c2). Obviously, the physically relevant solution is

δh ∝ exp(−k̃z), with k̃ = (
√

1+ 4H2
z k2

z − 1)/2Hz.
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This gives, by equation (C.4) the Eulerian pressure perturbation for the up-

per region:

δP+ = −
iω̃+ρ+

k̃
δuz+. (C.8)

For the lower region the fluid is an incompressible potential flow with δu =

∇δψ with δψ satisifying ∇2δψ = 0. For z< 0, the appropriate solution is

δψ ∝ exp(kz). (C.9)

This gives ∇(iωδψ + δP−/ρ−) = 0 which gives for the Eulerian pressure perturba-

tion in the lower region (z < 0):

δP− =
iρω̃

k
δuz−. (C.10)

Matching the Lagrangian displacement and Lagrangian pressure perturba-

tion across the boundary between the upper and lower regions we get

ω̃2
+
ρ+

k̃
+ ρ+g = −ω̃

2
−

k
+ ρ−g, (C.11)

which can be written as the quadratic:

ω2 −














ρ+
k
k̃
2ku+ + ρ−2ku−

ρ+
k
k̃
+ ρ−















ω +
ρ+

k
k̃
k2u2

+
+ ρ−k2u2

−

ρ+
k
k̃
+ ρ−

+ g
ρ+ − ρ−
ρ+

k
k̃
+ ρ−

. (C.12)

where k̃ has a non trivial dependence on ω. This has a solution

ω =
k(ρ̃+u+ + ρ−u−)

ρ̃+ + ρ−
±

√

−k2(u+ − u−)ρ̃+ρ−
(ρ̃+ + ρ−)2

− kg(ρ+ − ρ−)
ρ̃+ + ρ−

(C.13)

where ρ̃+ = ρ+k/k̃.
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APPENDIX D

NUMERICAL METHODS FOR JACOBI ELLIPTIC FUNCTIONS AND

INTEGRALS

D.1 Evaluating sn(z, k)

D.1.1 4 real roots

In the case of 4 real roots the evaluation of sn(u, k) becomes a straightforward

application of the Press et al. (1998) routines following Bulirsch (1965) (compu-

tation by the succesive applications of Gauss’ transformation).

D.1.2 4 complex roots

Form of the R(4) quartic gives us roots that, if all complex, yield a purely

real modulus k. Using the complex argument relation given in Byrd & Fried-

man(1971),

sn(u ± iv, k) =
sn(u, k)dn(v, k′) ± icn(u, k)dn(u, k)sn(v, k′)cn(v, k′)

1− sn2(v, k′)dn2(u, k)
(D.1)

we can thus evaluate sn using the routines provided in NR. Similar transforma-

tions are also available for cn and dn.

cn(u ± iv, k) =
cn(u, k)cn(v, k′) ∓ isn(u, k)dn(u, k)sn(v, k′)dn(v, k′)

1− sn2(v, k′)dn2(u, k)
(D.2)

dn(u ± iv, k) =
dn(u, k)cn(v, k′)dn(v, k′) ∓ ik2sn(u, k)cn(u, k)sn(v, k′)dn(v, k′)

1− sn2(v, k′)dn2(u, k)
(D.3)
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D.1.3 2 real, 2 complex roots

In the case of r1 r2 real, and r3 r4 complex, we have

k2
=

4B2 − (
√
−A + 2D + 4C/B − i

√
−A + 2D − 4C/B)2

4B2 − (
√
−A + 2D + 4C/B + i

√
−A + 2D − 4C/B)2

(D.4)

which is complex in general, but with |k2| = 1.

Examining Landen’s Transformation (see Byrd) we have

sn[(1 + k′)u, k1] = (1+ k′)sn(u, k)cd(u, k) (D.5)

where

cd(u, k) =
cn(u, k)
dn(u, k)

(D.6)

k1 = (1− k′)/(1+ k′) (D.7)

(D.8)

and k′ =
√

1− k2 is the complementary modulus.

Taking k′ = iκ and noting that |k1| = |(1− iκ)/(1+ iκ)| = 1 we see that

sn[z,
√

m] = (1+ iκ)sn
( z
1+ iκ

,
√

1+ κ2
)

cd
( z
1+ iκ

,
√

1+ κ2
)

(D.9)

if |m| = 1 and

κ = −1
ξ
+

√

1
ξ
+ 1 (D.10)

ξ = −Re(m)
Im(m)

+

√

(Re(m)
Im(m)

)2

+ 1 (D.11)

In evaluating the elliptic functions for the complex argument z the modulus iκ
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occurs and the imaginary modulus transformations can be used in these cases.

sn(u, ik) =
1

√
1+ k2

sn(u
√

1+ k2, k/
√

1+ k2)

dn(u
√

1+ k2, k/
√

1+ k2)
(D.12)

cn(u, ik) =
cn(u

√
1+ k2, k/

√
1+ k2)

dn(u
√

1+ k2, k/
√

1+ k2)
(D.13)

dn(u, ik) =
1

dn(u
√

1+ k2, k/
√

1+ k2)
(D.14)

F(φ, ik) =
1

√
1+ k2

F(β, k/
√

1+ k2) (D.15)

where β = sin−1
[ √

1+k2√
1+k2 sin2 φ

sinφ
]

.

D.2 Evaluating u∞

Evaluating the elliptic integral as r → ∞ we obtain the “initial” condition

u∞ = sn−1
(

√

r2 − r3

r1 − r3
, k

)

(D.16)

Again we must be careful in evaluating this for different cases involving real

and complex roots.

D.2.1 rn all real and rn all complex

For rn all real, we can simply evaluate the expression using the routine for F(u, k)

from Press et al. (1998) as

sn−1(u, k) = F(sin−1 u, k) (D.17)

For the all complex case the the modulus k is still purely real, but the argu-

ment u is not in general. However we can simply utilize the relation:

F(u + iv, k) = F(λ, k) + iF(µ, k′) (D.18)
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where

k′ =
√

1− k2 (D.19)

and cot2 λ is the positive root of the quadratic

x2 − [cot2 u + k2 sinh2 v csc2 φ − (1− k2)]x − (1− k2) cot2 u = 0 (D.20)

and

k2 tan2 µ = tan2 u cot2 λ − 1 (D.21)

D.2.2 2 methods for 2 complex roots and 2 real roots

For complex values of the modulus a general algorithm is provided for eval-

uating elliptic integrals of the first kind by Morita (1999), as a modificiation

to the algorithm provided by Carlson (1979) (this algorithm is used in by

Press et al., 1998). This modification allows evaluation of complex modulus

(−π < Arg(k) ≤ π) for only real values of the argument u. However, simple exten-

sion using the complex argument relation above can be performed to calculate

results for generally complex argements and modulus.

However, noting that the modulus k must have |k| = 1 for the mixed roots

case, we can also use Landen’s transformation to achieve the same result.

F(φ, k1) = (1+ k′)F(θ, k) (D.22)

where we choose k′ such that

k′ = iκ (D.23)

k1 =
1− iκ
1+ iκ

(D.24)

k =
√

1+ κ2 (D.25)
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and θ is given by the equation

k1 sinφ = sin(2θ − φ) (D.26)

Using Morita’s algorithm we require a modification that slightly increases

the cost of the Carlson Recursion forumlas, and an implementation of the algo-

rithms that ensures that all arithmetic is done in a complex fashion.

The use of the Landen transformation requires the evaluation of 2 complex

arcsinfunctions, and the use of Carlsons’s original algorithm. The two differ-

ent procedures are roughly equivalent in terms of computational speed, and

Morita’s algorithm is used when the domain in question is appropriate.
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APPENDIX E

2D FLUID DISKS IN THE KERR METRIC USING THE COWLING

APPROXIMATION

We begin with the metric from Novikov and Thorne (1973) (and from Perez et

al 1997):

ds2
= −r2

∆
∗

A∗
dt2
+

A∗

r2

(

dφ − 2ar
A∗

dt

)2

+
r2

∆∗
dr2
+ dz2 (E.1)

with ∆∗ ≡ r2 − 2r + a2 and A∗ = r4
+ r2a2

+ 2ra2 in units of G = c = MBH = 1.

From Ipser and Lindblom (1992), we can integrate their equations (8) and (9)

in the vertical direction, and carry through the calculation with the vertically

integrated quantities Σ =
∫

ρdz and P =
∫

pdz. Defining δV̂ ≡ δP/Σβω̃, we have

Dµ[(−gttgφφ + g2
tφ)

1/2(Σ + P)HµνDνδV̂] + (−gttgφφ + g2
tφ)

1/2βω̃Φ̂δV̂ = 0 (E.2)

where

β = dt/dτ =
r3/2
+ a

r3/4(r3/2 − 3r1/2 + 2a)1/2
(E.3)

converts between coordinate time and proper time of the fluid element (in this

case assuming free particle motion). We find from the metric that −gttgφφ + g2
tφ =

∆
∗.

Taking δV̂ = δV̂(r) with no vertical structure, and a p = p(ρ) barotropic disk

we have the simplified forms for equations (21), (31), and (40)-(42) from Ipser

and Lindblom become (since Aµ = 0), (we also assume that Σ ≫ P)

Λ

β2ω̃2
≡ (β2ω̃2 − 2Ωaχa) ≃ β2(ω̃ − κ2) = −β2D (E.4)

where χa
= ǫabcdub∇cud is the vorticity, and ua

= β(ta
+ Ωφa) is the fluid 4-velocity,

and we’ve used equation (2.16) of Perez et al, where the approximation is exact
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assuming a flat disk, and the fluid flowing in free-particle circular orbits. Here

we are also taking Ω = 1
r3/2+a and κ = Ω

(

1− 6
r +

8a
r3/2 − 3a2

r2

)1/2
to be the free particle

values. The angular velocity 4-vector is defined in IL as Ωa
=

1
2βǫ

abcdub(∇ctd +

Ω∇cφd) which is {0, 0, 0, r−3/2} for disks with fluid undergoing geodesic orbits.

Φ̂ =
Σβω̃

c2
+HµDµP− 1

√
∆∗

Dµ[
√
∆∗ΣHµ]− 1

√
∆∗

Dµ













√
∆∗

β2ω̃2
ΣHµνDνβω̃













− ΛΣ
∆∗ω̃β3

(m+βω̃uφ)
2

(E.5)

with

Hµν
=

Λ

β2ω̃2

[

β2ω̃2gµν − 2χµΩν
]

(E.6)

Hrr
= −grrβ

2ω̃2

β2D
(E.7)

Hzz
= 1 (E.8)

Hrz
= 0 = Hzr (E.9)

and

Hµ
=

Λ

β2ω̃2

2
√
∆∗β3ω̃2

(m + βω̃uφ)ǫ
µν(β2ω̃2

Ων) (E.10)

Hr
= −

2(m + βω̃uφ)Ωz/β
√
∆∗β2D

(E.11)

Rewriting equation (2)

δV̂ ′′ +
d
dr

ln

[

rΣΥ2β2ω̃2

β2D

]

δV̂ ′ − β2D
ΣΥ2βω̃

Φ̂δV̂ = 0 (E.12)

where Υ2 ≡ grr
= ∆

∗/r2 as defined in Perez et al. And we’ve used the co-

variant derivative in the r − z surface perpendicular to the killing vectors,

Dr f r
= Υ∂r[Υ−1 f r]
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Evaulating the last coefficient of δV̂ we have

β2D
ΣΥ2βω̃

Φ̂ =
β2D
Υ2c2

+
m∗2

β2Υ4r2
+

2Ωz/β

rβω̃
m∗

Υ3

d
dr

ln

[

ΣΥ
2
Ω

z/β

β2D

]

+
2Ωz/β

rβω̃
d
dr

(

m∗

Υ3

)

− (βω̃)′′

βω̃
− (βω̃)′

βω̃

d
dr

[

rΥ2
Σ

β2D

]

(E.13)

where m∗ = m + βω̃uφ, with uφ = (a2 − 2ar1/2
+ r2)Ωβ.

Converting to the enthalpy δh = δV̂βω = δP/Σ we then have

d2

dr2
δh+

d
dr

ln

[

rΣΥ2

β2D

]

d
dr
δh− β2D
ΣΥ2βω̃

Φ̂δh− (βω̃)′′

βω̃
δh− (βω̃)′

βω̃

d
dr

[

rΥ2
Σ

β2D

]

δh = 0 (E.14)

which gives

0 =
d2

dr2
δh +

d
dr

ln

[

rΣΥ2

β2D

]

d
dr
δh

−
(

β2D
Υ2c2

+
m∗2

β2Υ4r2
+

2m∗Ωz/β

Υ3rβω̃
d
dr

ln

[

Σm∗Ωz/β

Υβ2D

])

δh (E.15)

In the Newtonian limit β = 1 = Υ and m∗ = m which gives us

0 =
d2

dr2
δh +

d
dr

ln

[

rΣ
D

]

d
dr
δh −

(

D
c2
+

m2

r2
+

2mΩz

rω̃
d
dr

ln

[

ΣΩ
z

D

])

δh (E.16)
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