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A general consensus on the origin of quasi-periodic oscillations observed in

accreting X-ray binaries is that they are related to the wave dynamics of the ac-

cretion disk. We conduct the first systematic study on the detailed dynamical

properties of different discoseismic modes, in particular the effects of magnetic

fields. We show through local analysis that even a weak magnetic field can

“destroy” the self-trapping zone of inertial-gravity modes. The so-called cor-

rugation modes are also strongly affected when the poloidal field approaches

equal-partition. Whereas the basic wave properties of inertial-acoustic modes

(p-modes) are not affected qualitatively by disk B fields. These modes become

unstable large-scale oscillations when the disk vortensity (vorticity divided by

surface density) profile has positive gradient at the corotation (where wave pat-

tern speed matches background flow rotating speed) and they are not qualita-

tively affected by inner disk boundary as long as it has some reflectivity. With

numerical simulation, we probe the nonlinear evolution of global overstable

disk p-modes and demonstrate that they are quite robust even after non-linear

saturation. We find, however, that disc B field can split the corotation resonance

and significantly reduce the growth rates of these modes, thus challenging its

viability as a model for observed high frequency quasi-periodic oscillations.

We employ similar technique to study the dynamics of other astrophysical

flows, such as accreting tori and rotating protoneutron stars. Similar suppress-



ing effects from magnetic fields are also found in thin accreting tori and ro-

tating protoneutron stars. We found that magnetic fields tend to suppress the

Papaloizou-Pringle instability in relatively thin tori, while it can lead to a new

instability in relatively thick tori where Papaloizou-Pringle instability cannot

operate if the system is non-magnetized. Differentially rotating neutron stars

have long been known to be subject to a global non-axisymmetric instability.

We show that a toroidal stellar magnetic field can suppress this instability when

the B field is a few × 1016 G or stronger.
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CHAPTER 1

INTRODUCTION

1.1 Quasi-Periodic X-Ray Oscillations and discoseismic modes

Quasi-periodic oscillations (QPOs) in black-hole (BH) X-ray binaries have been

intensively studied since the launch of NASA’s Rossi X-ray Timing Explorer

(Swank 1999). The observed QPOs can be divided into two classes. The low-

frequency QPOs (about 0.1–50 Hz) are common, observable when the systems

are in the hard state and the steep power-law state (also called “very high state”;

see Done et al. 2007). They typically have high amplitudes and high coher-

ence (Q >∼ 10), and can vary in frequency on short timescales (minutes). High-

frequency QPOs (HFQPOs) (40-450 Hz) in BH X-ray binaries have also been

intensively studied (Remillard & McClintock 2006; Belloni et al. 2011; Altami-

rano & Belloni 2012), although the signals are much weaker and transient. They

are only observed in the “transitional state” (or “steep power law state”) of the

X-ray binaries, and have low amplitudes and low coherence. Their frequen-

cies do not vary significantly in response to sizeable (factors of 3-4) luminosity

changes. Several systems show pairs of QPOs with frequency ratios close to 2 : 3

(see Remillard & McClintock 2006 for a review). QPOs in X-ray emission have

also been detected in the active galaxy RE J1034+396 (Gierlinski et al. 2008; Mid-

dleton et al. 2009) as well as in several Ultra-Luminous X-ray sources (ULXs)

(e.g., Strohmayer & Mushotzky 2009; Feng, Rao & Kaaret 2010). These are likely

the “supermassive” or “massive” analogs of the QPOs detected in Galactic BH

X-ray binaries (see Middleton & Done 2010).

Despite much observational progress, the physical origin of HFQPOs re-
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mains elusive. Based on the general consensus that HFQPOs are associated

with the dynamics of innermost accretion flows, a number of ideas/models

with various degrees of sophistication have been proposed or studied. The

general notions of hot blobs exhibiting (test-mass) orbital motion and relativis-

tic precession (Stella et al. 1999), nonlinear resonances (Abramowicz & Kluz-

niak 2001), and in the case of NS systems, beats between the orbital frequency

and stellar spin (Miller et al. 1998), have been the most popular among the ob-

servers, although it is not clear how these generic ideas are realized in real fluid

dynamical models of accretion flows. Other ideas for NS kHz QPOs are dis-

cussed in Bachetti et al. (2010). In the case of HFQPOs in BH X-ray binaries, the

only models that go beyond the “test-mass motion” idea are [see Sect. 1 of Lai

& Tsang (2009) for a critical review] relativistic diskoseismic oscillation mod-

els, in which general relativity (GR) effects produce trapped oscillation modes

in the inner region of the disc (e.g., Okazaki et al. 1987; Nowak & Wagoner

1991; see Wagoner 1999 and Kato 2001 for reviews). One can divide various

diskoseismic modes according to their vertical structures (see Fig. 1 of Fu &

Lai 2009): The so-called p-modes (also called inertial-acoustic modes) have zero

node in their wavefunctions along the vertical direction, while the g-modes (also

known as inertial modes or inertial-gravity modes) 1 have at least one vertical

nodes2. Diskoseismic g-modes have received wide theoretical attentions be-

cause they can be trapped by the GR effect without relying on special inner disc

boundary conditions (Okazaki et al. 1987), and they may be resonantly excited

by global disc deformations (warp and eccentricity) through nonlinear effects

(Kato 2003b, 2008; Ferreira & Ogilvie 2008). Kato (2003a) and Li, Goodman &

1Note that other than similar mathematical forms of dispersion relations, disk g-modes have
no relation to stellar g-modes which are driven by buoyancy.

2The so-called c-modes (corrugation modes) also have at least one vertical node, but they
have low frequencies and are not relevant to HFQPOs.
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Narayan (2003) (see also Zhang & Lai 2006 and Latter & Balbus 2009) showed

that the non-axisymmetric g-mode that contains a corotation resonance (CR,

where the wave patten frequency ω/m equals the background rotation rate Ω;

here ω is the mode frequency and m is the azimuthal mode number) in the wave

zone is heavily damped (see Tsang & Lai 2009a for a similar study for the c-

modes). Thus the only non-axisymmetric g-modes of interest are those trapped

around the maximum of the (Ω+ κ/m) profile (where κ is the radial epicyclic fre-

quency). However, the frequencies of such modes, ω ≃ mΩ(rISCO), are too high

(by a factor of 2-3) compared to the observed values, given the measured mass

and the estimated spin parameter of the BH (Silbergleit & Wagoner 2008; Tassev

& Bertschinger 2007).

In Chapter 2, we study analytically the effects of magnetic fields on the rel-

ativistic diskoseismic modes in accretion disks around BHs. We consider both

poloidal and toroidal fields and use local analysis of the full MHD equations

to examine how the magnetic field changes the radial wave propagation dia-

grams for various modes. We show that the trapping region of g-modes can

be easily “destroyed” even when the disk field strength is such that the associ-

ated Alfvén speed is much smaller than the sound speed. On the other hand,

the propagation characteristics of p-modes (acoustic oscillations) and c-modes

are largely unchanged. Note that since we assume laminar flows for our un-

perturbed disks, we do not directly address the effects of turbulence on disk

modes. However, we believe that our work is relevant to this issue, since mag-

netic fields naturally arise in a turbulent disk. This elimination of the g-mode

cavity is probably the reason for the disappearance of g-modes in recent MHD

simulations (O’Neill, Reynolds & Miller 2009). Moreover, several numerical

simulations suggest that g-modes may not survive vigorous disc turbulence
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driven by magneto-rotational instabilities (MRI) (e.g. Arras, Blaes & Turner

2006; Reynolds & Miller 2009).

In Chapter 3, our focus in on p-modes, because the basic wave properties

(e.g., propagation diagram) are not affected much by either the disc magnetic

fields or the corotation resonance as shown in Fu & Lai (2009) and Tsang & Lai

(2009a). In an unmagnetized disc, non-axisymmetric p-modes are trapped be-

tween the inner disc edge (at the ISCO) and the inner Lindblad resonance (ILR)

radius (where ω̃ = ω−mΩ = −κ). So the existence of global p-modes does require

a partially reflective inner disc boundary (see LT09). LT09 showed that such

non-axisymmetric p-modes can be overstable for two reasons: (1) Because the

spiral density waves inside the ILR carry negative energies while those outside

the outer Lindblad resonance (OLR) (where ω̃ = κ) carry positive energies, the

leakage of the p-mode energy when the wave tunnels through the corotation

barrier (between ILR and OLR) leads to mode growth. (2) More importantly,

p-modes can become overstable due to wave absorption at the corotation reso-

nance (CR, where ω̃ = 0). Near the BH, the radial epicyclic frequency κ reaches

a maximum before decreasing to zero at the ISCO. This causes a non-monotonic

behavior in the fluid vortensity, ζ = κ2/(2ΣΩ) (where Σ is the surface density

of the disc), such that dζ/dr > 0 inside the radius where ζ peaks. It can be

shown that the sign of the corotational wave absorption depends on the sign

of dζ/dr (Tsang & Lai 2008; LT09; see also Goldreich & Tremaine 1979) 3. Thus,

p-modes with positive vortensity gradient at the corotation radius can grow

in amplitudes due to corotational wave absorption. The resulting overstable

3This applies to barotropic discs, for which the pressure is a function of the density ρ only.
For a disc with radial stratification, the radial entropy gradient affects wave absorption at the
CR (see Lovelace et al. 1999; Baruteau & Masset 2008), and one can define an effective vortensity,
ζeff = ζ/S 2/Γ (where S = P/ΣΓ and Γ is the 2-dimensional adiabatic index), that plays a similar
role as ζ (see Tsang & Lai 2009b).
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non-axisymmetric p-modes were suggested to offer a possible explanation for

HFQPOs (LT09; Tsang & Lai 2009b).

Realistic BH accretion disks are expected to contain appreciable magnetic

fields as a result of the nonlinear development of the MRI (e.g., Balbus & Haw-

ley 1998). Starting from Hawley et al. (1995), Brandenburg et al. (1995) and Stone

et al. (1996) in the 1990s, the property of the MRI turbulence have been studied

using numerical simulations under different conditions and setups (local shear-

ing box with/without vertical stratification, with/without explicit viscosity and

resistivity, different equations of state, global simulations; e.g., Miller & Stone

2000; Hirose et al. 2009; Guan et al. 2009; Simon et al. 2009; Davis et al. 2010; Fro-

mang 2010; Longaretti & Lesur 2010; Sorathia et al. 2010). Although the precise

mechanism of the nonlinear saturation of the MRI remains unclear (see Pessah &

Goodman 2009), the simulations generally show that turbulent discs are dom-

inated by large-scale toroidal fields approaching (but less than) equipartition,

with somewhat smaller poloidal fields. Therefore, it is important to understand

how magnetic fields change the characters of the CR and the overstability of BH

disc p-modes. These are the main issues we will address in Chapter 3.

We have recently shown (Fu & Lai 2009), based on local analysis of disko-

seismic waves, that the propagation diagram of p-modes, (particularly the wave

zone between inner disc edge (at rISCO) and the ILR are not significantly mod-

ified by disc magnetic fields. Thus, we expect that the p-mode frequencies in

a magnetic disc are not much different from those in a zero-field disc. How-

ever, the effect of magnetic field on the corotational wave absorption is more

complicated. As we will see, for a pure toroidal field, the CR is split into two

magnetic slow resonances, where the Doppler-shifted mode frequency ω̃ matches
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the frequency of slow MHD waves propagating along the field line (see Saku-

rai et al. 1991; Goossens et al. 1992; Terquem 2003). With a mixed (poloidal

and toroidal) magnetic field, two additional Alfvén resonances appear, where ω̃

matches the Alfvén frequency associated with the toroidal field (Keppens et

al. 2002). Thus, in general, the original CR is split into four resonances (the in-

ner/outer magnetic slow resonances and the inner/outer Alfvén resonances),

which exhibit a rather rich and complex dynamical behavior.

We note that Tagger and collaborators (Tagger & Pellat 1999; Varniere & Tag-

ger 2002; Tagger & Varniere 2006) developed the theory of accretion-ejection in-

stability for discs containing large-scale poloidal magnetic fields with strengths

of order equipartition. Most of their analysis were restricted to vertical fields

threading an infinitely thin disc with vacuum outside. They showed that the

long-range behavior of the perturbed vacuum field outside the disc greatly en-

hances the overstability of non-axisymmetric disc oscillation modes. It is cur-

rently unclear whether the magnetic field configurations adopted by Tagger et

al. can be realized by MRI turbulence – such field configuration may be pro-

duced by magnetic field advection from large radii (e.g. Lovelace et al. 2009). It

is also unclear if the accretion-ejection instability is robust when more general

disc field configurations are assumed. By contrast, in Chaper 3 we focus on the

effects of magnetic fields inside the disc. Since the p-modes we are interested

in have no vertical structure (i.e., kz = 0), our disc model is essentially a cylin-

der, with the unperturbed disc properties (e.g., the density ρ, sound speed cs,

rotation Ω and magnetic fields Bφ and Bz) depending only on r (the cylindrical

radius). While the magnetic field configurations considered in Chapter 3 are

prone to MRI, the p-modes are not directly affected by the MRI because kz = 0.
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In Chapter 3, we have presented detailed study of the linear instability

of non-axisymmetric inertial-acoustic modes (also called p-modes) trapped in

the inner-most region of black-hole (BH) accretion discs. This global instabil-

ity arises because of wave absorption at the corotation resonance (where the

wave pattern rotation frequency matches the background disc rotation rate)

and requires that the disc vortensity has a positive gradient at the corotation

radius. The disc vortensity (vorticity divided by surface density) is given by

ζ = κ2/(2ΩΣ), where Ω(r) is the disc rotation frequency, κ(r) is the radial epicyclic

frequency, and Σ(r) is the surface density. General relativistic (GR) effect plays

an important role in the instability: For a Newtonian disc, with Ω = κ ∝ r−3/2

and relatively flat Σ(r) profile, we have dζ/dr < 0, so the corotational wave ab-

sorption leads to mode damping. By contrast, κ is non-monotonic near a BH

(e.g., for a Schwarzschild BH, κ reaches a maximum at r = 8GM/c2 and goes to

zero at rISCO = 6GM/c2), the vortensity is also non-monotonic. Thus, p-modes

with frequencies such that dζ/dr > 0 at the corotation resonance are overstable.

Our calculations based on several disk models showed that the lowest-order

p-modes with m = 2, 3, 4, · · · have the largest growth rates, with the mode fre-

quencies ω ≃ 0.6mΩISCO (thus giving commensurate frequency ratio 2 : 3 : 4· · ·),

consistent with the High-frequency Quasi-Periodic Oscillations (HFPQOs) ob-

served in BH X-ray binaries (e.g., Remillard & McClintock 2006; Altamirano &

Belloni 2012).

So far our works are all based on linear analysis. While these are useful for

identifying the key physics and issues, the nonlinear evolution and saturation

of the mode growth can only be studied by numerical simulations. It is known

that fluid perturbations near the corotation resonane are particularly prone to

become nonlinear (e.g., Balmforth & Korycansky 2001; Ogilvie & Lubow 2003).
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Moreover, real accretion disks are much more complex than any semi-analytic

models considered in our previous works. Numerical MHD simulations (in-

cluding GRMHD) are playing an increasingly important role in unraveling the

nature of BH accretion flows (e.g., De Villiers & Hawley 2003; Machida & Mat-

sumoto 2003; Fragile et al. 2007; Noble et al. 2009,2011; Reynolds & Miller 2009;

Beckwith et al. 2008,2009; Moscibrodzka et al. 2009,2010; Penna et al. 2010;

Kulkarni et al. 2011; Hawley et al. 2011; O’Neill et al. 2011). Despite much

progress, global GRMHD simulations still lag far behind observations, and so

far they have not revealed clear signs of HFQPOs compatible with the observa-

tions of BH x-ray binaries 4. If the corotation instability and its magnetic coun-

terparts studied in our recent papers play a role in HFQPOs, the length-scale

involved would be small and a proper treatment of flow boundary conditions

is important. It is necessary to carry out “controlled” numerical experiments to

capture and evaluate these subtle effects.

In Chapter 4, we use two-dimensional hydrodynamic simulations to inves-

tigate the nonlinear evolution of corotational instability of p-modes. Our 2D

model has obvious limitations, for example it does not include disc magnetic

field and turbulence. However, we emphasize that since the p-modes we are

studying are 2D density waves with no vertical structure, their basic radial

“shapes” and real frequencies may be qualitatively unaffected by the turbu-

lence (see Arras et al. 2006; Reynolds & Miller 2009; Fu & Lai 2009). Indeed,

several local simulations have indicated that density waves can propagate in

the presence of MRI turbulence (Gardiner & Stone 2005; Fromang et al. 2007;

4Henisey et al. (2009) found evidence of excitation of wave modes in simulations of tilted BH
accretion disks. Hydrodynamic simulations using α-viscosity (Chan 2009; O’Neill et al. 2009)
showed wave generation in the inner disk region by viscous instability (Kato 2001). The MHD
simulations by O’Neill et al. (2011) revealed possible LFQPOs due to disk dynamo cycles. Note
that the observed HFQPOs are much weaker than LFQPOs, therefore much more difficult to
obtain by brute-force simulations.
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Heinemann & Papaloizou 2009). Our goal here is to investigate the saturation

of overstable p-modes and the their nonlinear pattern frequencies.

1.2 Dynamics of a Magnetosphere-Disc System

In Chapter 5, we study a class of models involving global oscillations of in-

ner accretion discs and magnetosphere boundary layers around NSs or BHs.

Our model setup consists of an uniformly rotating magnetosphere with both

toroidal and poloidal magnetic fields and low plasma density, surrounded by

a geometrically thin (Keplerian) disc with high fluid density and zero (or low)

magnetic field. To make semi-analytical linear perturbation analysis feasible,

our model is two-dimensional with no vertical dependence (i.e., it is height av-

eraged). We consider both Newtonian discs and general relativistic (GR) discs

(modelled by the pseudo-Newtonian potential) – we will see that GR can qual-

itatively affect the linear oscillation modes of the system by changing the disc

vorticity profile. This kind of magnetosphere-disc systems can form in accreting

NS systems when the NS magnetic field holds off the accretion disc at a certain

distance from the stellar surface (e.g., Ghosh & Lamb 1978). They may also be

applied to accreting BH systems when magnetic fields advect inwards in the

accretion disc and accumulate near the inner edge of the disc (e.g. Bisnovatyi-

Kogan & Ruzmaikin 1974, 1976; Igumenshchev, Narayan & Abramowicz 2003;

Rothstein & Lovelace 2008). It is usually thought that during the “transitional

state” (when HFQPOs are observed) of BH X-ray binaries, the accretion flow

consists of a thin, thermal disc, truncated by a hot, tenuous (and perhaps highly

magnetized) inner corona (e.g., Done et al. 2007; Oda et al. 2010). While the

true nature of this flow is unclear, our simple magnetosphere-disc setup may
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represent an idealization of such a flow.

Loosely speaking, two types of global oscillation modes exist in our 2D

magnetosphere-disc systems: inertial-acoustic modes of the disc and interface

modes. Both types of oscillations can be overstable, but driven by different phys-

ical mechanisms. Our work represents an extension of related previous studies,

which have focused on disc oscillations or interface oscillations separately.

(i) Disc Oscillations: Although relativistic fluid discs can support different

types of oscillation modes (Okazaki, Kato & Fukue 1987; Nowak & Wagoner

1991; see Wagoner 1999, Kato 2001 and Kato et al. 2008 for reviews), our focus

in Chapter 5, as well in our previous chapters is on the inertial-acoustic modes

(also called p-modes). These modes have no vertical structure (i.e., their wave

functions, such as the pressure perturbation, have no node in the vertical direc-

tion), and are adequately captured by our 2D model.

On the other hand, our magnetosphere-disc model does not capture other

discoseismic modes, including g-modes (also called inertial-gravity modes), c-

modes and vertical p-modes. All these modes have vertical structures.

In Chapter 3 we have shown that non-axisymmetric p-modes trapped in the

inner-most region of a BH accretion disc are a promising candidate for explain-

ing HFQPOs in BH x-ray binaries because their frequencies naturally match the

observed values without fine-tuning of the disc properties, and because they

become overstable due to wave absorption at corotation point when the general

relativistic effect on the disc rotation profile is taken into account. Although a

toroidal disc magnetic field tends to suppress the instability (Fu & Lai 2011a),

a large-scale poloidal field may enhance the instability (Tagger & Pallet 1999;
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Tagger & Varniere 2006; Yu & Lai 2012). Most of these previous works adopt

a reflective boundary condition at the inner edge of the disc – this is important

for the trapping of disc p-modes (see Lai & Tsang 2009). How such a reflec-

tion can be achieved was not clear. We will show in Chapter 5 that the disc-

magnetosphere boundary serves as a “reflector” for the disc p-modes.

(ii) Interface Oscillations: Li & Narayan (2004) were the first to consider the

interface modes between a magnetosphere (with a vertical magnetic field) and

an incompressible disc in the cylindrical approximation (i.e., no z-dependence).

They showed that the interface modes can be subject to Rayleigh-Taylor instabil-

ity and/or Kelvin-Helmholtz instability, depending on the density contrast and

velocity shear across the interface. The mode frequencies roughly scale as mΩin,

where m = 1, 2, 3 . . . are the azimuthal mode number and Ωin is the angular

frequency of the disc flow at the interface, making the interface modes a viable

candidate for explaining HFQPOs when the interface radius rin is suitably ad-

justed. Tsang & Lai (2009b) generalized the analysis of Li & Narayan (2004) by

considering compressible discs. They showed that a relatively large disc sound

speed is necessary to overcome the stabilizing effect of disc differential rotation

and thereby maintain the mode growth. Besides linear calculations, numerical

simulations of the magnetosphere-disc interface have also been presented in a

number of papers (see Kulkarni & Romannova 2008; Romanova, Kulkarni &

Lovelace 2008 and references therein).

One ingredient that has been missing from both Li & Narayan (2004) and

Tsang & Lai (2009b) is toroidal magnetic fields in the magnetosphere, which

could be a very important component (Ghosh & Lamb 1978; Ikhsanov &

Pustil’nik 1996). In Chapter 5, we generalize previous calculations of global
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non-axisymmetric modes confined near the interface of the magnetosphere-disc

system by taking into account toroidal magnetic fields in the magnetosphere.

We aim to examine the possibility of large-scale Rayleigh-Taylor/Kelvin-

Helmholtz instabilities of the interface in the presence of magnetic fields and

disc differential rotation.

Overall, the goal of Chapter 5 is to present a complete analysis of large-scale

non-axisymmetric modes (including their instabilities) in the magnetosphere

boundary and in the surrounding disc, and to assess their viabilities for explain-

ing HFQPOs in accreting compact binaries.

We note that in addition to Li & Narayan (2004) and Tsang & Lai (2009b),

our study on the interface modes complements several other works on the in-

stability of magnetized accretion discs. For example, Lubow & Spruit (1995) and

Spruit, Stehle & Papaloizou (1995) considered the magnetic interchange insta-

bility of a thin rotating disc when a poloidal magnetic field provides some radial

support in the disc. Lovelace, Turner & Romanova (2009) studied the instabil-

ity of a magnetopause for cases where the shear layer has appreciable radial

width and found that the Rossby wave instability may arise in the shear layer.

Lovelace, Romanova & Newman (2010) considered a setup similar to the one

in Chapter 5, but they included only vertical field in the magnetosphere, and

focused on small-scale (with radial wavelength ≪ r) Kelvin-Helmholtz modes

in the boundary layer.
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1.3 Dynamics of magnetized accretion tori

Differentially rotating flows can be found not only in BH & NS accretion discs,

but also in other rotating astrophysical flows. Papaloizou & Pringle (1984) dis-

covered that accretion tori can be subjected to a global non-axisymmetric in-

stability that grows on a dynamical time-scale. Accretion tori are bagel-shaped

discs with high internal temperatures and well-defined boundaries. They may

be representative of certain stages or regions of the inner accretion flows around

black holes, such as those found in active galactic nuclei and quasars (e.g., Begel-

man, Blandford & Rees 1984). They may also form in the gravitational collapse

of the rotating core of massive stars (e.g., Woosley 1993) and after the merger

of compact neutron star and black hole binaries (e.g., Duez et al. 2009; Etienne

et al. 2009; Rezzolla et al. 2010; Montero et al. 2010), and thus are thought to be

the central engine of gamma-ray bursts (e.g., Meszaros 2006). The Papaloizou-

Pringle (PP) instability arises from the interaction between non-axisymmetric

waves across the corotation radius (rc), where the wave pattern rotation fre-

quency Ωp equals the background fluid rotation rate Ω (e.g., Blaes & Glatzel

1986; Goldreich, Goodman & Narayan 1986; Glatzel 1987b). Waves outside the

corotation radius (r > rc) have Ωp larger than Ω(r) and carry positive energy,

while waves at r < rc have Ωp < Ω(r) and carry negative energy. Instability

occurs when the negative-energy waves inside rc lose energy to the positive-

energy waves outside rc, leading the amplification of the wave amplitudes. To

maintain the instability, the waves must be efficiently reflected at the inner and

outer boundaries so that they are trapped in the torus. The growth rate of the

PP instability is maximal for a constant-angular momentum torus. For a very

thin torus (with the inner and outer radii close to each other), the instability dis-
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appears when p = d lnΩ/d ln r > −
√

3; for a wider torus, the instability persists

(with decreasing growth rate) as the Keplerian rotation profile (p = −3/2) is ap-

proached (e.g., Papaloizou & Pringle 1985, 1987; Goldreich et al. 1986; Zurek &

Benz 1986; Sekiya & Miyama 1988). Other properties of the PP instability, such

as its connection with the instability of vortices (e.g., Glatzel 1987a), its non-

linear evolution (e.g., Goodman, Narayan & Goldreich 1987; Hawley 1991) and

the effect of accretion (Blaes 1987), have been studied.

Interest in the PP instability waned in the 1990s when Balbus & Hawley

(1991) pointed out that the Magneto-Rotational Instability (MRI), originally

studied for magnetized Taylor-Couette flows (Velikhov 1959; Chandrasekhar

1961), can be important for astrophysical accretion discs. Since the MRI is ro-

bust and requires only a weak magnetic field, the nonlinear development of

MRI may lead to efficient angular momentum transport in accretion discs. Over

the last two decades, numerous studies have been devoted to the MRI and re-

lated issues such as MHD turbulence in the disc (see, e.g., Balbus & Hawley

1998 and Balbus 2003 for reviews; a sample of recent numerical studies include

Hirose et al. 2009; Guan et al. 2009; Simon et al. 2009; Davis et al. 2010; Fromang

2010; Longaretti & Lesur 2010; Sorathia et al. 2010).

Nevertheless, the question remains as to what happens to the original PP

instability in an accretion torus when a finite magnetic field is present. After

all, the tori produced in various astrophysical situations (e.g., binary mergers;

Rezzolla et al. 2010; Montero et al. 2010) are expected to be highly magne-

tized. One might dismiss this question as purely academic since such a mag-

netic torus is likely MRI unstable and therefore turbulent. We note, however,

that the usual MRI operates on perturbations with vertical structure (i.e., with
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finite vertical wavenumber kz), while the PP instability operates on perturba-

tions with kz = 0. That is, the PP instability pertains to the height-averaged

behavior of the disc. Therefore one might expect that the PP instability will

continue to operate even in the presence of MRI-induced turbulence. Further-

more, in connection with Galactic black-hole X-ray binaries, it has been sug-

gested that accretion tori can support discrete, trapped oscillation modes, which

might explain high-frequency quasi-periodic oscillations (e.g., Strohmayer 2001;

Remillard & McClintock 2006) observed in a number of X-ray binary systems

(e.g., Rezzolla et al. 2003; Lee et al. 2004; Schnittman & Rezzolla 2006; Blaes et

al. 2007; Sramkova et al. 2007; Montero et al. 2007). Although it is currently

not clear that pressure-supported tori provide a realistic model for the accretion

flow around a black hole in any spectral state, structures resembling pressure-

supported tori do appear to be present in some non-radiative global MHD sim-

ulations of MRI-driven turbulent accretion flows (e.g., Hawley & Balbus 2002;

De Villiers et al. 2003; Machida et al. 2006).

There have been a number of previous studies on global MHD instabili-

ties in accretion flows. For example, Knobloch (1992), Kumar et al. (1994),

Curry, Pudritz & Sutherland (1994) and Curry & Pudritz (1995) carried out

global analysis for the axisymmetric modes with finite kz in differentially ro-

tating flows threaded by vertical and/or azimuthal magnetic fields, thus estab-

lishing the robustness of MRI in these flows. Ogilvie & Pringle (1996) studied

the non-axisymmetric instability of a cylindrical flow containing an azimuthal

field, while Curry & Pudritz (1996) studied a similar flow containing a vertical

field. Both studies focused on modes with finite vertical wavenumbers, which

inevitably invite MRI. Although the effect of boundaries is emphasized, a some-

what arbitrary rigid boundary condition was adopted in these studies. As far
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we are aware, the behavior of the PP instability for finite tori with magnetic

(both vertical and azimuthal) fields has not been clarified.

In Chapter 6, we carry out global stability analysis of magnetized accre-

tion tori subjected to nonaxisymmetric perturbations as we do in Chapter 3

and Chapter 5. Since our main aim is to understand the effects of magnetic

fields on the original PP instability, we focus on modes with no vertical struc-

ture (kz = 0) and we pay particular attention to the boundary conditions. As in

many previous studies mentioned above, we model the torus by a cylindrical

incompressible flow threaded by both vertical and toroidal magnetic fields.

1.4 Dynamics of rotating protoneutron stars

As another example of astrophysical rotating flows, rotating neutron stars (NSs)

formed in the core collapse of a massive star or the accretion-induced collapse

of a white dwarf maybe subject to nonaxisymmetric instabilities (e.g, Ander-

sson 2003; Stergioulas 2003; Ott 2009). The onset and development of these

rotational instabilities are often parameterized by the ratio β ≡ T/|W |, where T

is the rotational kinetic energy and W the gravitational potential energy of the

star. In particular, the dynamical bar-mode (m = 2) instability sets in when

β & 0.27 and grows on the dynamical time-scale. This critical β, originally

derived for incompressible Maclaurin spheroid in Newtonian gravity (Chan-

drasekhar 1969), is relatively insensitive to the stiffness of the equation of state

as long as the degree of differential rotation is not too large (e.g., Toman et al.

1998; New, Centrella & Tohline 2000; Liu & Lindblom 2001), although simula-

tions show that it tends to be reduced by general relativity effect as the compact-
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ness of the star M/R increases (Shibata, Baumgarte & Shapiro 2000; Saijo et al.

2001). There also exist secular instabilities, which are driven by some dissipa-

tive mechanisms, such as viscosity and gravitational radiation. In the latter case

it is known as the Chandrasekhar-Friedman-Schutz instability (Chandrasekhar

1970; Friedman & Schutz 1978). Although the threshold of the secular bar-mode

instability (β & 0.14) is easier to be satisfied than the dynamical bar-mode insta-

bility, it grows on a much longer time-scale due to its dissipative nature (e.g.,

Lai & Shapiro 1995; Andersson 2003).

The nonlinear development of the dynamical bar-mode instability has

been extensively studied in a large number of numerical simulations (Tohline,

Durisen & McCollough 1985; Pickett, Durisen & Davis 1996; Cazes & Tohline

2000; Brown 2000; Liu 2002; Shibata & Sekiguchi 2005; Camarda et al. 2009). In

the early 2000, it was found that for stars with sufficiently large differential rota-

tion, dynamical instability can develop at significantly lower β than 0.27 (Cen-

trella et al. 2001), even for β on the order of 0.01 (Shibata, Karino & Eriguchi

2002, 2003; Ott et al. 2005; Ou & Tohline 2006; Saijo & Yoshida 2006; Cedra-

Duran, Quilis & Font 2007; Corvino et al. 2010). These low-T/|W | appear to

have quite different physical origin from the canonical bar-mode instability (see

below). Most importantly, recent 3D simulations of a large sample of rotational

core-collapse models carried out by Dimmelmeier et al. (2008), which include

a state-of-the-art treatment of the microphysics during collapse and the initial

rotational profiles obtained from models of precollapse evolution of massive

stellar cores, have shown that in many of the models, the proto-NSs exhibit

sufficient differential rotation to be subject to the low-T/|W | instability (see also

Ott et al. 2007) 5. Such proto-NSs would generate strong gravitational waves

5By contrast, the threshold for the canonical bar-mode instability is never reached even when
the precollapse core has a very large angular momentum, because in that case core bounce
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(GWs), much stronger than a non-rotating core-collapse would produce, sig-

nificantly increasing the possibility of detecting GWs from extra-galactic core-

collapse supernovae by LIGO and other ground-based GW detectors (Ott 2009).

We note that our current understanding of the angular momentum evolution of

pre-supernova stars is uncertain, so one cannot predict the rotation profile of the

collapsing core with great confidence (Heger, Woosley & Spruit 2005). Therefore

the detection (or non-detection) of the rotational signature of proto-NSs by GW

detectors (such as Advanced LIGO) may provide valuable information on mas-

sive star evolution and the mechanism of core-collapse supernova explosion.

Despite clear numerical evidence for their existence, the physical origin of

the low -T/|W | instabilities remains unclear. It has been suggested (Watts, An-

dersson & Jones 2005; Saijo & Yoshida 2006) that the instabilities are associated

with the existence of corotation resonance (where the wave pattern speed equals

the background fluid rotation rate) inside the star and are thus likely to be a sub-

class of shear instabilities which require a certain degree of differential rotation

(Watts, Anderson & Jones 2005; Corvino et al. 2010). Corotation resonance has

long been known to be the key ingredient for some instabilities in other astro-

physical fluid systems, such as the Papaloizou-Pringle instability for accretion

torii (Papaloizou & Pringle 1984; Fu & Lai 2010b) and the corotational instabil-

ity for thin accretion discs (Narayan, Goldreich & Goodman 1987; Tsang & Lai

2008, 2009; Lai & Tsang 2009; Fu & Lai 2010a). In addition, numerical calcula-

tions by Ou & Tohline (2006) suggested that the presence of a local minimum in

the radial vortensity profile of the star is also needed to amplify the mode (see

also Corvino et al. 2010).

An important issue concerning the low-T/|W | instability is the effects of mag-

would occur at low densities.
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netic fields. Proto-NSs are expected to contain appreciable magnetic fields. In

particular, large toroidal fields can be generated from twisting relatively weak

poloidal fields by differential rotation or from magneto-rotatioinal instabilities

(e.g., Balbus & Hawley 1998; Akiyama et al. 2003; Obergaulinger et al. 2009).

While magnetic fields have a negligible effect on the high T/|W | instability (Ca-

marda et al. 2009), it is not clear whether low-T/|W | can survive in the presence

of B fields. Indeed, our previous work on magnetized discs showed that even

a weak magnetic field can change the structure of corotation resonance signifi-

cantly (Fu & Lai 2010a). In Chapter 7, as a first step of clarifying this issue, we

carry out eigenvalue calculation of the effects of purely toroidal B fields on low

T/|W | instability by employing a cylindrical stellar model.
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CHAPTER 2

EFFECTS OF MAGNETIC FIELDS ON THE DISCOSEISMIC MODES OF

ACCRETING BLACK HOLES

2.1 Introduction

The origin of the rapid quasi-periodic variabilities observed in a number of

accreting black hole X-ray binaries is not understood. It has been suggested

that these variabilities are associated with discoseismic oscillation modes of the

black hole accretion disk. In particular, in a disk with no magnetic field, the

so-called g-modes (inertial oscillations) can be self-trapped at the inner region

of the disk due to general relativistic effects. Real accretion disks, however, are

expected to be turbulent and contain appreciable magnetic fields. We show in

this chapter that even a weak magnetic field (with the magnetic energy much

less than the thermal energy) can modify or “destroy” the self-trapping zone

of disk g-modes, rendering their existence questionable in realistic black hole

accretion disks. The so-called corrugation modes (c-modes) are also strongly

affected when the poloidal field approaches equal-partition. On the other hand,

acoustic oscillations (p-modes), which do not have vertical structure, are not

affected qualitatively by the magnetic field, and therefore may survive in a tur-

bulent, magnetic disk.
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2.2 Basic Equations

We consider a non-self-gravitating accretion disk, satisfying the usual ideal

MHD equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇Π − ∇Φ + 1

ρ
T, (2.2)

∂B

∂t
= ∇ × (v × B). (2.3)

Here ρ, P, v are the fluid density, pressure and velocity, Φ is the gravitational

potential, and

Π ≡ P +
B2

8π
, T ≡ 1

4π
(B · ∇)B (2.4)

are the total pressure and the magnetic tension, respectively. The magnetic field

B also satisfies the equation ∇ · B = 0. We assume that the fluid obeys the

barotropic equation of state P = P(ρ).

We adopt the cylindrical coordinates (r, φ, z) which are centered on the cen-

tral BH and have the z-axis in the direction perpendicular to the disk plane. The

unperturbed background flow is assumed to be axisymmetric with a velocity

field v = rΩ(r)φ̂, and magnetic field B = Bφ(r)φ̂ + Bzẑ, i.e., Bz is constant while Bφ

has a radial dependance. Force balance in the unperturbed flow implies

G ≡ 1
ρ
∇Π − 1

ρ
T = Ω

2rr̂ − ∇Φ. (2.5)

Consider perturbations of the form eimφ−iωt. The linearized fluid equations

are

−iω̃δρ +
1
r
∂

∂r
(ρrδvr) +

imρ
r
δvφ +

∂

∂z
(ρδvz) = 0, (2.6)

−iω̃δvr − 2Ωδvφ = Gr
δρ

ρ
− 1
ρ

∂

∂r
δΠ +

1
ρ

(δT)r, (2.7)
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−iω̃δvφ +
κ2

2Ω
δvr = −

im
ρr
δΠ +

1
ρ

(δT)φ, (2.8)

−iω̃δvz = Gz
δρ

ρ
− 1
ρ

∂

∂z
δΠ +

1
ρ

(δT)z, (2.9)

−iω̃δBr =

(

imBφ
r
+ Bz

∂

∂z

)

δvr, (2.10)

−iω̃δBφ = −
∂

∂r
(Bφδvr) + Bz

∂

∂z
δvφ − Bφ

∂

∂z
δvz + r

dΩ
dr
δBr, (2.11)

−iω̃δBz = −
Bz

r
∂

∂r
(rδvr) −

imBz

r
δvφ +

imBφ
r
δvz, (2.12)

where

ω̃ = ω − mΩ (2.13)

is the comoving wave frequency, and

κ2 ≡ 2Ω
r

d(r2
Ω)

dr
(2.14)

is the radial epicyclic frequency. δρ, δΠ, δv, δB are Eulerian perturbations, and

ρ, B refer to the unperturbed flow variables. In addition, for barotropic fluid,

we have

δρ =
1
c2

s

δP =
1
c2

s

(δΠ − 1
4π

B · δB), (2.15)

where cs is the sound speed.

To perform local (WKB) analysis, we consider perturbations with spatial de-

pendence eikrr+ikzz. In the leading-order approximation, we keep only the radial

gradient of Ω(r) and Bφ(r) while assuming that the variation scales of all the

other background quantities are much larger than the wavelength of the pertur-

bation, i.e., kr, kz ≫ 1/r. The linearized MHD equations then reduce to

− iω̃
ρc2

s

δΠ + ikrδvr + ikφδvφ + ikzδvz +
iω̃Bφ
4πρc2

s

δBφ +
iω̃Bz

4πρc2
s

δBz = 0, (2.16)

− ikr

ρ
δΠ + iω̃δvr + 2Ωδvφ +

(

ikzBz

4πρ
+

ikφBφ
4πρ

)

δBr −
Bφ

2πρr
δBφ = 0, (2.17)

−
ikφ
ρ
δΠ − κ

2

2Ω
δvr + iω̃δvφ +

(q + 1)Bφ
4πρr

δBr +

(

ikzBz

4πρ
+

ikφBφ
4πρ

)

δBφ = 0, (2.18)
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− ikz

ρ
δΠ + iω̃δvz +

(

ikzBz

4πρ
+

ikφBφ
4πρ

)

δBz = 0, (2.19)

(ikφBφ + ikzBz)δvr + iω̃δBr = 0, (2.20)

ikrBφδvr − ikzBzδvφ + ikzBφδvz − pΩδBr − iω̃δBφ = 0, (2.21)

ikrBzδvr + ikφBzδvφ − ikφBφδvz − iω̃δBz = 0, (2.22)

where kφ ≡ m/r. We have assumed Bφ ∼ rq and p ≡ d lnΩ/d ln r. Note that in

deriving eqs. (2.16)-(2.22), we have dropped the terms proportional to Gr and

Gz in eqs. (2.7) and (2.9): since Gr = (Ω2 − Ω2
K)r ∼ Ω2

Kr(H/r)2 and Gz ∼ Ω2
Kz

(where Ωk is the Keplerian frequency, i.e., the angular frequency in the absence

of pressure force), Gr is much smaller than the other terms in eq. (2.7) provided

that krr ≫ 1+v2
Aφ/c

2
s , and Gz is also negligible if we focus on the mid-plane of the

disk.

2.3 Hydrodynamic Limit: Discoseismic Modes

In the absence of magnetic fields, for kz, kr ≫ kφ, the perturbed MHD equations

(16)-(22) lead to the dispersion relation:

(ω̃2 − κ2)(ω̃2 − k2
z c2

s) = k2
r c2

sω̃
2. (2.23)

For kz = 0 (or ω̃2 ≫ k2
z c2

s), this becomes ω̃2
= k2

r c2
s + κ

2, the usual dispersion

relation for spiral density wave; for ω̃2 ≪ k2
z c2

s , this becomes ω̃ = ±κkz/(k2
r + k2

z )1/2,

describing inertial oscillations (e.g., Goodman 1993).

For an accretion disk, with scale height H ≪ r, the vertical dependence of

the perturbation is not well described by the plane wave eikzz unless kzH ≫

1. Okazaki et al. (1987) showed that for a thin disk, the perturbation equa-

tions can be approximately separated in r and z (see also Nowak & Wagoner
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1991, 1992; Ipser 1994). For example, for vertically isothermal disks with

constant scale height H, one finds δP(r, z), δvr(r, z), δvφ(r, z) ∝ Hn(z/H), while

δvz(r, z) ∝ H′n(z/H), where Hn(Z) (with n = 0, 1, · · ·) is the Hermite polynomials

and H′n(Z) = dHn(Z)/dZ. With this separation of variables, Okazaki et al. (1987)

obtained the dispersion relation for a given n:

(ω̃2 − κ2)(ω̃2 − nΩ2
⊥) = k2

r c2
sω̃

2, (2.24)

whereΩ⊥ is the vertical epicyclic frequency and is related to H by H = cs/Ω⊥. An

important property of relativistic disks around BHs is that κ is non-monotonic.

Three types of trapped modes can be identified (see Fig. 2.1; see also Wagoner

1999, Kato 2001 and Ortega-Rodriguez et al. 2006 for reviews):

(i) P-modes. For n = 0, waves can propagate in the region where ω̃2 > κ2.

These are acoustic waves (modified by disk rotation), and have also been termed

inertial-acoustic modes. If waves can be reflected at the disk inner radius (rISCO,

the inner-most stable circular orbit), discrete p-modes can be self-trapped at the

inner-most region of the disk (see Fig. 2.1a, 2.1c).

(ii) G-modes. For n ≥ 1, waves can propagate in the region where ω̃2 < κ2 <

nΩ2
⊥ or ω̃2 > Ω2

⊥ > κ
2 (note that κ < Ω⊥ in GR). The former specifies the g-mode

propagation zone: self-trapped g-modes can be maintained in the region where

κ peaks (for m = 0: see Fig. 2.1b) or in the region where Ω − κ/m < ω/m <

Ω + κ/m (for m , 0: see Fig. 2.1d).1 Because these discrete, self-trapped modes

do not require special boundary conditions (e.g., wave reflection at r = rISCO),

they have been the focus of most studies of relativistic diskoseismology. Note

that although we call these g-modes (following the terminology of Kato 2001

1Note that non-axisymmetric g-modes with ω/m < Ω(rISCO) contain corotation resonance in
the wave zone, leading to strong damping of the mode (Kato 2003; Li et al. 2003; Zhang & Lai
2006). On the other hand, modes with Ω(rISCO) < ω/m < max(Ω + κ/m) do not suffer corotational
damping, and are therefore of great interest.
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Figure 2.1: Wave propagation diagram showing various trapped modes in
BH accretion disks: (a) axisymmetric p-mode; (b) axisymmetric
g-mode; (c)non-axisymmetric p-mode; (d) non-axisymmetric
g-mode and c-mode. The curves depict various critical fre-
quencies (κ,

√
nΩ⊥, Ω, Ω ± κ/m, Ω ±

√
nΩ⊥/m), the vertical dot-

ted lines denote the inner-most stable circular orbit (ISCO). The
curvy horizontal lines specify wave propagation zones and the
height of the line isω (for the top panels) orω/m (for the bottom
panels) of the mode.

and Wagoner 1999), they have no relation to gravity waves, which are driven

by buoyancy. Instead, these modes describe inertial oscillations, and have also

been termed inertial modes (or inertial-gravity modes).

(iii) C-modes. For n ≥ 1 and m ≥ 1, the wave propagation condition ω̃2 >
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nΩ2
⊥ > κ

2 leads to an additional wave trapping region, where ω/m < Ω−
√

nΩ⊥/m

(see Fig. 2.1d). Note that for spinning BHs, Ω⊥ < Ω. Clearly, these modes exist

only when Ω −
√

nΩ⊥/m > 0 and wave reflection occurs at r = rISCO. Following

the previous works (e.g., Kato 1990 and Silbergleit et al. 2001, who focused

on the “fundamental” n = m = 1 mode, corresponding to the Lense-Thirring

precession of the inner disk), we call these (“corrugation”) c-modes.

Comparing eqs. (2.23) and (2.24), we see that we can obtain the radial dis-

persion relation of different modes by adopting the vertical “quantization” con-

dition kz =
√

n/H in eq. (2.23), with kz = 0 specifying p-modes. In a generic

disk (e.g., when the disk is not isothermal vertically), the same “quantization”

condition would not hold, but we still expect kz ∼ 1/H ∼ Ω⊥/cs for the (ver-

tically) lowest-order g-mode or c-mode. In the next sections, we will adopt

kz =
√
ηΩ⊥/cs, with η of order unity, when we study how magnetic fields mod-

ify low-order g-modes and c-modes.

Our approach in this paper is based on Newtonian theory. GR effect can be

incorporated into our analysis by using the Paczynski-Witta pseudo-Newtonian

potential, Φ = −M/(r − 2M). Alternatively, we could simply replace the Newto-

nian Ω, Ω⊥, κ by their exact general relativistic counterparts (e.g., Okazaki et al.

1987):

Ω =

√

M/r3

1+ a
√

M/r3
, (2.25)

Ω⊥ = Ω

[

1− 4aM1/2

r3/2
+

3a2

r2

]1/2

, (2.26)

κ =

[

M(r2 − 6Mr + 8aM1/2r1/2 − 3a2)
r2(r3/2 + aM1/2)2

]1/2

(2.27)

(in geometric units such that G = c = 1), where a = Js/M is the spin parameter

of the black hole. In general, Ω ≥ Ω⊥ > κ. In the case of a Schwarzschild BH,
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Ω = Ω⊥ > κ, with κ peaks at r = 8M and becomes zero at rISCO = 6M. This

non-monotonic behavior of the radial epicyclic frequency is preserved for Kerr

BHs, and, as discussed above, is the key ingredient for the existence of trapped

diskoseismic modes.

2.4 Effect of Poloidal Fields

We first consider the case of a pure poloidal field, with Bφ = 0. For kz, kr ≫ kφ,

equations (2.16)-(2.22) then lead the dispersion relation:

ω̃6 − [(k2
z + k2

r )(c2
s + v2

Az) + k2
z v2

Az + κ
2]ω̃4

+

{

k2
z v2

Az

[

(k2
z + k2

r )(2c2
s + v2

Az) +
dΩ2

d ln r

]

+ κ2k2
z c2

s

}

ω̃2

−k4
z v2

Azc
2
s

[

(k2
z + k2

r )v2
Az +

dΩ2

d ln r

]

= 0, (2.28)

where vAz ≡ Bz/
√

4πρ. In the incompressible limit, this reduces to the disper-

sion relation found in, e.g., Balbus & Hawley (1991). For a given k = (kr, kφ, kz),

equation (2.28) admits three branches, corresponding to fast, slow magnetosonic

waves and Alfvén wave, all modified by differential rotation. For kz ≫ kr, the

Alfvén branch can become unstable when k2
z v2

Az < −dΩ2/d ln r. This is the well-

known MRI (e.g., Balbus & Hawley 1998).

2.4.1 P-modes

If kz = 0, equation (2.28) reduces to

ω̃2
= κ2 + k2

r (c2
s + v2

Az). (2.29)
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This is almost the same expression as in pure hydrodynamic case (ω̃2
= κ2+k2

r c2
s),

the only difference being that the sound speed is replaced by fast magnetosonic

wave speed,
√

c2
s + v2

Az. Thus the basic property of p-modes is not affected by

poloidal magnetic fields.

2.4.2 G-modes

For a fixed kz =
√
η/H =

√
ηΩ⊥/cs (see §3), we can rewrite eq. (2.28) as an expres-

sion for k2
r :

(c2
s + v2

Az)k
2
r =

(ω̃2 − ω2
1)(ω̃

2 − ω2
2)(ω̃

2 − ω2
5)

(ω̃2 − ω2
3)(ω̃

2 − ω2
4)

. (2.30)

The five critical frequencies are given by

ω2
1 = η(Ω⊥)2, (2.31)

ω2
2 =

1
2

[

κ2 + 2η(Ω⊥)2b2
+

√

κ4 + 16η(Ω⊥Ω)2b2
]

(2.32)

ω2
3 = η(Ω⊥)2b2, (2.33)

ω2
4 = η(Ω⊥)2 b2

1+ b2
, (2.34)

ω2
5 =

1
2

[

κ2 + 2η(Ω⊥)2b2 −
√

κ4 + 16η(Ω⊥Ω)2b2
]

(2.35)

where b ≡ vAz/cs.

Equation (2.30) allows us to identify various wave propagation regions (k2
r >

0). We first consider subthermal fields, with b < 1. When b . 0.4 (and with

η = 1 for the lowest order g-modes), the five critical frequencies satisfy ω2
1 >

ω2
2 > ω

2
3 > ω

2
4 > 0 > ω2

5 in the inner region of the disk. Thus there are three wave

propagation regions:

Region I : ω̃2 > ω2
1, (2.36)
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Figure 2.2: The effect of poloidal magnetic field on the g-mode propaga-
tion zone for m = 0, η = 1. In each panel, the upper three curves
are ω2 (eq. [2.32]) and the lower two curves are ω3 (eq. [2.33]).
Axisymmetric g-modes of frequency ω can propagate in the re-
gion where ω3 < ω < ω2. The solid line refers to the case of
b = 0, the short-dashed line b = 0.03 and the long-dashed line

b = 0.1, where b ≡ vAz/cs, with vAz = Bz/
√

4πρ (Alfvén speed)
and cs the sound speed. The vertical dotted lines correspond to
the inner disk radius at ISCO. The curvy horizontal lines spec-
ify the wave propagation zones, and the height of the line is ω
of the mode. The lower and upper panels are for the case of a
Schwarzschild BH (a = 0) and a Kerr BH (a = 0.8M), respec-
tively. The angular frequencies are in units of M−1

= c3/(GM).

Region II :ω2
3 < ω̃

2 < ω2
2, (2.37)

Region III : ω̃2 < ω2
4. (2.38)

Region II corresponds to the original g-mode cavity modified by the mag-
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netic field; in the zero field limit, ω3 = 0, ω2 = κ and eq. (2.37) reduces to ω̃2 < κ2.

Fig. 2.2 depicts the critical frequencies ω2 and ω3 for several values of b. This

also serves as the propagation diagram for m = 0 g-modes (wave can propa-

gate in region where ω3 < ω < ω2). We see that as the magnetic field increases,

the g-mode self-trapping zone gradually shrinks and disappears even when the

magnetic field is still very subthermal (for a Schwarzschild BH, this occurs for

b & 0.08). More precisely, the g-mode cavity can still exist for large b, but it now

requires a reflection boundary at rISCO. This behavior can be easily understood

by inspecting eq. (32): While κ peaks at some radius rmax,Ω⊥ andΩ both increase

monotonically with decreasing r. Since Ω⊥ and Ω are much larger than κ in the

inner region of the disk, the 2(Ω⊥b)2 term or the 4Ω⊥Ωb term can dominate over

κ2 even when b is still small, therefore making the self-trapping zone disappear.

Roughly, this occurs at b & bcrit ∼ (κ2/2Ω⊥Ω)rmax.

For non-axisymmetric perturbations (m , 0), the wave propagation region II

is determined by (i) Ω − ω2/m < ω/m < Ω + ω2/m, and (ii) ω/m > Ω + ω3/m or

ω/m < Ω − ω3/m. Fig. 2.3 shows the propagation diagram. As mentioned before

(see Footnote 1), for b = 0, only the modes with ω > mΩ(rISCO) are of interest,

since otherwise there is a corotation resonance in the wave zone, leading to

strong mode damping (Kato 2003; Li, Narayan & Goodman 2003; Zhang & Lai

2006). Thus, self-trapped g-modes reside around the radius where Ω + ω2/m is

the maximum (and this maximum arises because κ depends nonmonotonically

on r). We see from Fig. 2.3 that this g-mode self-trapping region disappears as b

increases. The larger m is, the more fragile is the cavity. For example, the m = 1

cavity disappears for b & 0.015, while for m = 2, this occurs for b & 0.005.
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Figure 2.3: The effect of poloidal magnetic field on the g-mode propa-
gation zone for m , 0, η = 1, a = 0. The three panels are
for b = vAz/cs = 0, 0.005 and 0.015. The solid line, short-
dashed lines and the long-dashed lines show Ω, Ω ± ω2 and
Ω ± ω2/2, respectively. In the bottom panel, the dotted lines
show Ω ± ω3 (In the upper and middle panels, Ω ± ω3 almost
concide with Ω, since ω3 = 0 for b = 0 and ω3 ≪ Ω for b ≪ 1).
Non-axisymmetric g-modes can propagate in the region where
Ω − ω2/m < ω/m < Ω − ω3/m or Ω + ω3/m < ω/m < Ω + ω2/m.
The vertical dotted lines correspond to the inner disk radius
at ISCO. The curvy horizontal lines in top and middle panels
specify wave propagation zones and the height of the line is
ω/m of the mode. Note that the self-trapping zone (depicted in
the upper and middle panels) disappears as b increases. The
angular frequencies are in units of M−1

= c3/(GM).
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2.4.3 C-modes

For m , 0 and η ∼ 1, equation (2.30) also describes trapped c-modes. When

b . 0.4, ω2
1 is the largest among all the critical frequencies and the c-mode

propagation zone corresponds to Region I (see eq. [2.36]). Note that since ω1

is not affected by the magnetic field, the trapping region is determined by

ω/m < Ω − ω1/m = Ω − Ω⊥/m (for η = 1, see the upper panel of Fig. 2.4; cf.

Fig. 2.1d). When b & 0.4, the ordering between ω1 and ω2 switches and c-modes

propagate in the region where ω̃2 > ω2
2, with the trapping zone determined by

ω/m < Ω − ω2/m (see the bottom panel of Fig. 2.4). Thus, in the presence of a

reflection boundary at rISCO, c-modes are not affected by the poloidal magnetic

field when b . 0.4, but can be appreciably modified when b & 0.4.

From eq. (2.30) we can identify other wave propagation zones (see eq. [2.38]).

Fig. 2.5 gives an example, for m = 2, b = 0.7. Note that, except for the c-mode

trapping zone discussed above, all the propagation zones are bounded by at

least one “singular point” (where kr →∞). Unlike the turning point (kr → 0) as-

sociated with wave reflection, wave absorption is expected to occur at these sin-

gular points (see Zhang & Lai 2006; Tsang & Lai 2008a and references therein).

Thus, the new wave trapping regions given by eq. (2.38) will not lead to inter-

esting global oscillation modes (Note that in the case of b = 0.7, the ordering

of five critical frequencies is different from the one described in §4.2. However,

our conclusion still holds true, i.e., there is no chance to form a wave trapping

zone bounded by two reflection points other than the c-mode oscillation region,

which is bounded by a reflection point and the ISCO).
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Figure 2.4: The effect of poloidal magnetic field on c-modes with m = 1 and
a = 0.2M. The upper panel shows the original c-modes since b
is small and ω1 = Ω⊥; in the bottom panel, with a large b, the c-
mode trapping zone is instead bounded by the inner reflection
boudary and Ω−ω2. The vertical dotted line refers to the inner
disk radius at ISCO. The curvy horizontal lines specify wave
propagation zones and the height of the line is ω of the mode.

2.5 Effect of Toroidal Fields

In this section, we consider the effect of a pure toroidal field, with Bz = 0. Vari-

ous instabilities may exist for such field geometry, depending upon the rotation

profile Ω(r) and the magnetic field profile Bφ(r) (e.g., Acheson & Gibbons 1978;

Terquem & Papaloizou 1996). Here we focus on how Bφ affects the diskoseismic

modes.
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Figure 2.5: Wave propagation diagram for non-axisymmetric g-modes
and c-modes, for b = vAz/cs = 0.7, m = 2, η = 1, and a = 0.
The solid line, dot-short dashed lines, long-dashed lines, dot-
ted lines and short-dashed lines show Ω, Ω ± ω4/2, Ω ± ω3/2,
Ω±ω1/2 and Ω±ω2/2 (eqs. [2.31]-[2.34]), respectively. The ver-
tical dotted line shows the inner disc radius. The curvy hori-
zontal lines specify wave propagation zones and the height of
the line is ω/2 of the mode. The singular points (where kr → ∞)
are indicated by filled circles. The angular frequencies are in
units of M−1

= c3/(GM).

2.5.1 P-modes

With kz = 0, equations (2.16)-(2.22) reduces to

ω̃2
= κ2 + k2

r (c2
s + v2

Aφ), (2.39)

where vAφ ≡ Bφ/
√

4πρ. Thus, the toroidal field affects p-modes in the same way

as the poloidal field does (see §4.1).
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2.5.2 G-modes

Since the general dispersion relation for m , 0 is quite complicated, here we

focus on axisymmetric perturbations.2 With m = 0, Equations (2.16)-(2.22) lead

to

ω4 − [κ2 + (k2
z + k2

r )(c2
s + v2

Aφ)]ω
2
+ κ2k2

z (c2
s + v2

Aφ)

+2(1− q)v2
Aφc

2
sk

2
z/r

2
= 0, (2.40)

where q = d ln Bφ/d ln r. Solving for k2
r , we have

k2
r =

(ω2 − ω2
+
)(ω2 − ω2

−)

(c2
s + v2

Aφ)ω
2
, (2.41)

with the two critical frequencies given by

ω2
± =
κ2 + ηΩ2

⊥(1+ b2
φ)

2
±

1
2

√

[κ2 − ηΩ2
⊥(1+ b2

φ)]
2 − 8(1− q)ηv2

AφΩ
2
⊥/r2, (2.42)

where bφ ≡ vAφ/cs and we have used kz =
√
η/H =

√
ηΩ⊥/cs as in §4. Clearly, for

bφ = 0, eq. (2.42) reduces to eq. (2.24).

When q = 1 (i.e., Bφ ∝ r), eq. (2.42) gives ω2
+
= η(Ω⊥)2(1 + b2

φ), and ω2
− = κ

2.

Since ω2
− is independent of Bφ, the g-mode propagation zone is unaffected no

matter how strong the field is. When q , 1, as long as vAφ ≪ Ω⊥r (which is valid

in most disk situations), the 8(1− q)ηv2
AφΩ

2
⊥/r

2 term in eq. (2.42) represents only

a small correction, i.e., ω2
− is still very close to κ2. Thus for general toroidal field

satisfying vAφ ≪ Ω⊥r, the axisymmetric g-mode propagation zone is not affected

by the magnetic field.

2Since c-modes necessarily require m > 0, our analysis here cannot be applied to c-modes.
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2.6 Summary

In this chapter we have studied the effects of both poloidal and toroidal mag-

netic fields on the diskoseismic modes in BH accretion disks. Previous works

by Kato, Wagoner and others have been based on hydrodynamic disks with no

magnetic field. The key finding of our study is that the g-mode self-trapping

zone (which arises from GR effect) disappears when the disk contains even a

small poloidal magnetic field, corresponding to vAz/cs = 0.01− 0.1 (see Fig. 2.2-

2.3; vAz is the Alfvén speed and cs is the sound speed). It is well-known that

the combination of a weak poloridal field and differential rotation gives rise to

MRI, making real astrophysical disks turbulent. Earlier numerical simulations

indicated that the magnetic field grows as MRI develops, until it saturates at

vAz/cs ∼ 0.1−1, with the toroidal field stronger than the poloidal field by a factor

of a few (see, e.g., Hawley et al. 1996; Balbus & Hawley 1998). Recent simula-

tions showed that the turbulent state depends strongly on the net magnetic flux

through the disk (e.g., Fromang & Papaloizou 2007; Simon, Hawley & Beckwith

2008). In any case, it is likely that the magnetic field in a turbulent disk is large

enough to “destroy” the g-mode self-trapping zone.

Thus, the g-mode properties (including the frequencies and excitations) de-

rived from hydrodynamical models are unlikely to be applicable to real BH ac-

cretion disks. The disappearance of the g-mode trapping zone might also ex-

plain why Arras et al. (2006) and Reynolds & Miller (2008) did not see any

global g-modes in their MHD simulations.

As mentioned in Section 2.1, g-mode oscillations have been considered a

promising candidate to explain QPOs in BH X-ray binaries. Theoretically, these
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modes are appealing because in hydrodynamic disks their existence depends on

general relativistic effect and does not require special disk boundary conditions.

Our analytical results presented in this chapter, together with recent numerical

simulations (Arras et al. 2006; Reynolds & Miller 2008), suggest that magnetic

fields and turbulence associated with real accretion disks can change this picture

significantly.

While g-modes can be easily modified or “destroyed” by magnetic fields,

our analysis showed that p-modes are not affected qualitatively. The magnetic

field simply changes the sound speed to the fast magnetosonic wave speed and

leaves the p-mode propagation diagram unchanged. We also showed that a

weak poloidal field (vAz/cs ≪ 1) does not affect the c-mode propagation zone,

although a stronger field modifies it. Our results therefore suggests that global

p-mode oscillation is robust and may exist in real BH accretion disks, provided

that partial wave reflection at the disk inner edge can be achieved.3 Of par-

ticular interest is the non-axisymmetric p-modes, since they may be excited by

instabilites associated with corotation resonance (Tsang & Lai 2008, Lai & Tsang

2009).

3Kato (2001) has discussed why such reflection may be possible.
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CHAPTER 3

COROTATIONAL INSTABILITY, MAGNETIC RESONANCES AND

GLOBAL INERTIAL-ACOUSTIC OSCILLATIONS IN MAGNETIZED

BLACK-HOLE ACCRETION DISCS

3.1 Introduction

Low-order, non-axisymmetric p-modes (also referred as inertial-acoustic

modes) in hydrodynamic accretion discs around black holes are plausible candi-

dates for high-frequency quasi-periodic oscillations (QPOs) observed in a num-

ber of accreting black-hole systems. These modes are trapped in the inner-

most region of the accretion disc, and are subject to global instabilities due to

wave absorption at the corotation resonance (where the wave pattern frequency

ω/m equals the disc rotation rate Ω), when the fluid vortensity, ζ = κ2/(2ΩΣ)

(where κ and Σ are the radial epicyclic frequency and disc surface density, re-

spectively), has a positive gradient. In this chapter, we investigate the effects

of disc magnetic fields on the wave absorption at corotation and the related

wave super-reflection of the corotation barrier, and on the overstability of disc

p-modes. In general, in the presence of magnetic fields, the p-modes have the

character of inertial-fast magnetosonic waves in their propagation zone. For

discs with a pure toroidal field, the corotation resonance is split into two mag-

netic resonances, where the wave frequency in the corotating frame of the fluid,

ω̃ = ω − mΩ, matches the slow magnetosonic wave frequency. Significant wave

energy/angular momentum absorption occurs at both magnetic resonances, but

with opposite signs, such that one of them enhances the super-reflection while

the other diminishes it. The combined effect of the two magnetic resonances is
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to reduce the super-reflection and the growth rate of the overstable p-modes.

Our calculations show that even a subthermal toroidal field (with the magnetic

pressure less than the gas pressure) may suppress the overstability of hydrody-

namic (B = 0) p-modes. For accretion discs with mixed (toroidal and vertical)

magnetic fields, two additional Alfvén resonances appear, where ω̃matches the

local Alfvén wave frequency. The effect of these additional resonances is to fur-

ther reduce or diminish the growth rate of p-modes. Our results suggest that

in order for the non-axisymmetric p-modes to be a viable candidate for the ob-

served high-frequency QPOs, the disc magnetic field must be appreciably sub-

thermal, or other mode excitation mechanisms are at work.

3.2 Setup and Basic Equations

We consider a non-self-gravitating accretion disc, satisfying the usual ideal

MHD equations

∂ρ

∂t
+ ∇ · (ρv) = 0, (3.1)

∂v
∂t
+ (v · ∇)v = −1

ρ
∇Π − ∇Φ + 1

4πρ
(B · ∇)B, (3.2)

∂B
∂t
= ∇ × (v × B), (3.3)

where ρ, P, v are the fluid density, pressure and velocity, Φ is the gravitational

potential, and

Π ≡ P +
B2

8π
(3.4)

is the total pressure. The magnetic field B also satisfies the equation ∇ · B = 0.

We assume the flow obeys the barotropic equation of state P = P(ρ).
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We adopt the cylindrical coordinates (r, φ, z) which are centered on the cen-

tral BH and have the z-axis in the direction perpendicular to the disc plane. The

unperturbed background disc has a velocity field v = rΩ(r)φ̂, and the magnetic

field consists of both toroidal and vertical components B = Bφ(r)φ̂ + Bz(r) ẑ. The

gravitational acceleration in radial direction is defined as

g =
dΦ
dr

(3.5)

so that −∇Φ = −gr̂ and g = rΩ2
K > 0, where ΩK is the angular frequency for a test

mass (the Keplerian frequency)1. Thus the radial force balance equation reads

ρg = ρrΩ2 − dΠ
dr
−

B2
φ

4πr
. (3.6)

To probe the dynamical properties of the magnetized flow, we apply linear

perturbations to the ideal MHD Eqs. (3.1)-(3.3) by assuming the perturbation

of any physical variable f to have the form δ f ∝ eimφ−iωt with m being the az-

imuthal mode number and ω the wave frequency. The background flow and

magnetic field have no z-dependance and we will assume that the perturbation

also has no z-dependance (kz = 0). The resulting linearized perturbation equa-

tions clearly contain variables δv, δρ, δP, δΠ and δB. To simply the algebra, we

define a new variable

δh =
δΠ

ρ
=
δP
ρ
+

B · δB
4πρ

. (3.7)

Using ∆v = δv + ξ · ∇v = dξ/dt = −iωξ + (v · ∇)ξ, we find that the Eulerian

perturbation δv is related to the Lagrangian displacement vector ξ by δv = −iω̃ξ−

rΩ′ξrφ̂ (prime denotes radial derivative). Also, we have (for barotropic flow)

δρ = δP/c2
s (3.8)

1Here “Keplerian” does not necessarily mean the gravitational potential is Newtonian. See
the end of Sec. 2.
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with cs =
√

dP/dρ being the sound speed. Therefore, we can express all the per-

turbation quantities in terms of ξr and δh, then further combine the perturbation

equations into two equations for these two variables:

dξr
dr
= A11ξr + A12δh, (3.9)

dδh
dr
= A21ξr + A22δh, (3.10)

where

A11 =
rω̃2

[

(ω2
Aφ −Ω2)ω̃2

+ ω2
Aφω

2
]

(c2
s + v2

A)(ω̃2 − m2ω2
Aφ)(ω̃

2 − ω2
s)
+

gω̃2

(c2
s + v2

A)(ω̃2 − ω2
s)
−
ω̃2
+ 2mω̃Ω + m2ω2

Aφ

r(ω̃2 − m2ω2
Aφ)

,

(3.11)

A12 = −
ω̃4

(c2
s + v2

A)(ω̃2 − m2ω2
Aφ)(ω̃

2 − ω2
s)
+

m2

r2(ω̃2 − m2ω2
Aφ)
, (3.12)

A21 = ω̃
2 − m2ω2

Aφ −
4(mω2

Aφ + ω̃Ω)2

ω̃2 − m2ω2
Aφ

+ r
d
dr

(ω2
Aφ − Ω2) + (ω2

Aφ − Ω2)
r
ρ

dρ
dr
+

g
ρ

dρ
dr

+
1

(c2
s + v2

A)(ω̃2 − m2ω2
Aφ)(ω̃

2 − ω2
s)

{

r
[

(ω2
Aφ −Ω2)ω̃2

+ ω2
Aφω

2
]

+ g(ω̃2 − m2ω2
Aφ)

}2
,

(3.13)

A22 = −
rω̃2

[

(ω2
Aφ − Ω2)ω̃2

+ ω2
Aφω

2
]

(c2
s + v2

A)(ω̃2 − m2ω2
Aφ)(ω̃

2 − ω2
s)
− gω̃2

(c2
s + v2

A)(ω̃2 − ω2
s)
+

2m(mω2
Aφ + ω̃Ω)

r(ω̃2 − m2ω2
Aφ)
−1
ρ

dρ
dr
.

(3.14)

In the above expressions,

ω̃ = ω − mΩ (3.15)

is the wave frequency in the co-rotating frame,

vA =
|B|

√

4πρ
(3.16)

is the Alfvén velocity,

ωAφ =
vAφ

r
=

Bφ

r
√

4πρ
(3.17)

is the toroidal Alfvén frequency, and

ωs =
cs

√

c2
s + v2

A

mωAφ = kφ
csvAφ

√

c2
s + v2

A

, (3.18)
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is the slow magnetosonic wave frequency for k = (m/r)φ̂.

Equations (7.18)-(7.19) describe the linear perturbations (without vertical

wavenumber) in a compressible 2D flow threaded by a mixture of toroidal and

vertical magnetic fields. In the hydrodynamic disc limit (B→ 0), they reduce to

the related equations in Goldreich & Tremaine (1979) with no external forcing

potential [see also Tsang & Lai 2008 (TL08 hereafter) and LT09]. They also agree

with system (14) in Blokland et al. (2005) 2 in the kz → 0 and barotropic limit,

although their equations are cast on slightly different variables (δΠ instead of

δh). The Hameiri-Bondeson-Iacono-Bhattacharjee (HBIB) type of equations pre-

sented in Blokland et al. (2005) have been derived before by Hameiri (1981) and

Bondeson et al. (1987) [see also Mikhailovskii et al. (2009); Goossens et al. (1992)

(hereafter GHS92) and reference therein] for a magnetized rotating flow in the

absence of external gravity. The equations including gravity were obtained by

Keppens et al. (2002) (hereafter KCP02) using the same Frieman-Rotenberg tech-

nique (Frieman & Rotenberg 1960). System (5) in KCP02 is by far the most gen-

eral formulation (with finite Bφ, Bz, m, kz, vφ, vz and adiabatic equation of state)

that in principle governs all the MHD waves and instabilities for a compress-

ible MHD fluid with an equilibrium flow in cylindrical geometry. In Chapter 3,

we focus on the effects of magnetic fields on the corotational instability of the

inertial-acoustic modes (p-modes) in accretion discs, thus Eqs. (7.18)-(7.19) are

our main working equations. Recently, Yu & Li (2009) considered a similar sys-

tem (with finite kz and pure toroidal B field) to study the Rossby wave insta-

bility and they obtained equations with similar structure as Eqs. (7.18)-(7.19).

Our equations in the pure toroidal B field limit (Bz → 0) are the same as theirs

in the kz → 0 limit. Also, the disc system that we study here are similar to the

2There is a typo in their Eq. (20), where in the last line, the term (B2
θω̃ + Fvθ) should be

(B2
θ
ω̃ + Fvθ)2.
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one considered by Terquem (2003), where instead of solving for global modes

the author looked into the interaction between the disc and a planet and the

consequences on planet migrations.

Evidently, the coefficients in Eqs. (7.22)-(7.27) are singular when

ω̃2
= m2ω2

Aφ, (3.19)

and

ω̃2
= ω2

s . (3.20)

In more general situations (with kz , 0), mωAφ in Eq. (3.19) generalizes to (k ·

B)/
√

4πρ, which is the Alfvén frequency, and the slow magnetosonic frequency

ωs generalizes to
√

c2
s/(c2

s + v2
A)(k · B)/

√

4πρ. Following Sakurai et al. (1991) and

KCP02, we shall call (3.19) the Alfvén Resonance (AR) and (3.20) the Magnetic slow

Resonance (MR). Note that these singularities/resonances have also been studied

in the specific context of disc-planet interactions. Terquem (2003) considered a

2D disk with a pure toroidal magnetic field and found that a subthermal toroidal

B-field is capable of stopping the inward planetary migration as long as the

Bφ(r) gradient is negative enough. This analytic finding was later confirmed by

2D MHD simulation results (Fromang et al. 2005). On the other hand, Muto

et al. (2008), by employing shearing sheet approximation, performed 3D (i.e.,

kz , 0) calculations for a disk with a pure poloidal magnetic field and showed

that type I planetary migration could be outward if the B-filed is strong enough

(superthermal).

In the special case of kz = Bz = 0, Eq. (3.19) is no longer a real singularity

of the differential equations. In this case, one can show, through some subtle

mathematical manipulations, that the terms ω̃2 − m2ω2
Aφ in A11, A12, A21 and A22
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all get canceled. These four coefficients then reduce to

A11 =
v2

Aφ

c2
s + v2

Aφ

1
ω̃2 − ω2

s















ω̃2

r
−

m2c2
s

r3
−

c2
s

v2
Aφ

ω̃2
+ 2mω̃Ω

r
− ω̃

2

v2
Aφ

(rΩ2 − g)















, (3.21)

A12 = −
1

v2
Aφ + c2

s

ω̃2 − m2c2
s/r

2

ω̃2 − ω2
s

, (3.22)

A21 = ω̃
2 − m2ω2

Aφ − κ2 −
d ln(ρr/B2

φ)

d ln r

v2
Aφ

c2
s + v2

Aφ

(Ω2 − g/r − 2c2
s/r

2)

− 1
ω̃2 − ω2

s

{

4Ω2ω2
s+















mv2
Aφ

c2
s + v2

Aφ

(Ω2 − g/r + 2c2
s/r

2)















2

+4mω̃Ω
v2

Aφ

c2
s + v2

Aφ

(Ω2−g/r+2c2
s/r

2)
}

,

(3.23)

A22 =
m
r

c2
s

c2
s + v2

Aφ

1
ω̃2 − ω2

s















2ω̃Ω +
mv2

Aφ

c2
s + v2

Aφ

(Ω2 − g/r + 2c2
s/r

2)















−d ln ρ
d ln r

+
1

c2
s + v2

Aφ

(rΩ2−g−2v2
Aφ/r),

(3.24)

where the radial epicyclic frequency κ is given by

κ =

[

2Ω
r

d
dr

(r2
Ω)

]1/2

. (3.25)

This peculiar disappearance of Alfvén singularity can also be verified from a

different perspective. GHS92 derived the jump conditions for ξr and δΠ (called

P′ in their paper) across the Alfvén resonance

[ξr] ∝ gB = mBz/r − kzBφ,

[δΠ] ∝ Bz

(see their Eqs. [42]-[43]). We see that when kz = Bz = 0, both ξr and δΠ are

continuous across the Alfvén resonance, thus the Alfvén singularity disappears

3. In a non-magnetic disc, Eqs. (3.19)-(3.20) reduce to the corotation singularity

(TL08).

3Although the analysis in GHS92 does not consider external gravity, one can show that the
effect of gravity can be easily included through replacing the term ρv2

φ/r in their Eq. (5) by ρv2
φ/r+

ρg. This modification only changes the relations between the background variables (Bφ, vφ, cs,
etc.) The jump conditions for ξr and P′ would remain the same.
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In Sec. 3 and Sec. 4, we will simply employ Newtonian gravitational poten-

tial, which has free-particle orbital frequency ΩK ∝ r−3/2 and epicyclic frequency

κ = ΩK . This way a dimension-free analysis can be easily made without missing

the essential physics. However, in Sec. 5, in order to make a direct compari-

son with results in LT09, we will use the Paczynski-Wiita pseudo-Newtonian

potential (Paczynski & Wiita 1980)

Φ = − GM
r − rs

, (3.26)

where M is the central BH mass and rs = 2GM/c2 is the Schwarzschild radius.

The corresponding free-particle orbital frequency and radial epicyclic frequency

are

ΩK =

(

1
r

dΦ
dr

)1/2

=

√

GM
r

1
r − rs

, (3.27)

κ = ΩK

√

r − 3rs

r − rs
. (3.28)

Note that κ2 peaks at r = (2 +
√

3)rs and decreases to zero at r = 3rs. Through-

out Chapter 3, we will consider thin discs with the sound speed cs ≪ rΩK and

magnetic field satisfying B2/(4πρ)≪ (rΩK)2, so that Ω ≃ ΩK .

3.3 Effective potential and Wave Propagation diagram

We can combine Eqs. (7.18)-(7.19) into a single second-order differential equa-

tion on δh
d2

dr2
δh + C1(r)

d
dr
δh +C0(r)δh = 0, (3.29)

where

C1(r) = −A11 − A22 −
1

A21

dA21

dr
, (3.30)

C0(r) = A11A22 − A12A21 −
dA22

dr
+

A22

A21

dA21

dr
. (3.31)
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We introduce a new variable

η = exp

[∫ r 1
2

C1(r)dr

]

δh, (3.32)

so that Eq. (3.29) can be rewritten as a wave equation for η:

d2η

dr2
− V(r)η = 0, (3.33)

where

V(r) =
1
4

C1(r)2
+

1
2

dC1(r)
dr

−C0(r) (3.34)

is the effective potential for wave propagation. Considering a local plane wave

solution

η ∝ exp

[

i
∫ r

kr(s)ds

]

, (3.35)

Eq. (3.33) then yields

k2
r = −V(r). (3.36)

Formally, wave can propagate only in the region with V(r) < 0. Our deriva-

tion above is quite general and can be applied to complicated systems as the

details have all been captured in the four coefficients Ai j. Figures 3.1-3.3 show

the effective potential for various situations discussed below.

3.3.1 Hydrodynamical discs

For a non-magnetic disc, the four coefficients Ai j simplify to

A11 = −
d ln(rρ)

dr
− 2mΩ

rω̃
, (3.37)

A12 = −
1
c2

s

+
m2

r2ω̃2
, (3.38)

A21 = −D, (3.39)
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A22 =
2mΩ
rω̃
, (3.40)

where D = κ2 − ω̃2. Thus C0(r) and C1(r) now read

C0(r) = −D
c2

s

− m2

r2
− 2mΩ

rω̃

(

d
dr

ln
Ωρ

D

)

, (3.41)

C1(r) = − d
dr

ln
D
rρ
. (3.42)

The effective potential then takes the following form

V(r) =
D
c2

s

+
m2

r2
+

2mΩ
rω̃

(

d
dr

ln
Ωρ

D

)

+ S 1/2 d2

dr2
S −1/2, (3.43)

where S = D/(rρ). The effective potential V(r) is singular at both the corota-

tion resonance (CR), where ω̃ = 0, and the Lindblad resonances (LRs), where

D = 0 (see Figs. 3.1-3.3). However, the singularities at the LRs are spurious

singularities of the wave equation (i.e. they can be removed by rewriting the

equation in alternative variables [e.g., Narayan et al. 1987; TL08]) and only the

CR is a non-removable singularity. The behavior of V(r) around the CR depends

on dζ/dr (evaluated at the corotation radius rc), the gradient of the background

fluid vortensity, ζ, defined by

ζ =
κ2

2Ωρ
. (3.44)

For dζ/dr < 0 a narrow “Rossby wave zone” lies just inside rc, while for

dζ/dr > 0 the Rossby zone lies just outside rc; in the special case of dζ/dr = 0,

the corotation singularity disappears (see TL08).

3.3.2 Discs with pure toroidal magnetic fields

As mentioned in Sec. 2, for a disc with a pure toroidal magnetic field, the CR

splits into two magnetic slow resonances (MRs). This can be seen clearly from
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Figure 3.1: Wave propagation diagram in accretion discs when the back-
ground fluid vortensity gradient (evaluated at the corotation
resonance radius) (dζ/dr)c = 0. In the upper panel, the solid
line shows the effective potential V(r) as a function of r for
B = 0 discs, and the dashed line shows V(r) for discs with fi-
nite toroidal magnetic fields. Waves can propagate only in the
region where V(r) < 0. The labels ILR, OLR and CR denote
the inner Lindblad resonance, outer Lindblad resonance and
corotation resonance, respectively. The lower panel shows the
blow-up of the region near the CR (located at rc = 1), and the
long-dashed line shows the case with a stronger Bφ than the
short-dashed line. The labels IMR and OMR denote the inner
magnetic (slow) resonance and outer magnetic resonance, re-
spectively. Note that the vertical scales in the upper and bottom
panels differ by a large factor. A Newtonian potential is used
in calculating V(r). (A color version of this figure is available in
the online journal.)
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Figure 3.2: Same as Fig. 3.1, except for the case (dζ/dr)c < 0.

the wave propagation diagram shown in Figs. 3.1-3.3. For B = 0, the effective

potentials reduce to those shown in TL08. In the upper panels of Figs. 3.1-3.3, we

see that for small magnetic fields (withωAφ ≪ Ω), the effective potential profile is

not affected much by the B-field except near the corotation. The blow-ups in the

bottom panels show that the toroidal magnetic field splits the CR into two MRs,

the inner magnetic resonance (IMR) and outer magnetic resonance (OMR), one

on each side of the CR. A larger toroidal field (see the long-dashed lines) gives a

wider radial separation between the MRs and a shallower potential well around

rc. Note that independent of the sign of (dζ/dr)c, there always exists an effective

wave zone centered around corotation point and bounded by the two MRs.

Far away from the resonances (the regions on the left and right sides of the
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Figure 3.3: Same as Fig. 3.1, except for the case (dζ/dr)c > 0.

upper panels of Figs. 3.1-3.3), the WKB dispersion relation (3.36) reduces to (see

Terquem 2003; Fu & Lai 2009)

ω̃2
= κ2 + k2

r (c2
s + v2

Aφ). (3.45)

This describes fast magnetosonic waves modified by the disc rotation. Thus the

spiral density waves (inertial-acoustic waves) inside the ILR and outside the

OLR are inertial-fast magnetosonic waves.

The behavior of the effective potential around the MRs is more difficult to

analyze. The IMR and OMR are separated from the CR by the distance

rmr − rc ≃ ±
(

2ωs

3mΩ

)

rc, (3.46)

(the upper sign is for the OMR and the lower sign for the IMR). Because of the
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Figure 3.4: Numerical values of f2+ and f2− [see Eq. (3.47)] as a function
of the dimensionless ratio vAφ/(rΩ) (evaluated at r = rc), which
specifies the toroidal magnetic field strength in the disc. Di-
mensionless units are adopted, where G = M = rc = 1, m = 2,
and cs/(rΩ) ≪ 1. Different line types represent different disc
density and magnetic field profiles.

complexity of the equations involved, no simple analytical expression for V(r)

can be derived, even in the asymptotic limit (e.g., ω̃ → ±ωs and vAφ/rΩ ≪ 1).

Nevertheless, a careful examination of Eqs. (3.21)-(3.24), (3.30)-(3.31), (3.34) and

numerical calculation of V(r) show that in the neighborhood of the MRs, the

effective potential can be written in the following form:

V(r) = f0 +
f1

ω̃2 − ω2
s

+
f2+

(ω̃ − ωs)2
+

f2−
(ω̃ + ωs)2

, (3.47)

where f0, f1, f2± vary slowly around the CR/MRs region. Thus, the effective

potential is dominated by second-order singularities at the MRs, i.e., V(r) ∝
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(r − rmr)−2 (see Figs. 3.1-3.3). The coefficients f2± can be calculated numerically,

and some examples of how f2+ and f2− depend the magnetic field strength are

shown in Fig. 3.4. We see that in dimensionless units (with G = M = rc = 1,

m = 2 and cs ≪ rΩ, vAφ ≪ rΩ), both f2+ and f2− are negative and approximately

equal to −2. Thus, near one of the MRs (e.g., the OMR), we have k2
r = −V(r) ∼

2/(ω̃ − ωs)2 ∼ 0.2/(r − rmr)2, or kr ∼ 0.4/|r − rmr|. Since k2
r is smaller than |dkr/dr|,

the WKB analysis is not really valid near the MRs. On the other hand, close to

the CR radius (r = rc), we have V(r) ∼ −4/ω2
s , which implies kr ∼ 2ω−1

s . Since the

separation between the IMR and OMR is 2ωs/3Ω (for m = 2), we find that the

WKB phase variation across the CR region (but avoiding the MRs) is of order

unity. Therefore, despite the deep effective potential at the MRs, physically there

is not much a wave zone around the MRs/CR region. This feature is borne out

in our numerical calculations of global wave modes presented in Sec. 5.

It is worth noting with the second-order singularities associated with the

MRs, the B → 0 limit is approached in a non-trivial way. From Fig. 3.4, we see

that as the magnetic field decreases, f2+ and f2− reach the same values (≃ −2.25).

Thus the singularities associated with f2+/(ω̃ − ωs)2 and f2−/(ω̃ + ωs)2 simply

become 1/ω̃2 as B → 0. On the other hand, f1 can be written as f1 = f10ω̃
0
+

f11ω̃ + f12ω̃
2
+ · · ·, with f1i being near constant around the MRs. As B → 0, we

have f10 + f2+ + f2− = 0, and the second-order singularity term (∝ 1/ω̃2) in V(r)

disappears. What is left is the term f11/ω̃, a first-order singularity associated

with the CR in a non-magnetic disc. Evidently, as B → 0, f11 is proportional to

the vortensity gradient, dζ/dr.
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3.3.3 Discs with pure vertical magnetic fields

Before examining the case of mixed magnetic fields, it is useful to consider discs

with pure vertical fields. Here we assume that Bz is constant (independent of r)

to simplify the analysis. The coefficients Ai j of the wave equations (7.18)-(7.19)

are

A11 = −
c2

s

c2
s + v2

A

d ln ρ
dr
− 2mΩ

rω̃
− 1

r
, (3.48)

A12 = −
1

c2
s + v2

A

+
m2

r2ω̃2
, (3.49)

A21 = ω̃
2 − κ2 −

c2
sv

2
A

c2
s + v2

A

(

d ln ρ
dr

)2

, (3.50)

A22 = −
v2

A

c2
s + v2

A

d ln ρ
dr
+

2mΩ
rω̃
. (3.51)

We then have

C1 = −
d
dr

ln

(

A21

rρ

)

, (3.52)

C0 = −
D

c2
s + v2

A

− m2

r2
− 2mΩ

rω̃

(

d
dr

ln
Ωρλ

A21

)

+
m2

r2ω̃2

c2
sv

2
A

c2
s + v2

A

(

d ln ρ
dr

)2

−
v2

A

c2
s + v2

A

(

d ln ρ
dr

) (

d ln(A21/r)
dr

)

+
d
dr

(

v2
A

c2
s + v2

A

d ln ρ
dr

)

, (3.53)

where

λ = (c2
s − v2

A)/(c2
s + v2

A) (3.54)

and D = κ2 − ω̃2. The resulting effective potential reads

V(r) =
D

c2
s + v2

A

+
m2

r2
+

2mΩ
rω̃

(

d
dr

ln
Ωρλ

A21

)

+ S 1/2 d2

dr2
S −1/2

− m2

r2ω̃2

c2
sv

2
A

c2
s + v2

A

(

d ln ρ
dr

)2

+
v2

A

c2
s + v2

A

(

d ln ρ
dr

) (

d ln(A21/r)
dr

)

− d
dr

(

v2
A

c2
s + v2

A

d ln ρ
dr

)

,

(3.55)
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Figure 3.5: Effective potential around the corotation/magnetic resonance
region for a disc with mixed magnetic fields (solid line). The
dotted line shows V(r) for the case with a pure toroidal field.
The corotation resonance (CR), inner/outer magnetic (slow)
resonances (IMR and OMR) and inner/outer Alfvén reso-
nances (IAR and OAR) are indicated. Note that the MRs rep-
resent second-order singularities in V(r), while the ARs (which
exist only for the mixed field case) are first-order singularities.

where S = A21/ (rρ). Compared with the V(r) in the B = 0 case, we see that a

constant vertical field does not split the CR. However, in contrast to the first-

order corotation singularity (1/ω̃) in the B = 0 case, the CR in discs with Bz , 0

manifests mainly as a second-order singularity (∼ 1/ω̃2).
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3.3.4 Discs with mixed magnetic fields

For a disc with mixed magnetic fields, the expression for the effective potential

V(r) is more complicated than the pure toroidal field case. In Fig. 3.5, we show a

sketch of V(r) when both Bz and Bφ are non-zero. We see that in addition to the

two MRs (IMR and OMR) (already present in the pure toroidal field case), two

Alfvén resonances (ARs) appear when ω̃ = ±mωAφ. Since mωAφ > ωs, these ARs

lie farther away from the corotation radius than the MRs, at the distance

rar− rc = ±
(

2ωAφ

3Ω

)

rc. (3.56)

Unlike the MRs, the ARs are first-order singularities of the wave equation, i.e.,

V(r) ∝ 1/(ω̃ − mωAφ) ∝ 1/(r − rar) near the ARs.

3.4 Super-Reflection of the Corotation Barrier

As shown in Sec. 3, away from the CR/MRs/ARs region, the WKB dispersion

relation is simply

ω̃2
= κ2 + k2

r (c2
s + v2

A). (3.57)

Thus waves can propagate either inside the ILR (where ω̃ = −κ) or outside the

OLR (where ω̃ = κ), and the region between the ILR and OLR represents the

“corotation barrier”, where waves are evanescent except for various possible

singularities associated with the CR/MRs/ARs. We will be interested in the

wave modes trapped between the disc inner edge and ILR. As in the hydrody-

namic (B = 0) case, the growth rates of such p-modes depend directly on the

wave reflectivity of the corotation barrier (TL08, LT09).
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Consider launching a density wave δh ∝ exp(−i
∫ r

krdr) from a radius inside

the ILR (r < rILR) (assuming kr > 0; the minus sign arises from the fact that group

velocity and phase velocity have different signs where r < rILR, see TL08). The

wave carries negative energy since its pattern speed ω/m is smaller than back-

ground rotation rate Ω. When the wave impinges on the corotation barrier, it

is partly bounced back as a reflection wave δhR ∝ R exp(i
∫ r

krdr), which carries

negative energy, and partly transmitted through the evanescent zone and trav-

els beyond the OLR as a transmission wave δhT ∝ T exp(i
∫ r

krdr), which carries

positive energy. R and T are reflection and transmission coefficients, respec-

tively (see TL08). Let the net absorption of wave energy at the CR, MRs and

ARs beDabs. Energy conservation then implies

|R|2 = 1+ |T |2 +Dabs. (3.58)

Obviously, wave transmission through the corotation barrier (the |T |2 term) al-

ways tends to increase |R|2 beyond unity. However, the resonant wave absorp-

tion termDabscan be either positive or negative.

3.4.1 Non-magnetic Discs

TL08 showed that, for a B = 0 barotropic disc, the wave super-reflection (|R|2 −

1) is dominated by the corotational wave absorption, which depends on the

dimensionless parameter

ν =

(

cs

pκ
d
dr

ln ζ

)

c

=
2
3
β

(

σ − 3
2

)

, (3.59)

where ζ is the vortensity [see Eq. (3.44)], β, p and σ are defined by β = cs/(rΩ),

Ω ∝ r−p and ρ ∝ r−σ (around the CR), respectively, and the subscript “c” im-

plies that the quantity is evaluated at r = rc. The second equality in Eq. (3.59)
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assumes (Newtonian) Keplerian discs (p = 3/2). Importantly, the corotational

wave absorption is proportional to ν or dζ/dr. This can be understood from the

fact that for ν > 0 (ν < 0), the Rossby zone lies outside (inside) rc (see Figs. 3.1-

3.3), implying a positive (negative) wave energy absorption. Thus, if neglecting

|T |2, we have

|R| − 1 ∝ ν ∝
(

dζ
dr

)

c

. (3.60)

Tsang & Lai (2009b) further generalizes the analysis to non-barotropic flows

with radial stratification, in which case an effective vortensity (which depends

on the radial entropy profile of the disc) plays a similar role as ζ.

3.4.2 Numerical calculations of reflectivity

For discs with magnetic fields, we are not able to derive analytical expressions

for the reflectivity. Thus we calculate R numerically.

For definiteness, we consider a (Newtonian) Keplerian disc with

Ω = κ ∝ r−3/2, ρ ∝ r−σ, Bφ ∝ Bz ∝ rq,
cs

rΩ
= β, (3.61)

where σ, q and β are constants. The strength of the field is characterized by

the ratio bφ = vAφ/(rΩ) and bz = vAz/(rΩ), evaluated at rc. We choose the wave

frequency ω = ωr + iωi, with 0 < ωi ≪ ωr. The transmitted wave outside the

OLR takes the form

δh ∝ A exp

(

i
∫ r

kr dr

)

, (3.62)

where kr > 0 is given by Eq. (3.36) or approximately by Eq. (3.45), and A(r)

can be obtained from Eq. (3.32) with η ∝ k−1/2
r . Thus the boundary condition at

rout > rOLR is

dδh
dr
|rout
= δh

(

ikr + A′/A
)

|rout
, (3.63)
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Figure 3.6: Reflection coefficient as a function of ν for a Newtonian Kep-
lerian disk. Different lines represent different magnetic field
strengths, measured by the dimensionless parameters bφ =
(vAφ/rΩ)c and bz = (vAz/rΩ)c. The other parameters are m = 2,
Bφ ∝ Bz ∝ rq with q = 0 and β = cs/(rΩ) = 0.1. The parameter ν
is defined according to Eq. (3.59).

where A′ = dA/dr. Starting from r = rout, we integrate Eqs. (7.18)-(7.19) inwards

to a radius inside the ILR. At r = rin < rILR, the wavefunction has the form

δh ∝ A

[

exp

(

−i
∫ r

kr dr

)

+ R exp

(

i
∫ r

kr dr

)]

. (3.64)

The reflectivity R can then be extracted from the equation

|R| =
∣

∣

∣

∣

∣

(−ik + A′/A)δh − δh′
(ik + A′/A)δh − δh′

∣

∣

∣

∣

∣

rin

. (3.65)

In practice, at rin (rout) sufficiently inside rILR (outside rOLR), the A′/A term can be

dropped since kr ≫ |A′/A|.

Figure 3.6 shows the numerical results of the reflection coefficient as a func-

tion of ν, defined by Eq. (3.59). For B = 0, our result recovers that obtained
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by TL08. We see even a relatively weak (sub-thermal, with vAφ <∼ cs) toroidal

field can significantly affect the reflectivity. As the magnetic field increases, the

reflectivity decreases regardless of the sign of ν. A finite vertical field has a sim-

ilar effect, although it is sub-dominant compared to the toroidal field effect. We

will show in the following section that this result is consistent with the stability

property of global disc p-modes.

3.5 Global P-Modes of Black-Hole Accretion Discs

In this section, we present our calculations of the global non-axisymmetric p-

modes in BH accretion discs. Recall that for a nonmagnetic disc, these are the

inertial-acoustic modes partially trapped between the inner disc edge (at rin =

rISCO) and the ILR. For a disc with finite magnetic fields, these become inertial-

fast magnetosonic waves.

We employ the standard shooting method (Press et al. 1992) to solve

Eqs. (7.18)-(7.19) for the complex eigenfrequency ω = ωr + iωi. The boundary

condition at rout > rOLR is the outgoing-radiative condition discussed in Sec. 3.4.2

[see Eq. (3.63)]. At the inner boundary rin = rISCO, we apply a free surface bound-

ary condition,

∆h = ∆Π/ρ = 0, (3.66)

i.e., the Lagrangian perturbation of the total pressure vanishes. This boundary

condition corresponds to a idealized situation in which no wave energy is lost

at the inner disc radius. As discussed in LT09 (and references therein), the inner

edge of a real BH disc is more complicated and may involve wave energy loss

due to radial infall of the accreting gas. Since our focus here is to understand
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how disc magnetic fields affect the corotational instability, we will adopt the

simple boundary condition (3.66) for all the numerical calculations presented in

this section.

As mentioned in Sec. 2, we use the Paczynski-Wiita pseudo-Newtonian po-

tential [Eq. (3.26)] to mimic the GR effect. The disk density profile and magnetic

field profile take the power-law forms

ρ ∝ r−σ, Bφ ∝ Bz ∝ rq. (3.67)

The thermal effect and the magnetic field effect are characterized by the dimen-

sionless parameters

β =
cs

rΩ
, bφ =

vAφ

rΩ
|rin
, bz =

vAz

rΩ
|rin
, (3.68)

with β being constant.

The angular momentum flux carried by the wave across the magnetized disc

is given by (e.g. Pessah et al. 2006)

F(r) = πr2ρRe(δvrδv
∗
φ) −

1
4

r2Re(δBrδB
∗
φ), (3.69)

where ∗ denotes complex conjugate. The first and second terms in (3.69) are

related to the Reynolds stress and Maxwell stress, respectively. The solution of

Eqs. (7.18)-(7.19) gives ξr(r) and δh(r). The expressions for δvr, δvφ, δBr and δBφ

can be derived from the original linearized perturbation equations (3.1)-(3.3):

δvr = −iω̃ξr, (3.70)

δvφ =















− κ
2

2Ω
−

mω2
Aφ

ω̃
+

mv2
Aφ

rω̃
A11















ξr +















m
rω̃
+

mv2
Aφ

rω̃
A12















δh, (3.71)

δBr =
imBφ

r
ξr, (3.72)

δBφ =

(

−q
Bφ
r
− A11Bφ

)

ξr − A12Bφδh. (3.73)
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3.5.1 Results for discs with pure toroidal magnetic fields

Figure 7.5 gives an example of the eigenfunctions for overstable p-modes in

magnetized BH accretion discs. For comparison, the corresponding results for

a B = 0 disc are also shown. Clearly, with a small B field (bφ ≪ 1), the wave-

functions away from the corotation/magnetic resonances (CR/MRs) are only

slightly modified. The wave action is still trapped in the inner disc region.

The most noticeable effects occur near the MRs, where both δh and δvr expe-

rience significant variations. In this example, the B = 0 disc has dζ/dr > 0

at the CR, so that corotational wave absorption leads to a mode growth rate

ωi ≃ 0.0027Ωin. The inclusion of a small toroidal B field, bφ = 0.01[corresponding

to (vAφ/rΩ)c = 0.0175], however, reduces the mode growth rate to ωi ≃ 0.0018Ωin.

Note that the disc sound speed in the example is cs = 0.1rΩ, so the bφ = 0.01

corresponds to (vAφ/cs)c = 0.175.

The origin of the diminished mode growth rate due to magnetic fields can

be understood by examining the angular momentum flux carried by the wave

modes. Figure 7.6 gives some examples. We see that in the B = 0 case, there is a

jump of the angular momentum flux across the CR,

∆F = F(rc−) − F(rc+), (B = 0). (3.74)

The fact that ∆F > 0 implies a positive wave energy (angular momentum) ab-

sorbed at the CR [i.e., Dabs > 0 in Eq. (3.58)]; this leads to super-reflection and

is the main driver for the overstability of hydrodynamic p-modes. For discs

with a finite Bφ, the CR is split into two MRs (the IMR and OMR), and we

see from Fig. 7.6 that significant flux jumps occur at both the IMR and OMR.

The flux jump at the IMR, ∆FIMR = F(rIMR−) − F(rIMR+), is negative, imply-

ing a negative angular momentum absorption. The flux jump at the OMR,

61



Figure 3.7: Example wavefunctions of m = 2 p-modes in BH accretion
discs. The disc density profile is ρ ∝ r−1 (i.e., σ = 1) and the
sound speed is cs = 0.1rΩ (i.e., β = 0.1). The left columns are
for a B = 0 disc, with the eigenvalue ω = (0.9324+ i0.0027)Ωin

(where Ωin is the disc rotation rate at r = rin = rISCO); the right
panels are for a disc with bφ = (vAφ/rΩ)in = 0.01 [corresponding
to (vAφ/rΩ)c = 0.0175] (with Bφ independent of r, i.e., q = 0),
with ω = (0.9312+ i0.0018)Ωin. In each subfigure, the upper
panels show different variables as a function of r in the full
fluid zone. The solid and dotted lines depict the real and imag-
inary parts, respectively. The bottom panels zoom in the region
near the corotation resonance, with the vertical lines indicat-
ing the locations of the CR (left) and magnetic slow resonances
(right). The vertical scales of the wavefunctions are arbitrary,
with δh(rout) = 1.
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Figure 3.8: Angular momentum flux carried by the wave as a function of
r. The disc parameters are σ = 1, q = 0 and β = 0.1, and
the wave modes have m = 2. Panel (a) shows the result of a
B = 0 disc [with the mode frequency ω = (0.9324+ i0.0027)Ωin]
with the vertical line indicating the corotation resonance. Panel
(b) is for a magnetized disc with bφ = 0.01 [corresponding to
(vAφ/rΩ)c = 0.0175] [left column; with ω = (0.9312+ i0.0018)Ωin]
or bφ = 0.015 [corresponding to (vAφ/rΩ)c = 0.026)] [right col-
umn; withω = (0.93+i0.00065)Ωin]. The solid and dotted curves
show the total angular momentum flux and the flux carried by
the fluid motion only (the Reynolds stress), respectively. The
bottom panels are the blow-up of panel (b) near the magnetic
resonances whose locations are indicated by the two vertical
lines.

∆FOMR = F(rOMR−) − F(rOMR+), however, is positive, implying a positive angu-

lar momentum absorption. The net angular momentum jump across the MRs

region is then

∆F = F(rIMR−) − F(rOMR+) = ∆FIMR + ∆FOMR. (3.75)

Note that although both |∆FIMR | and |∆FOMR| are much larger (by orders of mag-

nitude) than ∆F in the B = 0 case, the net jump ∆F is smaller for discs with finite

Bφ. As Bφ increases, |∆FIMR | and |∆FOMR| both decrease, and ∆F becomes smaller

and may even change sign (See Fig. 3.9). This decrease of wave absorption at
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Figure 3.9: The net angular momentum flux jump across the two magnetic
resonances (upper panel) and the mode growth rate (lower
panel) as a function of the dimensionless toroidal magnetic
field strength bφ = (vAφ/rΩ)in. The solid lines are for disc sound
speed cs = 0.1rΩ, and the dashed line in the lower panel is for
cs = 0.05rΩ. The other parameters are the same as in Figs. 7.5
and 7.6: m = 2, σ = 1, q = 0.

the MRs due to finite magnetic fields results in a reduced or even diminished

super-reflection (see Sec. 4), leading to a reduction of the growth rate and even

stabilization of disc p-modes.

Figure 3.9 shows the p-mode growth rate as a function of bφ and the corre-

sponding net angular momentum jump across the CR/MRs region. Obviously,

the decrease of ∆F with increasing bφ directly correlates with the decrease of the

mode growth rate. Note that when ∆F is zero or slightly negative, the p-mode

still has a finite growth rate. This is because wave transmission across the coro-

tation barrier always tends to increase the reflectivity [see Eq. (3.58)], thereby
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Figure 3.10: Frequencies of the m = 2 p-modes as a function of the di-
mensionless toroidal magnetic field strength, (vAφ/rΩ)c, with
the upper and lower panels showing the real and imaginary
parts, respectively. Different curves correspond to different
values of q = d ln Bφ/d ln r (i.e., the slope of Bφ profile) and
sound speed cs. The disc density profile is ρ ∝ r−1, i.e. σ = 1.

promoting the the mode growth. With a further increase of bφ, the mode growth

becomes completely suppressed. For example, for discs with cs = 0.1rΩ, the an-

gular momentum absorption at the CR/MRs change sign at bφ = 0.0132, while

the mode growth rate becomes zero at bφ ≃ 0.017 , or (vAφ/cs)in ≃ 0.17 [corre-

sponding to (vAφ/cs)c = 0.3]. For discs with cs = 0.05rΩ, the mode growth rate

vanishes at bφ ≃ 0.01, or (vAφ/cs)in ≃ 0.2 [corresponding to (vAφ/cs)c = 0.34].

Figure 3.10 shows the real and imaginary parts of the m = 2 mode frequency

as a function of the dimensionless field strength vAφ/(rΩ) (evaluated at rc) for

different disc sound speeds and different values of q (measuring the slope of Bφ).

Clearly, for such a small field strength, the real mode frequency is approximately
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Figure 3.11: Frequencies of the m = 2 p-modes as a function of the di-
mensionless vertical magnetic field strength, (vAz/rΩ)c, with
the upper and lower panels showing the real and imagi-
nary parts, respectively. Different curves correspond to dif-
ferent values of the disc toroidal fields. Note that the real
mode frequency depends weakly on the magnetic field (for
the range of field strength considered), thus bφ = 0.01 corre-
sponds to (vAφ/rΩ)c ≃ 0.0175and bφ = 0.015 corresponds to
(vAφ/rΩ)c ≃ 0.026. The other disc parameters are: σ = 1, q = 0
and cs = 0.1rΩ.

independent of Bφ and q, since the propagation zone of the wave mode is hardly

modified by the magnetic field. The mode growth rate, however, is significantly

affected because of the modification to the CR. Not surprisingly, Im(ω) depends

on Bφ mainly through the ratio (vAφ/rΩ)c.

3.5.2 Results for discs with mixed magnetic fields

The effects of vertical magnetic fields and mixed fields on the disc p-mode

growth rate are illustrated in Fig. 3.11 and Fig. 3.12. We see that the real mode
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Figure 3.12: The angular momentum flux carried by wave modes as a
function of radius in a BH accretion disc with mixed mag-
netic fields. The bottom panel is the zoom-in of the upper
panel near the resonances. The dotted curves are for a disc
with a pure toroidal field, while the solid curves are for a
disc with both toroidal and vertical fields. The short-dashed
vertical lines indicate the inner and outer magnetic slow res-
onances (IMR and OMR). The dot-dashed vertical lines rep-
resent the corotation resonance (CR). The long-dashed verti-
cal lines (very close to the short-dash lines) indicate the in-
ner/outer Alfvén resonances (IAR and OAR) which only ex-
ist in the mixed field case. Note that the mode frequency in
the bz = 0 case is different from the bz = 0.01 case, thus there
is a slight shift in location of the MRs and CR between the
two cases. Note that bφ = 0.01 and bz = 0.01 correspond to
(vAφ/rΩ)c = (vAz/rΩ)c = 0.0176. The other disc parameters are:
σ = 1, q = 0 and cs = 0.1rΩ.
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frequency depends very weakly on the field strength unless vA becomes com-

parable to or larger than cs. The solid line in Fig. 3.11b shows that for the pure

vertical field case, the p-mode growth rate decreases with increasing Bz. This is

consistent with our finding in Sec. 4.2 that a finite Bz tends to reduce the reflec-

tivity (see Fig. 3.6). When the toroidal field is also included, we see the similar

trend (see the dotted and dashed lines). Thus both vertical and toroidal mag-

netic fields tend to suppress the corotational instability. The effect of the toroidal

magnetic field is somewhat larger that the vertical field, given that the required

toroidal field strength Bφ to completely suppress the mode growth is smaller

than the required Bz. This is understandable since the p-modes have no vertical

structure (with kz = 0), and fluid motion in the disc does not directly bend the

vertical field lines.

In Fig. 3.12, we compare the angular momentum flux profiles for the pure

toroidal field case and the mixed field case. From the upper panel of this figure

we see that for the mixed field case, the net flux jump across the resonance zone

is smaller than the pure toroidal field case. This explains the somewhat smaller

mode growth rate (ωi/Ωin = 0.0017) for the mixed field case as compared to

the pure toroidal field case (ωi/Ωin = 0.0018). Note that the real part of the

eigenfrequency is also modified slightly by the vertical field. This gives rise to

the shift of “plateau” in the bottom panel of Fig. 3.12.

3.6 Summary

The main finding of this chapter is that overstable non-axisymmetric p-modes

tend to be stabilized by disc magnetic fields. This implies that, in order for p-
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modes to explain HFQPOs observed in black-hole X-ray binaries, the disc mag-

netic field must be sufficiently weak (with the magnetic pressure appreciably

less than the thermal pressure) so that the corotational instability is not com-

pletely suppressed. Alternatively, some other mode excitation mechanisms are

needed. One possibility could be mode excitations by turbulent viscosity (see

Kato 2001 for a general discussion of viscous driving of disc oscillation modes)

or by vorticity perturbations associated with the turbulence (see Heinemann &

Papaloizou 2009). Another possibility could be the accretion-ejection instabil-

ity studied by Tagger et al. (see Tagger & Pellat 1999; Varniere & Tagger 2002;

Tagger & Varniere 2006), which involves large-scale equipartition vertical mag-

netic fields threading a thin disc embedded in a vacuum or a tenuous corona.

Whether these other possible excitation mechanisms can compete with the sta-

bilizing effects of the internal disc magnetic fields remains to be studied. Nev-

ertheless, our finding is limited by the fact that the disc model we considered

is essentially an infinite cylinder without vertical structure, whereas in reality

disc background (density, magnetic field, etc.) varies in vertical direction. More

realistic disc models certainly need to be investigated in future studies.

Finally, we note that although in this chapter we have studied the role of

magnetic fields in the context of black-hole diskoseismic oscillations and QPOs,

the dynamical effects of magnetic fields on the corotation resonance examined

here are quite general. Our finding in this chapter suggests that dynamical in-

stabilities in other rotating astrophysical flows where the corotation resonance

plays an important role may be significantly affected by magnetic fields. Exam-

ples include the Papaloizou-Pringle instability in accretion tori and the global

rotational instability in differentially rotating stars. We will study some of these

issues in separate chapters (Chapters 6 and 7).
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CHAPTER 4

COROTATIONAL INSTABILITY IN BLACK-HOLE ACCRETION DISCS:

NONLINEAR SIMULATIONS

4.1 Introduction

In Chapter 3, we have presented detailed linear theory of a global,

non-axisymmetric hydrodynamic/hydromagnetic instability in thin, two-

dimensional disks. In the hydrodynamic case, the disk becomes unstable when

the vortensity gradient at the corotational radius is positive. In this chapter,

we use two-dimensional hydrodynamic simulations to investigate the nonlin-

ear evolution of corotational instability.

4.2 Numerical Setup

The disk is assumed to be inviscid and geometrically thin so that the hydrdy-

namical equations can be reduced to two-dimension with vertically integrated

quantities. We adopt an isothermal EOS P = c2
sΣ throughout this study, where

P is the vertically integrated pressure, Σ is the surface density and cs is the con-

stant sound speed. Self-gravity and magnetic fields are omitted.

We use the Paczynski-Witta Pseudo-Newtonian potential (Paczynski & Witta

1980) to mimic the GR effect:

Φ = − GM
r − rS

, (4.1)

where rS = 2GM/c2 is the Schwarzschild radius. The corresponding Keplerian
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rotation frequency and epicyclic frequency are

ΩK =

√

GM
r

1
r − rS

, (4.2)

κ = Ω

√

r − 3rS

r − rS
. (4.3)

In our compuation, we will adopt the units such that the inner radius (at the

Inner-most Stable Circular Orbit or ISCO) of the disc is at r = 1.0 and the Kepe-

rian frequency at the ISCO is ΩK = 1. In these dimensionless units, rs = 1/3,

and

ΩK =
2
3

1
r − rs

1
√

r
. (4.4)

Our computation domain extends from r = 1.0 to r = 4.0 in th radial direction

and from φ = 0 to φ = 2π in the azimuthal direction. We also use the Keplerian

orbital period (T = 2π/ΩK = 2π) at r = 1 as the unit for time. The equilibrium

state of the disk is axisymmetric. The surface density profile has a simple power-

law form

Σ0 = r−1, (4.5)

and the equilibrium rotation frequency of the disk is given by the force balance

in radial direction

Ω0 =

√

4/9
r(r − 1/3)2

−
c2

s

r2
. (4.6)

Throughout our simulation, we will consider cs = 0.1 so that Ω0 ≃ ΩK .

We solve the Euler equations with the PLUTO code 1 (Mignone et al. 2007),

a Godunov-type code with multiphysics and multialgorithm modules. For this

study, we choose a Runge-Kutta scheme (for temporal integration) and piece-

wise linear reconstruction (for space integration) to achieve second order accu-

racy, and Roe solver as the solution of Riemann problems. The gird resolution

1publicly available at http://plutocode.ph.unito.it/
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Figure 4.1: Evolution of the radial velocity amplitude |ur| (evaluated at r =
1.1) for three runs with initial azimuthal mode number m = 2
(left panel), m = 3 (middle panel) and random m (right panel).
The blue dashed lines are the fits for the exponential growth
stage (between ∼ 10and ∼ 30 orbits) of the mode amplitude.

we adopt is (Nr ×Nφ) = (1024×2048)so that each grid cell is almost square. Each

one of our runs lasts 100 orbits (Keplerian orbits at inner disk boundary) and

takes about 10 hours on 64 CPUs. To compare with the linear calculations (Lai

& Tsang 2009), the inner disk boundary is reflective with zero radial velecity. At

the outer disc boundary, we adopt the outgoing wave radiative boundary con-

dition. This is implemented using the wave damping method (de Val-Borro et

al. 2006) to reduce wave reflection at the outer boundary.

4.3 Results

In general, we carry out simulations with two different types of initial condi-

tions for the surface density perturbation. In the first types of runs, we choose

δΣ(r, φ) = Random(r, φ) to be purely random noise; in in the second types of runs,

we impose δΣ(r, φ) = Random(r) cos(mφ) so that it has an initial azimuthal mode

number m. In all cases, the initial surface density perturbation has a small am-

plitude ( |δΣ/Σ0| ≤ 0.0001at r = 1).
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Figure 4.2: Comparison of radial profiles of velocity perturbations from
non-linear simulation and linear mode calculation. The top
and bottom panels show the normalized radial and azimuthal
velocity perturbations, respectively. And the left and right pan-
els are for cases with azimuthal mode number m = 2 and m = 3,
respectively. In each panel, the green line is taken from the real
part of the complex wavefunction obtained in linear mode cal-
culation, while the blue line is from points with fixed φ = 0.4π
at T = 20 orbits, i.e., during the exponential growth stage of
non-linear simulation.
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Table 4.1: Comparison of results from linear and nonlinear studies of un-
stable disk p-mode

ma ωr
b ωi

c ωr/mΩd ωr1
e |ωr − ωr1|/ωr

f ωr2
g |ωr2 − ωr1|/ωr2

h

2 1.4066 0.0632 0.7033 1.3998 0.5% 1.4296 2.1%

3 2.1942 0.0733 0.7314 2.1997 0.3% 2.2445 2.0%

4 3.0051 0.0763 0.7512 2.9996 0.2% 3.0594 2.0%

5 3.8294 0.0751 0.7659 3.7995 0.8% 3.8886 2.3%

6 4.6621 0.0714 0.7770 4.6494 0.3% 4.7749 2.6%

7 5.5007 0.0664 0.7858 5.4992 0.03% 5.6756 3.1%

8 6.3436 0.0607 0.7930 6.3492 0.09% 6.3189 0.5%

a Azimuthal mode number

b Mode frequency from linear calculation (in units of Keplerian orbital fre-

quency at inner disk boundary; same for ωi and ν)

c Mode growth rate from linear calculation

d Ratio of wave pattern speed to the Keplerian orbital frequency at inner

disk boundary

e Mode frequency during the exponential growth stage of nonlinear simu-

lation (peak frequency of the power density between ∼ 10 orbits and ∼ 30

orbits)

f Difference between ωr (linear result) and ωr1 (nonlinear result)

g Mode frequency during the saturation stage of nonlinear simulation (peak

frequency of the power density between ∼ 30 orbits and ∼ 100orbits)

h Difference between ωr1 and ωr2
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Figure 4.1 shows the evolution of the radial velocity amplitude at near the

inner disc radius for runs with initial azimuthal mode number m = 2, m = 3 and

random m. This velocity amplitude is obtained by searching for the maximum ur

at a given r by varying φ. We see that in all cases there are three different stages

for the amplitude evolution. The first stage occupies roughly the first 10 orbits,

during which the initial perturbation starts to affect the flow and presumably

excites many modes/oscillations in the disc. In the second stage which runs

from ∼ 10 orbits to ∼ 30 orbits, the fastest growing mode becomes dominant

and undergoes an exponential growth with its amplitude increasing by about

5 orders of magnitude. In the last stage (beyond ∼ 30 orbits), the perturbation

growth saturates and its amplitude remains at approximately the same level. A

fit to the exponential growth stage gives the growth rate of the fastest growing

perturbation. For the m = 2 run, we find 0.17/ log10(e)/2π ≃ 0.0637(in units of

the orbital frequency at rin) as the growth rate, which is quite consistent with the

result from our linear eigenmode calculation (Lai & Tsang 2009; Fu & Lai 2011a),

ωi ≃ 0.0632(the imaginary part of the eigenfrequency). For the m = 3 run, our

simulation gives 0.074as the mode growth rate, clsoe to the value 0.0733from

the linear calculation. In Fig. 4.5, we plot the radial profile of velocity perturba-

tion at a fixed φ coordinate from the exponential growth stage of the simulation.

And we compare it with the wavefunctions obtained from linear mode calcu-

lation. Note that in each panel of Fig. 4.5 we have normalized different sets of

data to make sure they have the same scale. We can see that wavefunctions ob-

tained from two studies also agree quite well. This agreement plus the growth

rate in Fig. 4.1 affirms that our non-linear simulations capture accurately the the

same unstable modes predicted from the linear perturbation analysis.

To explore the time variability of the perturbation, we carry out Fourier
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Figure 4.3: Power density spectra of the radial velocity perturbations near
the disk inner boundary. Each panel shows the normalized
FFT magnitude as a function of frequency. The left and right
columns are for runs with initial m = 3 and random m, respec-
tively. In the top and bottom rows, the Fourier transforms are
sampled for time periods of [10, 30] orbits and [30, 100] orbits,
respectively.

transform of the radial velocity ur(r, φ, t) at fixed r and φ for different time seg-

ments. In Fig. 4.3 we show some example of the resulting power density spectra

(normalized to the maximum value of unity). Different rows correspond to dif-

ferent total sampling times and different columns represent runs with different

initial surface density perturbation. In the left column, the disk undergoes an

initial perturbation with a fixed azimuthal mode number m = 3. A mixture

of different modes/oscillations are excited in the flow. After another 10 orbits

of evolution, one of them (the fastest growing mode) has its oscillation ampli-
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tude grew by a large amount such that it dominates over other modes. This

corresponds to the primary spike in the top-left panel. The rest spikes in the

same panel are simply harmonics of this primary spike. Table 4.1 shows that

the frequency2 of this fastest growing mode (ωr1) is different from the frequency

obtained in linear mode calculation by only 0.3%, which again demonstrates the

consistency of these two studies. After the perturbation saturates (bottom-left

panel), we see that the basic structure of the power density spectrum does not

vary much except spikes are not as clean as before probably due to the inter-

action of different modes. The location of the primary spike (ωr2 in Table 4.1)

increased slightly by 2.0%. In Table 4.1 we also include the results from both

linear mode calculation and numerical simulation for modes with other mode

number m. The comparison illustrates two points: Firstly, the frequencies of

the fastest growing modes during the exponentially growth stage of numeri-

cal simulations are different from the linear calculation results by less than 1%;

Secondly, the frequencies of the fastest growing modes during the saturation

stage are only slightly higher (except for m = 8 mode) than ones during the ex-

ponential growing stage. These imply that the mode frequencies obtained in

linear mode calculation are quite robust and can be reliably applied to explain

the observed HFQPOs.

In the right column of Fig. 4.3, the simulation starts with a random initial

perturbation (i.e., mixture of modes with different m). During the exponential

growth stage, there are four prominent modes (four spikes) in the flow, whose

mode number are m = 3, 4, 5, and 6, respectively. They happen to be the modes

with highest growth rates based on linear mode calculations (Table 4.1). Their

frequencies do not change much in the saturation regime, and more modes

2All the frequencies in this chapter are angular frequencies unless otherwise noted.
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Figure 4.4: Power density spectra of the radial velocity perturbations near
the disk inner boundary. Each panel shows the normalized FFT
magnitude as a function of azimuthal mode number m. The left
and right columns are for runs with initial m = 3 and random
m, respectively. In top and bottom rows, the time point for FFT
are 30, and 100orbits, respectively.

show up in the disk.

To explore the azimuthal variability of the perturbation, we do Fourier trans-

form of radial velocity perturbation near the disk inner boundary at different

time points of the simulation. Fig. 4.4 shows the normalized FT magnitude

|F(m)|2 as a function of azimuthal mode number m where F(m) is computed as

follows

F(m) =
∫ 2π

0
e−imφur(1.1, φ, t)dφ. (4.7)

In the left column, we see the fastest growing mode dominates in the expo-
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Figure 4.5: Evolution of radial profiles of velocity perturbations from non-
linear simulations. The top and bottom panels show the ra-
dial and azimuthal components of velocity perturbation, re-
spectively. And the left and right panels are for cases with az-
imuthal mode number m = 2 and m = 3, respectively. In each
panel, the data are all taken from points with fixed φ = 0.4π.
Different line colors represent different time points during the
simulation.

nential growth stage. Modes with frequencies that are simply harmonics of the

primary frequency also exist in the disk. After saturation, interactions between

these modes bring out other modes with all kinds of m. In the right column,

the simulation starts with random initial perturbation. This means a mixture of

modes with different m start to grow with approximately the same initial ampli-

tude. Yet they have different growth rates. At the end of the exponential growth
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stage, the modes with higher growth rates stand out.

Fig. 4.5 shows the comparison of wavefunctions during the mode growing

stage (T = 20 orbits) and at the end of the growing stage (T = 30 orbits) for

simulations with different initial perturbations. At T = 20 orbits, the oscillation

mainly comes from the single fastest growing mode and takes a smooth radial

profile. At T = 30 orbits, perturbation starts to saturate, oscillation now con-

sists of many different modes, and its radial profile exhibits sharp variations at

several places which may be the sites of shock formations.

To see this evolution from a different point of view, in Fig. 4.6 we show the

color contour of redial velocity for runs with different initial perturbations (dif-

ferent columns) at different time points (different rows). Very visibly we see the

spiral feature gradually appears and develops, as the system evolves it becomes

less and less smooth, and more sharper variations emerges (compare the second

row with the fourth row). We suspect this might indicate the formation of shock

waves and may have something to do with the perturbation saturation. At the

end (the last row) the spiral arms becomes fairly irregular which we think are

related to the emergence and interaction of many modes with multiple values

of m (see fig. 4.4).
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Figure 4.6: Evolution of radial velocity for runs with initial m = 2 (left),
m = 3 (middle) and random m (right), respectively. From top
row to bottom row, the time points are 10, 20, 30, 40 and 100
orbits, respectively. Note that the color scale varies from panel
to panel.
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CHAPTER 5

DYNAMICS OF THE INNERMOST ACCRETION FLOWS AROUND

COMPACT OBJECTS: MAGNETOSPHERE-DISC INTERFACE, GLOBAL

OSCILLATIONS AND INSTABILITIES

5.1 Introduction

In this chapter, we study global non-axisymmetric oscillation modes and in-

stabilities in magnetosphere-disc systems, as expected in the innermost accre-

tion flows in neutron star X-ray binaries and possibly also in accreting black

bole systems. Our two-dimensional magnetosphere-disc model consists of a

Keplerian disc in contact with an uniformly rotating magnetosphere with low

plasma density. Two types of global modes exist in such systems, the interface

modes and the disc inertial-acoustic modes, both of which can become unstable.

We examine various physical effects and parameters that influence the proper-

ties of these oscillation modes, particularly their growth rates, including the

magnetosphere field configuration, the velocity and density contrasts across the

magnetosphere-disc interface, the rotation profile (Newtonian vs General Rel-

ativistic), sound speed and magnetic field of the disc. The interface modes are

driven unstable by Rayleigh-Taylor and Kelvin-Helmholtz instabilities, but can

be stabilized by the toroidal field (through magnetic tension) and disc differ-

ential rotation (through finite vorticity). General relativity increases the their

growth rates by modifying the disc vorticity outside the magnetosphere bound-

ary. The interface modes may also be affected by wave absorption associated

with corotation resonance in the disc. In the presence of a magnetosphere, the

inertial-acoustic modes of a relativistic disc are effectively trapped at the inner-
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Figure 5.1: Schematic description of the cylindrical magnetosphere-disc
model considered in this chapter. The thick black line on the
left represents the central compact object. Right next to it is
a region of low density plasma threaded by both vertical and
toroidal magnetic fields. The disc (on the right) consists of fluid
of high density (compared to the magnetosphere) and zero or
weak magnetic field. These two regions are separated by a thin
interface/boundary layer.

most region of the disc just outside the interface. They are driven unstable by

wave absorption at the corotation resonance, but can be stabilized by modest

disc magnetic fields. The overstable oscillation modes studied in this chapter

have characteristic properties that make them possible candidates for the high-

frequency quasi-periodic oscillations observed in X-ray binaries.

5.2 Equilibrium and Perturbation equations

We consider a magnetosphere-disc model similar to the one in Tsang & Lai

(2009b). It consists of a magnetosphere region where magnetic pressure domi-

nates over gas pressure and a disc region which has high density compared to

the magnetosphere (see Fig. 5.1). These two regions are separated by an inter-
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face (boundary layer). Unlike Tsang & Lai (2009b), who considered only vertical

magnetic field for the magnetosphere, we take into account both vertical and

toroidal fields. In the disc region, gas pressure dominates over magnetic pres-

sure. Since any initial poloidal field is likely to generate a dominating toroidal

field due to the disc differential rotation, for simplicity we take the disc to be

threaded by toroidal B field only. We assume that flows in both regions are

non-self-gravitating, satisfying the usual ideal MHD equations

∂ρ

∂t
+ ∇ · (ρv) = 0, (5.1)

∂v
∂t
+ (v · ∇)v = −1

ρ
∇Π − ∇Φ + 1

4πρ
(B · ∇)B, (5.2)

∂B
∂t
= ∇ × (v × B), (5.3)

where ρ, P, v are the fluid density, pressure and velocity, Φ is the gravitational

potential due to the central compact object, and

Π ≡ P +
B2

8π
(5.4)

is the total pressure. The magnetic field B also satisfies the equation ∇ · B = 0.

We adopt the cylindrical coordinates (r, φ, z) which are centered on the

central object and have the z-axis in the direction perpendicular to the disc

plane. The unperturbed background disc has a velocity field v = rΩ(r)φ̂,

and the magnetic field may consist of both toroidal and vertical components

B = Bφ(r)φ̂ + Bz(r) ẑ. The gravitational acceleration in radial direction is defined

as

g =
dΦ
dr

(5.5)

so that −∇Φ = −gr̂ and g = rΩ2
K > 0, where ΩK is the angular frequency for a test

mass (the Keplerian frequency). Thus the radial force balance equation reads

ρg = ρrΩ2 − dΠ
dr
−

B2
φ

4πr
. (5.6)
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To investigate the dynamical properties of the flow, we perturb the MHD

Eqs. (7.13)-(7.15) by rewriting any physical variable f as f + δ f with |δ f | ≪ | f |.

Since the unperturbed state is axisymmetric and steady, we consider all per-

turbation variables having the form δ f ∝ eimφ−iωt, with m being the azimuthal

mode number and ω the wave frequency. Note that the background flow and

magnetic field have no z-dependance and we assume that the perturbations also

have no z-dependance. The resulting linearized perturbation equations contain

the variables δv, δρ, δP, δΠ and δB. For mathematical convenience, we define a

new variable

δh =
δΠ

ρ
=
δP
ρ
+

B · δB
4πρ

. (5.7)

Moreover, using ∆v = δv + ξ · ∇v = dξ/dt = −iωξ + (v · ∇)ξ, we find that the

Eulerian perturbation δv is related to the Lagrangian displacement vector ξ by

δv = −iω̃ξ − rΩ′ξrφ̂, where prime denotes radial derivative and

ω̃ = ω − mΩ, (5.8)

is the Doppler-shifted wave frequency. In the next two subsections, we will

combine the perturbations equations into two first-order differential equations

(ODEs) in terms of ξr and δh for the magnetosphere region and the disc region,

respectively.

5.2.1 The magnetosphere

In the magnetosphere region (r < rin), the flow is assumed to be incompressible

and have uniform density (ρ is constant). For this particular magnetized fluid

system, the detailed linearized perturbation equations have been given in Fu &
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Lai (2011b). Here we just display the final two ODEs for ξr and δh:

dξr
dr
= A11ξr + A12δh, (5.9)

dδh
dr
= A21ξr + A22δh, (5.10)

where

A11 = −
1
r

ω̃2 − 2mω̃Ω + m2ω2
Aφ

ω̃2 − m2ω2
Aφ

, (5.11)

A12 =
m2

r2
, (5.12)

A21 = ω̃
2 − m2ω2

Aφ − 2rΩ
dΩ
dr
+

(

2
d ln Bφ
d ln r

− 1

)

ω2
Aφ − 4

(ω̃Ω + mω2
Aφ)

2

(ω̃2 − m2ω2
Aφ)
, (5.13)

A22 =
2m
r

ω̃Ω + mω2
Aφ

ω̃2 − m2ω2
Aφ

, (5.14)

and ωAφ ≡ vAφ/r = Bφ/(r
√

4πρ) is the toroidal Alfvén frequency. Note that al-

though we assume low plasma density for the magnetosphere, we still require

that density is not too low in order to keep Alfvén speed far less than the speed

of light. Otherwise, our original MHD equations break down (e.g., Lovelace,

Romanova & Newman 2010). Also note that Eqs. (5.9) and (5.10) are the same

as Eqs. (119) and (120) (derived for a purely toroidal magnetic field) of §83 in

Chandrasekhar (1961). The vertical magnetic field Bz does not appear in our

perturbation equations because we assumed kz = 0, i.e., vertical field lines are

not perturbed.

Defining σ2
= ω̃2 − m2ω2

Aφ, we can further combine Eqs. (5.9) and (5.10) into

one single equation

ξ′′r +
d
dr

ln(r3σ2)ξ′r +
1− m2

r2
ξr = 0. (5.15)

Two special cases are of interest:
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(i) For systems with Bφ = 0, Eq. (5.15) reduces to

ξ′′r + (
3
r
− 2mΩ′

ω̃
)ξ′r +

1− m2

r2
ξr = 0, (5.16)

or equivalently

W ′′
+

W ′

r
− m2

r2

[

1− r
mω̃

d
dr

(

κ2

2Ω

)]

W = 0, (5.17)

where W = rδvr and

κ =

[

2Ω
r

d
dr

(r2
Ω)

]1/2

(5.18)

is the radial epicyclic frequency. Note that Eq. (5.17) recovers Eq. (12) in Tsang

& Lai (2009b). For either uniform rotation profile [Ω = const, κ = 2Ω, thus

(κ2/2Ω)′ = 0] or uniform angular momentum profile (Ω ∝ r−2, thus κ = 0), it has

the same simple solution

W ∝ rm or δvr ∝ rm−1. (5.19)

The corresponding solution for ξr is

ξr ∝ rm−1 if Ω = const; ξr ∝
rm−1

ω − mΩ(r)
if Ω ∝ r−2. (5.20)

(ii) In the special case of Ω = const and Bφ ∝ r so that ωAφ ∝ Bφ/r
√
ρ is

constant (note that we have assumed constant density in the magnetosphere),

[ln(r3σ2)]′ in Eq. (5.15) reduces to [ln(r3ω̃2)]′. Therefore magnetic fields in

Eq. (5.15) (which enters through term σ2) completely disappear and the equa-

tion is exactly the same as the one for Ω = const and Bφ = 0. So the solutions

for the magnetosphere region in this case are also ξr ∝ rm−1, δh ∝ rm and the re-

lation between these two wavefunctions can be obtained by substituting them

back into Eqs. (5.9)-(5.10). Our calculations will focus on this particular magne-

tosphere setup.
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5.2.2 The disc

In the disc region (r > rin), we assume the flow is barotropic so that δP = c2
sδρ

with cs =
√

dP/dρ being the sound speed, which will be parameterized by a

constant ĉs ≡ cs/(rΩ) in our computation. For concreteness, we will also assume

a power-law disc density profile ρ ∝ r−p with p being a constant. For simplicity,

we take the disc toroidal magnetic field to be uniformly distributed, i.e., Bφ =

const. From Eq. (5.6), we obtain the disc rotation profile as

Ω(r) =
ΩK(r)

√

1+ pĉ2
s

. (5.21)

The perturbation equations in component form can also be presented in the

same form as Eqs. (5.9) and (5.10) with the detailed expressions of A11, A12, A21

and A22 given in Fu & Lai (2011a). For a non-magnetic disc, these equations

reduce to

dξr
dr
=

[

−2mΩ
rω̃
− d ln(rρ)

dr

]

ξr +

(

m2

r2ω̃2
− 1

c2
s

)

δh, (5.22)

dδh
dr
= (ω̃2 − κ2)ξr +

2mΩ
rω̃
δh. (5.23)

5.2.3 The interface

In the equilibrium state, pressure balance at the interface reads

Pm + Pbz + Pbφ = Pd, (5.24)

where Pm, Pbz and Pbφ are the magnetosphere gas pressure, magnetic pressure of

Bz and magnetic pressure of Bφ just inside the interface, respectively, while Pd is

the disc total pressure just outside the interface. This equality imposes an upper

limit on the strength of the magnetosphere toroidal B field, Pbφ/Pd < 1. Defining
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b = (ωAφ)|rin/Ωd and µ = (ρd − ρm)/(ρd + ρm), where Ωd is the disc rotation rate at

the interface, ρm and ρd are the fluid densities of the magnetosphere and the disc

at the interface, respectively, then the above inequality becomes

Pbφ

Pd
≃ (1− µ)b2

(1+ µ)2ĉ2
s

(5.25)

Note that in the magnetosphere, magnetic pressure dominates over gas pressure

(Pbz + Pbφ ≫ Pm). So Pbφ/Pd ≃ Pbφ/(Pbφ + Pbz) approximately characterizes the

relative strength of the toroidal field compared to the vertical field.

In the perturbed state, we demand that both the radial Lagrangian displace-

ment ξr and the Lagrangian perturbation of total pressure ∆Π = δΠ + ξrΠ
′ be

continuous across the interface. The latter of these requirements yields

ρm

[

δh + ξrr(Ω2 −Ω2
K − ω2

Aφ)
]

rin−
= ρd

[

δh − ξrrpĉ2
sΩ

2
]

rin+
. (5.26)

In the magnetosphere, we have the analytical solutions for δh (∝ rm) and ξr (∝

rm−1) (see Sec. 2.1), which are related via

δh =
r
m

[

ω̃2
+ 2ω̃Ω + m(2− m)ω2

Aφ

]

ξr. (5.27)

We substitute this relation into the left hand side of Eq. (7.59) and consolidate

it with another requirement (continuity of ξr) to obtain the matching condition

across the interface

(ω − mΩm)[ω − (m − 2)Ωm]
m

+ Ω
2
m =

1+ µ
(1− µ)rin

δh
ξr
+

[

1−
2µpĉ2

s

1− µ
+ (m − 1)b2

]

Ω
2
d,

(5.28)

where δh and ξr are disc solutions at the interface, Ωm and Ωd are the rotation

rates of the magnetosphere and the disc at the interface, respectively. In the

case of Bφ = 0 in the magnetosphere, this matching condition reduces to Eq. (22)

in Tsang & Lai (2009b). Note that Eq. (5.28) has no explicit dependence on the

disc magnetic field. This has to do with the fact that we chose an uniformly

distributed disc B field.
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5.3 Interface modes: Newtonian potential

Li & Narayan (2004) and Tsang & Lai (2009b), who considered incompress-

ible and compressible discs respectively, have shown that interface modes of

magnetosphere-disc boundary can be subject to Rayleigh-Taylor and/or Kevin-

Helmholtz instabilities, depending on the density contrast and velocity shear

across the interface. In order to investigate the effects of magnetosphere toroidal

magnetic fields on these instabilities, in this section we assume the disc region

to be magnetic-field free and employ the standard shooting method (Press et al.

1992) to solve Eqs. (5.22)-(5.23) using the matching condition Eq. (5.28) as the in-

ner boundary condition at rin and outgoing wave condition (Tsang & Lai 2009b)

at the outer boundary of the disc (rout). The complex mode frequency ω can then

be determined as an eigenvalue of the system. Note that in general we also

need to apply shooting method in the magnetosphere region (see Appendix A),

but for the specific magnetic field profile (and uniform rotation) of the magneto-

sphere we chose in this study, the perturbation equations in the magnetosphere

have simple analytic solutions (see §2.2) and the effect of magnetosphere on

the interface modes is embodied by the interface matching condition (i.e, inner

boundary condition for disc perturbation equations).

In our computation, we use p = 1.5, ĉs = 0.15, and put the outer boundary

at rout = 2.85rin. We vary the strength of magnetosphere toroidal magnetic field

b (therefore Pbφ/Pd; Eq. [5.25]) for different sets of (Ωm/Ωd, ρm/ρd) to see how

the eigenvalue ω will be modified. Throughout this section, we use Newtonian

potential Φ = −GM/r, so that the Keplerian frequency is ΩK = (GM/r3)1/2, and

the epicyclic frequency κ equals Ω.
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Figure 5.2: The wavefunctions for the unstable interface mode with m = 4,
ρm/ρd = 1/99, Ωm/Ωd = 1 in a magnetosphere-disc system with-
out (left) and with (right) magnetosphere toroidal magnetic
field, respectively. The vertical long-dashed lines mark the po-
sition of the interface which separates magnetosphere region
and disc region. The solid and dotted lines represent the real
and imaginary parts of the wavefunctions, respectively.

5.3.1 Numerical solutions

Fig. 7.5 shows two example wavefunctions for the unstable interface mode. The

left panel depicts the case with no toroidal magnetic field in the magnetosphere

(but keep in mind that there is always finite vertical B field) while in the right

panel the magnetosphere has a non-zero Bφ. Since there is no velocity shear

across the boundary in both cases (Ωm/Ωd = 1), the instability is of Rayleigh-

Taylor type. We see that the addition of toroidal field has a small effect on the

eigenfunction. However, as the numbers in the figure indicate, the growth rate

of the unstable mode is reduced by more than 50% (from 0.256Ωd to 0.11Ωd)

even though the the toroidal magnetic field pressure is only 10% of the disc gas

pressure (both evaluated at the interface), i.e. even though the toroidal field is
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Figure 5.3: Real and imaginary parts of the wave frequencies (in units of
Ωd, the disc rotation rate at the interface) for unstable interface
modes as a function of magnetosphere toroidal magnetic field
strength. The top and bottom panels are for the cases without
and with velocity shear at the interface, respectively, while the
left and right panels depict models with the magnetosphere to
disc density ratio being 1/99 and 1/9, respectively. Different
line types are associated with different values of m, with the
solid lines for m = 1, dotted lines for m = 2, short-dashed lines
for m = 3, long-dashed lines for m = 4, and dot-dashed lines for
m = 5.
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much weaker than vertical field in the magnetosphere.

The suppressing effect of toroidal magnetic field on the instability can be

more easily seen in Fig. 7.3, where we plot the real and imaginary parts of

the eigen-frequencies for the interface mode as a function of Bφ. We consider

four different sets of (Ωm/Ωd, ρm/ρd) such that the panels in the same row have

the same velocity shear but different density contrast while the panels in the

same column have the same density contrast but different velocity shear. The

modes in the top two panels are subject to Rayleigh-Taylor type instability as

there are no velocity shear at the interface. The bottom two panels, however,

have non-zero velocity shear, thus are subject to instabilities of both Rayleigh-

Taylor and Kelvin-Helmholtz types. In all cases, we observe that the inclusion

of toroidal magnetic fields can significantly diminish the growth rate of the

unstable modes, even completely kill the instability. The critical Bφ for abso-

lute shutdown of unstable modes depends on the detailed interface parameters

(sound speed in the disc, velocity shear, density contrast, etc.). In the case with

the most unstable modes (bottom-right panel) that we have calculated, the re-

quired Pbφ/Pd to fully turn off the mode growth is close to one. This means

that the toroidal magnetic field needs to dominate over the vertical field in the

magnetosphere (remember that Pbφ/Pd ≃ Pbφ/(Pbφ + Pbz)). The mode frequencies

(real part of ω), on the other hand, are barely affected by Bφ (at least when the

growth rate is not very small). By comparing panels in the same column, we

see that increasing velocity shear at the interface leads to larger growth rates,

which is not surprising as more velocity shear means more free energy that the

system can tap on to drive the instability. Comparing panels in the same row

reveals an interesting features. We found that larger density contrasts leads

to smaller growth rates, which apparently contradicts the standard Rayleigh-
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Taylor instability result. In particular, the m = 1 mode is totally stable when

ρm/ρd = 1/99 while becomes unstable when ρm/ρd = 1/9 and Bφ does not affect

the m = 1 mode at all. Comparing different lines in each individual panel shows

that modes with larger m generally have larger growth rates, but they are also

more easily stabilized by the toroidal field.

5.3.2 Discussion of results

The zero effect of Bφ on the m = 1 mode (whether it is stable or unstable) can be

easily understood by looking at the matching condition Eq. (5.28). This equation

(i.e., inner boundary condition for disc equations) is the only place that Bφ affects

the eigenvalue problem, and the magnetic effect comes in via the last term on

the right hand side of the equation [(m−1)b2
Ω

2
d]. When m = 1, this term vanishes

so that the equation is the same as in the case with zero Bφ.

To explain the other features observed in Fig. 7.3, we carry out a local analy-

sis of the effects of magnetic fields on Rayleigh-Taylor/Kelvin-Helmholtz insta-

bility in a plane-parallel flow (see Appendix B). From the last term in the final

expression of wave frequency (Eq. [B.1]), we see that magnetic tension (k · B)

provides a suppressing force against Rayleigh-Taylor/Kelvin-Helmholtz insta-

bility of a two-layered fluid system. This is because extra work needs to be

done in order to increase the boundary layer deformation (i.e., growing pertur-

bation). Our cylindrical magnetosphere-disc model resembles the simple par-

allel two-layered flow in that our wavenumber in azimuthal direction m/r acts

like k in the x direction and our Bφ also lies along the direction of the wave vec-

tor. Thus, the same stabilizing mechanism also applies in our system, i.e., the
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tension force of the toroidal magnetic field suppresses the magnetosphere-disc

interface instability.

Qualitatively, the growth rate of interface modes in our system is deter-

mined by combined effects of four factors: density contrast (ρm/ρd), velocity

shear across the interface (Ωm/Ωd), degree of differential rotation in the disc, and

toroidal field of the magnetosphere. The first two tend to enhance instability,

while the latter two tend to suppress instability. In different limiting cases, ap-

proximate analytic expressions for the mode growth rate can be derived: Li &

Narayan (2004) considered a case where the disc is incompressible with con-

stant density and came up with their Eq. (45), while Tsang & Lai (2009b) stud-

ied a compressible disc whose density is much larger than the magnetosphere

density, and summarized the results in their Eqs. (26) and (28). Although for

the generic conditions studied in this chapter, an analytical expression cannot

be rigorously derived, we can write the mode growth rate schematically as fol-

lows:

ωi ∼
√

ω2
RT + ω

2
KH − ω2

vort − ω2
b (5.29)

with

ω2
RT ≃ 2(1+ µ)mΩ2

eff,d − 2(1− µ)mΩ2
eff,m, (5.30)

ω2
KH ≃ (1− µ2)m2(Ωd − Ωm)2

+ 2(1− µ2)m(Ωd −Ωm)(ζd − ζm), (5.31)

ω2
vort ≃ (ζd − ζm)2

+ 2µ(ζ2
d − ζ2

m) + µ2(ζd + ζm)2, (5.32)

ω2
b ≃

m2B2
φ

4πr2(ρd + ρm)
≃ (1− µ)m2ω2

Aφ/2, (5.33)

where rΩ2
eff = dΦ/dr − rΩ2 is the effective gravitational acceleration, ζ = κ2/(2Ω)

is the fluid vorticity and as before the subscripts d and m denote disc and mag-

netosphere, respectively. Several features can be noted in Eq. (5.29):

95



(i) The first two terms under the square root are the Rayleigh-Taylor and

Kelvin-Helmholtz types of destabilizing factors while the last two terms char-

acterize the stabilizing effects due to flow vorticity and toroidal magnetic field

in the magnetosphere, respectively. The suppressing effect of finite fluid vor-

ticity has been discussed in both Li & Narayan (2004) and Tsang & Lai (2009b).

We see that the various terms have different dependences on the density con-

trast µ. As µ increases (µ = 0 when ρm/ρd = 1, and µ = 1 when ρm/ρd = 0), ω2
RT

increases, making the system more Rayleigh-Taylor unstable; at the same time,

ω2
KH decreases, making the system less Kelvin-Helmholtz unstable. In addition,

ω2
vort also becomes larger, leading to stronger suppressing effect. This explains

why in Fig. 7.3, the mode with ρm/ρd = 1/99 is less unstable than the one with

ρm/ρd = 1/9.

(ii) Since Ω2
eff,d = (1/r)(dΦ/dr) − Ω2

= −(c2
s/ρ)(dρ/dr), when cs is too small

(i.e., small effective gravity in the disc), the destabilizing terms would not be

able to compete with the stabilizing terms, resulting in a stable system. Thus,

a sufficiently high disc sound speed is needed to attain the interface instability

(see Tsang & Lai 2009b).

(iii) When there is no Bφ, we see that ω2
RT and ω2

KH both depend on m while

ω2
vort does not. Thus, modes with higher m tend to be more unstable, as shown in

Fig. 7.3 (the Pbφ/Pd = 0 case; see also Li & Narayan 2004 and Tsang & Lai 2009b).

The m = 1 mode would be even less unstable if the density contrast is too big

[see (i) above]. This explains why in Fig. 7.3 the m = 1 mode with ρm/ρd = 1/99

is stable while the one with ρm/ρd = 1/9 is unstable.

(iv) When Bφ , 0, besides ω2
b, the magnetic field strength also appears in

ω2
RT where Ω2

eff,m contains a term that is proportional to −B2
φ/4πρmr2 (note the mi-

96



nus sign). This shows that the toroidal field in the magnetosphere plays two

different roles in determining the stability of system. On the one hand, the mag-

netic tension resists perturbation growth, thus suppressing any instability; on

the other hand, the magnetic force increases the effective gravity (pointing to-

wards the center) of the background flow, thus promoting Rayleigh-Taylor type

instability. The former effect is proportional to m while the latter to m2. Hence, in

general the suppressing effect is more important. This is consistent with the fact

that in Fig. 7.3 the growth rates of modes with higher m decrease more rapidly

as Bφ increases. As noted above, Bφ does not affect the m = 1 mode because the

last term in Eq. (5.28) vanishes for m = 1. Now we have a better understand-

ing of what this means physically: For the m = 1 mode, the aforementioned

two opposing effects associated with Bφ happen to cancel each other. This ex-

act cancellation, however, cannot be captured by the approximate expression

Eq. (5.29).

Overall, we see that Eq. (5.29), though schematic, is quite useful in explain-

ing most of the numerical results of this section. Note that various flow param-

eters, such as the density contrast µ, azimuthal mode number m, toroidal mag-

netic field Bφ and disc vorticity ζd, appear in more than one of the four terms in

this equation. Thus, they are associated with both the stabilizing and destabi-

lizing effects. The only exception is perhaps the velocity shear at the interface,

which always facilitates the interface instability.

Finally, we note that the interface instability associated with magnetosphere-

disc boundary studied in this chapter is qualitatively different from those of

Lubow & Spruit (1995) and Spruit, Stehle & Papaloizou (1995), who carried out

local analysis of a thin rotating disc threaded by a large-scale poloidal field.
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Lovelace, Romanova & Newman (2010) considered similar interface instability

as in our chapter, but they focused on small-scale modes and included only

vertical field in the magnetosphere.

5.4 Interface modes and Discoseismic modes: Pseudo-

Newtonian potential

In this section, we consider how the global oscillation modes in our disc-

magnetosphere system (Fig. 1) are modified by general relativistic (GR) effects.

In particular, GR changes the disc rotation profile ΩK(r) and makes the radial

epicyclic frequency κ(r) a non-monotonic function of r: As r decreases, κ first in-

creases, attains a maximum value and then falls to zero at the Innermost Stable

Circular Orbit (ISCO), rISCO = 6GM/c2 (for a non-spinning compact object). If the

inner disc boundary is close to rISCO, then this non-monotonic κ profile can have

two consequences: (1) It significantly reduces disc vorticity (κ2/2Ω) near the in-

ner disc boundary, therefore helps the unstable interface modes grow as there

are less disc vorticity suppressing effects (see the discussion in Section 5.3.2; see

also Tsang & Lai 2009b); (2) It could lead to a vortensity (κ2/2Ωρ a.k.a potential

vorticity) profile that has positive gradient in the inner disc region. As found

in our previous studies (Tsang & Lai 2008; Lai & Tsang 2009; Fu & Lai 2011a),

positive vortensity gradient renders the disc inertial-acoustic modes (p-modes)

unstable. In Section 5.3, we chose a density profile ρ ∝ r−3/2 so that the vorten-

sity profile (with the Newtonian potential) is completely flat, and thus we only

found unstable (overstable) interface modes. In this section, with the GR effect

included, both the interface modes and disc p-modes can be unstable and they
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co-exist in our disc-magnetoshere system. The main goal of this section is then

to study these two modes and the effects of the magnetosphere toroidal B field,

disc toroidal B field and inner disc boundary location.

We employ the pseudo-Newtonian potential (Paczynski & Wiita 1980) to

mimic the GR effect:

Φ = − GM
r − rS

, (5.34)

where rS = 2GM/c2 is the Schwarzschild radius. The corresponding Keplerian

rotation frequency and epicyclic frequency are

ΩK =

√

GM
r

1
r − rS

, (5.35)

κ = Ω

√

r − 3rS

r − rS
. (5.36)

Except for Section 5.4.3, we will take the magnetosphere-disc interface to be

located at the ISCO, rin = rISCO = 3rS.

5.4.1 Non-magnetic discs

We first consider the case where the disc outside the magnetosphere is non-

magnetic. We solve the same equations and use the same interface boundary

condition as in Section 3 except that we replace the Newtonian potential with

Pseudo-Newtonian potential.

Figure 5.4 shows the complex eigenfrequencies of disc inertial-acoustic

modes and interface modes as a function of the dimensionless magnetosphere

toroidal field strength Pbφ/Pd. The other parameters are indicated in the fig-

ure. As noted above, because of the GR effect, the disc vortensity profile has

a positive slope near the ISCO (see Fig. 5.5). The disc inertial-acoustic mode
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Figure 5.4: Real and imaginary parts of the wave frequencies (in units of
Ωd, the disc rotation rate at rin) for unstable inertial-acoustic
disc modes (left panels) and unstable interface modes (right
panels) as a function of the magnetosphere toroidal field
strength. Different line types represent different azimuthal
mode number m. The sound speed profile, density contrast
and velocity shear across the interface are the same as in the
bottom-left panel of Fig. 7.3. The only difference from Fig. 7.3 is
that GR effect (using pseudo-Newtonian potential) is included
in the disc rotation profile, which renders both types of modes
unstable. On the right panles, the vertical lines (for m = 2 and
3) mark the point when corotation resonance moves into the
flow (see Fig. 5.5).

(p-mode) of lowest radial order (for a given m) has Re(ω) < mΩd, and the coro-

tation resonance lies in the disc (see the right panels of Fig. 5.6 for an example).

Corotational wave absorption then makes these modes unstable. We see from

Fig. 5.4 that as long as there is a magnetosphere to serve as an inner boundary

condition for the disc mode, the mode frquency and growth rate depend rather

weakly on Pbφ/Pd.

The interface mode is also strongly influenced by the the GR effect. Com-

paring the right panels of Fig. 5.4 with the bottom-left panel of Fig. 7.3, we see
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Figure 5.5: Wave propagation diagram (upper panel) for both interface
modes and disc inertial-acoustic modes accompanied by the
disc vortensity profile (lower panel). In the upper panel, the
three thick solid curves depict the disc rotation profile Ω and
Ω ± κ/m, where m is the azimuthal mode number and κ is the
radial epicyclic frequency. Note that since κ(rISCO) = 0 these
three curves join each other at the Innermost Stable Circular
Orbit (which is also the disc inner boundary rin in our setup of
Sections 5.4.1 & 5.4.2). The dashed horizontal line marks the
point when the corotation radius [where Re(ω)/m = Ω] hap-
pens to be exactly at the inner disc boundary. For modes with
Re(ω)/m above this line, there is no corotation in the flow; for
any modes with Re(ω)/m below this line, the corotation exists
in the flow (rc > rin). Three types of wave modes (labeled as
I, II and III) are shown in this diagram where the horizontal
solid lines indicate the evanescent zones and the wavy curves
denote the wave propagation zones. Note that for both Type I
and II waves, there is also a tiny wave zone (hardly visible in
the figure) in the disc region just outside the ISCO. Type I and
II waves are both interface modes while type III waves are disc
inertial-acoustic modes. Note that the magnetosphere region
(r < rISCO) and the region between the inner and outer Lind-
blad resonances [where Re(ω)/m = Ω ± κ/m] are wave evanes-
cent zones.
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Figure 5.6: Wave functions for the three types of wave modes depicted
in Fig. 5.5: the interface mode with no corotation resonance
in the flow (Type I, left panels), interface mode with corota-
tion resonance in the flow (Type II, middle panles) and disc
inertial-acoustic mode (Type III, right panels). The azimuthal
mode number is m = 3 and all other parameters are the same in
Fig. 5.4. The solid and dotted lines show the real and imaginary
parts, respectively. In the middle and right panels, the vertical
dot-dashed lines represent the location of corotation resonance.

that for Pbφ = 0, the mode growth rate (for a given m) is larger when the GR

effect is included. Again, this is because in GR, the disc vorticity is smaller near

the ISCO, leading to less rotational suppression of the RT instability (see Sec-

tion 3.2). As Pbφ/Pd increases, the interface mode growth rate first decreases

(just as in the Newtonian case) due to magnetic tension, then starts to increase

beyond certain critical value of Pbφ/Pd (for a given m). This behaviour arises

from the effect of corotation resonance (see Fig. 5.5): For small Pbφ/Pd, the in-

terface mode has Re(ω) > mΩd, thus no corotation resonance exists in the flow;

as Pbφ/Pd becomes larger, the mode frequency drops below mΩd, and corota-

tion resonance comes into play, which overwhelms the suppression effect of the

magnetic tension (see the left and middle panels of Fig. 5.6 for two examples

of mode wavefunctions). The growth rate of such interface mode (labeled as

Type II in Fig. 5.5) is much larger than the coresponding disc p-mode because
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the corotation resonance lies much closer to rin for the interface mode than for

the p-mode – this gives rise to much stronger wave absorption at the corotation

resonance.

5.4.2 Magnetic discs

Now we consider the case in which the disc outside the magnetosphere has a

finite toroidal magnetic field. For simplicity, we take the limit that the density

in the magnetosphere ρm goes to zero. In this case, the interface boundary con-

dition Eq. (5.28) reduces to ∆Π = 0, i.e., the Lagrangian perturbation of total disc

pressure equals zero at rin. With this boundary condition, the setup is the same

as in Fu & Lai (2011a) and we only need to consider the dynamical equations

for the disc.

Again, two types of oscillation modes exist in our system (see Fig. 5.7): the

disc inertial-acoustic modes and interface modes. The effect of the disc magnetic

field on the inertial-acoustic modes has already been studied in detail by Fu &

Lai (2011a). We see from the left panels of Fig. 5.7 that the mode frequnecy is

only slightly modified by the disc Bφ, but the growth rate is reduced so that the

mode become stable even for modest (sub-thermal) disc toroidal fields.

The interface mode (the right panels of Fig. 5.7) was not considered by Fu &

Lai (2011a). We see that as the disc magnetic field increases, the mode frequency

varies modestly (about 10%) for a wide range of Bφ, but the growth rate changes

more significantly. The dependence of the growth rare as a function of disc Bφ

can be understood as follows: (i) For Bφ = 0, RT instability drives the mode

growth; (ii) As Bφ increases, the magnetic tension tends to suppress the growth;
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Figure 5.7: Real and imaginary parts of the wave frequencies (in units of
Ωd, the disc rotation rate at rin) for unstable inertial-acoustic
disc modes (left panels) and unstable interface modes (right
panels) as a function of the disc toroidal field strength. The
x-axis specifies the ratio of the Alfvén velocity to disc rotation
velocity at the inner boundary rin. The magnetosphere density
is set to zero. The disc parameters are rin = rISCO, m = 2, cs =

0.1rΩ and ρ ∝ r−1. For the interface mode (right panels), the
two dotted vertical lines from left to right mark the entering
of the outer magnetic resonance and inner magnetic resonance
into the flow, respectively.

(iii) As Bφ increases, the real mode frequency decreases. When Bφ exceeds some

critical value, corotation resonance appears in the flow (disc), and wave absorp-

tion at corotation then enhances the growth rate. But as Bφ increases further, the

corotation radius lies at a larger distance from rin, thus the corotational effect

becomes less important (because of the large evenacent zone separating rin and

the corotation radius) and the mode growth rate decreases again also because

of magnetic tension.

Concerning (iii) above, as noted in Fu & Lai (2011a), in the presence of the

disc toroidal magnetic field, the corotation resonance (where ω̃ = 0) is split into
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the inner/outer magnetic resonances, where

ω̃ = ±mωAφ, (5.37)

where ωAφ = vAφ/r = Bφ/(r
√

4πρ) is the toroidal Alfvén frequency of the disc.

When these magnetic resonances exist in the flow (disc), wave absorption comes

into play in the mode growth. Note that the signs of wave absorption at the two

magnetic resonances are different. As Re(ω) decreases (with increasing Bφ), the

outer magnetic resonance (where ω̃ = mωAφ) first enters the flow, causing the

mode growth rate to increase. When the inner magnetic resonance (where ω̃ =

−mωAφ) enters the flow, the wave absorptions at the two magnetic resonances

partially cancel, and the mode growth rate starts to decrease again (see the right

panels of Fig. 5.7). In this case, the term “corotation resonance” simply refers to

the combined effect of two magnetic resonances.

5.4.3 Effects of different inner disc radii

Here we consider the same setup as in Sections 5.4.1-5.4.2 except that the inner

disc boundary lies outside the ISCO. The motivation for considering rin > rISCO is

that in real accreting NS systems, the magnetosphere radius may well be outside

the ISCO (e.g., in accreting millisecond X-ray pulsars with surface magnetic field

of 108−9 G, the Alfvén radius is about 1.5-2 stellar radii). Also, in the “transitional

state” (when HFQPOs are observed) of BH X-ray binaries, the thin thermal disc

may be truncated at a radius slightly larger than the ISCO (e.g., Done et al. 2007;

Oda et al. 2010).

As in Section 5.4.2, we assume that the magnetosphere has a negligible den-

sity. Figure 5.8 shows an exmaple (for a non-magnetic disc) of how the (com-
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Figure 5.8: The real and imaginary parts of the wave frequencies (in units
of Ωd, the disc rotation rate at rin) for unstable inertial-acoustic
modes (left panels) and unstable interface modes (right panels)
as a function of the inner disc radius rin (in units of rISCO). The
magnetosphere inside rin has zero density and the disc toroidal
magnetic field is set to zero. The other disc parameters are m =
2, cs = 0.1rΩ and ρ ∝ r−1.

plex) mode frequencies depend on rin. When expressed in units of Ωd, the real

frquencies of both interface and inertial-acoustic modes are only modestly af-

fected by rin/rISCO, but the growth rates decrease rapidly with increasing rin/rISCO.

For the inertial-acoustic mode, this arises from the reduced vortensity slope at

distances further away from the ISCO, which results in smaller wave absorption

at corotation. For the interface mode, the larger vorticity just beyond rin leads

to a stronger rotational suppression of the RT instability, thus a smaller mode

growth rate.

Figure 5.9 shows how the complex frequency of the interface mode depends

on the disc magnetic field Bφ when the inner disc radius is set to 1.5rISCO. The

behaviour of the mode growth rate as a function of (vAφ/rΩ)in is similar to the
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Figure 5.9: Real and imaginary parts of the wave frequencies (in units of
Ωd, the disc rotation rate at rin) for unstable interface modes as
a function of the disc toroidal field strength, with the inner disc
boundary located at rin = 1.5rISCO. The x-axis specifies the ra-
tio of the Alfvén velocity to disc rotation velocity at rin. The
magnetosphere density is set to zero. The disc parameters are
rin = rISCO, m = 2, cs = 0.1rΩ and ρ ∝ r−1. The two dotted verti-
cal lines from left to right mark the entering of outer magnetic
resonance and inner magnetic resonance into the flow, respec-
tively.

right panels of Fig. 5.7. Here, the mode growth rate is small when Bφ = 0. So

when the outer magnetic resonance enters the flow, wave absoprtion dramati-

cally increases the mode growth rate.

5.5 Summary

In this chapter we have studied the non-axisymmetric MHD modes and insta-

bilities in a 2D model of magnetosphere-disc systems (see Fig. 1), as may be
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realized in accreting neutron star or black-hole X-ray binaries (see Section 5.1).

We have examined various physical effects and parameters that can influenece

the global modes in the system, including the density and magnetic field of the

magnetosphere, the velocity contrast across the magnetosphere-disc interface,

the rotation profile (Newtonian vs GR), temperature and magnetic field of the

disc. We restrict to modes that do not have vertical structure, but otherwise

our calculations include all possible instabilities and global oscillations associ-

ated with the interface and the disc. We highlight several key findings of this

chapter below.

5.5.1 Interface instabilities in a rotating, magnetized system

This chapter includes a comprehensive study of the large-scale Rayleigh-Taylor

(RT) and Kelvin-Helmholtz (KH) instabilities associated with the interface of

a rotating, magnetized system. RT and KH instabilities have been studied in-

tensively in plane-parallel flows through both theoretical analysis and labora-

tory experiments (e.g. Chandrasekhar 1961; Drazin & Reid 1981), and have

found applications in various astrophysical and space environments. But few

papers have focused on rotating systems (e.g., Spruit et al. 1995; Lovelace et

al. 2009, 2010). Our study generalizes previous works by Li & Narayan (2004)

and Tsang & Lai (2009b) by considering compressible fluid, magnetic field and

rotation profile of the disc, as well as generic field (poloidal and toroidal) con-

figuration of the magnetosphere.

As in plane-parallel flows, the interface modes are mainly driven unstable

by the RT and KH instabilities. Toroidal magnetic field tends to suppress the
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instabilities through magnetic tension. The magnetic field also indirectly affects

the RT instability by modifying the effective gravity. Except for the m = 1 mode,

for which the two opposite effects of Bφ cancel (as conjectured by Li & Narayan

2004), we find that increasing Bφ generally tends to reduce the growth rates of

the interface modes. Differential rotation (with finite vorticity) also tends to sup-

press the interface instability. To overcome this suppression effect, the disc must

have sufficiently large temperature (sound speed) (see Tsang & Lai 2009b). Gen-

eral relativity (GR) can significantly affects the growth rate of interface modes

because the disc rotation near the ISCO has smaller vorticity in GR than in New-

tonian theory.

Another qualitatively new finding of this chapter is that corotation reso-

nance can significantly influence the interface instabilities. As the toroidal field

strength in the magnetosphere or in the disc increases, the real frequency of the

interface mode falls below mΩd (where Ωd is the disc rotation rate at the inter-

face), and corotation resonance (or its generalization to magnetic resonances)

appears in the disc. Wave absorption at corotation can then significantly change

the interface mode growth rate (see Figs. 5.4, 5.7, 5.9).

5.5.2 Inertial-Acoustic Modes of relativistic Disc

Our model system (Fig. 1) also acomodates interial-acoustic modes (p-modes)

of relativistic discs. These modes are driven unstable primarily by wave absorp-

tion at corotation resonance. The magnetosphere-disc interface naturally serves

as the inner boundary for the disc. Our study in this chapter complements

our previous works (Lai & Tsang 2009; Tsang & Lai 2009c; Fu & Lai 2011a) by
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properly treating the inner boundary condition for disc oscillations. Our result

shows that the magnetosphere behaves as a robust “reflector” for spiral waves

in the disc: The p-mode frequency and growth rate do not depend sensitively

on the property (density, magnetci field) of the magnetosphere. In agreement

with Fu & Lai (2011a), we find that a modest disc toroidal field tends to reduce

the growth rate of disc p-modes.
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CHAPTER 6

PAPALOIZOU-PRINGLE INSTABILITY OF MAGNETIZED ACCRETION

TORI

6.1 Introduction

Hot accretion tori around a compact object are known to be susceptible to a

global hydrodynamical instability, the so-called Papaloizou-Pringle (PP) insta-

bility, arising from the interaction of non-axisymmetric waves across the coro-

tation radius, where the wave pattern speed matches the fluid rotation rate.

However, accretion tori produced in various astrophysical situations (e.g., col-

lapsars and neutron star binary mergers) are likely to be highly magnetized. In

this chapter, we study the effect of magnetic fields on the PP instability in in-

compressible tori with various magnetic strengths and structures. In general,

toroidal magnetic fields have significant effects on the PP instability: For thin

tori (with the fractional width relative to the outer torus radius much less than

unity), the instability is suppressed at large field strengths with the correspond-

ing toroidal Alfvén speed vAφ >∼ 0.2rΩ (where Ω is the flow rotation rate). For

thicker tori (with the fractional width of order 0.4 or larger), which are hydro-

dynamically stable, the instability sets in for sufficiently strong magnetic fields

(with vAφ >∼ 0.2rΩ). Our results suggest that highly magnetized accretion tori

may be subjected to global instability even when it is stable against the usual

magneto-rotational instability.
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6.2 Equilibrium Models

As mentioned above, the PP instability operates in modes with no vertical struc-

ture (kz = 0). As such, the dynamics can be captured by height-averaged fluid

equations. We consider a cylindrical shell (of finite width) of incompressible

non-self-gravitating fluid, which is rotating differentially in the external grav-

itational field produced by a central compact object. We adopt the cylindrical

coordinates (r, φ, z) with the z-axis being the rotation axis. The cylindrical shell

is assumed to be infinitely long in the z-direction and threaded by magnetic

fields. The fluid satisfies the ideal MHD equations:

∂u
∂t
+ (u · ∇)u = −1

ρ
∇Π − ∇Φ + 1

4πρ
(B · ∇)B, (6.1)

∂B
∂t
= ∇ × (u × B), (6.2)

∇ · B = 0, (6.3)

∇ · u = 0. (6.4)

Here, ρ is the constant fluid density, u the fluid velocity, B the magnetic field,

and Π = P + B2/8π the total pressure with P being the gas pressure. The gravi-

tational potential is Φ = −GM/r, where M is the mass of the central object. The

background flow velocity u = rΩ(r)φ̂ and magnetic field B = Bφ(r)φ̂ + Bz(r) ẑ

also depends only on r. For convenience, we assume the flow has a power-law

rotation profile

Ω(r) ∝ rp. (6.5)

The flow is confined between two boundaries (r1 ≤ r ≤ r2), where the gas

pressure vanishes (P|r1, r2 = 0). Outside the fluid zone is a vacuum devoid of

matter but maybe permeated with magnetic fields. In the equilibrium state, we
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assume that the magnetic field is continuous across the fluid boundaries so that

there is no surface electric current at r = r1, r2 (however, we allow for surface

current to develop when the fluid is perturbed). We will consider two models

of magnetic field structure.

6.2.1 Model (a)

In this model, we assume that there is an external current running vertically at

small radii much inside r1, giving rise to Bφ(r) ∝ r−1 in the inner region (r < r1).

There is no azimuthal current in this region, so Bz is constant. In the fluid zone,

we adopt a power-law magnetic field profile

Bφ(r) ∝ rq, Bz(r) ∝ rs, (6.6)

which means that both the azimuthal and vertical current densities are also of

power-law form. Outside the fluid zone (r > r2), there is no current. Hence,

Bφ(r) ∝ r−1, Bz(r) = const. The complete magnetic field profile is illustrated in

the upper two panels of Fig. 6.1.

Integrating the radial equilibrium equation

1
ρ

dΠ
dr
= −GM

r2
+ rΩ2 −

B2
φ

4πρr
, (6.7)

gives the gas pressure profile

P
ρ
=

GM
r
+

r2
Ω

2

2p + 2
− 1

2
v2

Az −
1
2

(

1+
1
q

)

v2
Aφ −C, (6.8)

where

vAz = Bz/
√

4πρ, vAφ = Bφ/
√

4πρ (6.9)
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Figure 6.1: The two magnetic field profiles adopted in the equilibrium
torus model.

are the Alfvén velocities and C is the integration constant. The location of gas

pressure maximum is determined by

d
dr

(P/ρ) = −GM
r2
− s

v2
Az

r
− (1+ q)

v2
Aφ

r
+ rΩ2

= 0, (6.10)

which defines a reference radius r0:

GM

r2
0

= r0Ω
2
0 − s

v2
Az(r0)

r0
− (1+ q)

v2
Aφ(r0)

r0
. (6.11)

Let C ≡ λGM/r0 with λ being a constant and use Eq. (6.11) to substitute GM in

Eq. (6.8), we can rewrite Eq. (6.8) in the dimensionless form

P
ρ
=

1
r
− λ + r2p+2

2p + 2
+ sv2

Az0

(

−1
r
+ λ − 1

2s
r2s

)

+ (1+ q)v2
Aφ0

(

−1
r
+ λ − 1

2q
r2q

)

, (6.12)

where

vAφ0 = vAφ(r0)/(r0Ω0), vAz0 = vAz(r0)/(r0Ω0). (6.13)

114



Here and hereafter we will use units such that r0 = Ω0 = 1. Once we specify p,

q, s, vAφ0, vAz0 and λ, we can determine the locations of the torus boundary by

solving P = 0. However, there are several constraints on these parameters:

(i) dP/dr = 0 only guarantees the extremum of the P(r) profile. To ensure

that we find a pressure maximum instead of minimum, we require d2P/dr2 < 0

at r = r0 = 1, which implies

2p + 3− s(1+ 2s)v2
Az0 − (1+ q)(1+ 2q)v2

Aφ0 < 0. (6.14)

This requirement reduces to p < −3/2 in the B = 0 limit.

(ii) Both sides of Eq. (6.11) need to be positive so that the gas pressure maxi-

mum exists. Thus

1− sv2
Az0 − (1+ q)v2

Aφ0 > 0. (6.15)

(iii) The maximum gas pressure Pmax must be positive. Thus, requiring the

RHS of Eq. (6.12) to be positive at r = 1 gives

λ <
1

1− v2
Az0 − 2v2

Aφ0

[

2p + 3
2p + 2

− 3
2

v2
Az0 − 3v2

Aφ0

]

, (6.16)

provided that Eq. (6.15) is satisfied.

Figure 6.2 illustrates some examples of Model (a). We specify the values of

p, q, s, vAφ0 and vAz0, then by varying λ, we obtain solutions for different torus

thickness. For a given ∆r/r2, both r1 and r2 change when vAφ0 changes as a result

of magnetic support in the torus. In the hydro limit (vAφ0 = vAz0 = 0), r1 ap-

proaches 0.5 as ∆r/r2 → 1. This feature is shown analytically in Pringle & King

(2007). For a finite field strength, we see that r1 → 0 and r2 → ∞ as ∆r/r2 → 1.

Note that for a relatively thin torus (∆r/r2 . 0.6), the differences of r2 and r1

between different field strengths are quite small. Since Bφ and Bz have similar
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Figure 6.2: Some examples of Model (a) with a pure toroidal magnetic field
(Bφ ∝ r in the fluid and Bz = 0) and constant angular momen-
tum distribution (Ω ∝ r−2). The x-axis is the relative thickness
of the torus with ∆r = r2 − r1 being the absolute width, and the
y-axis shows the locations of the two boundaries. The different
lines represent different values of vAφ0 = vAφ(r0)/(r0Ω0), as indi-
cated. The horizontal line indicates the location of gas pressure
maximum (r0 = 1).
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effects on the equilibrium structure (see Eq. [6.12]), these features also apply to

models with a finite vertical field. The special case of s = 0 and q = −1 is worth

mentioning: In this case, the magnetic field is force-free and has no effect on the

equilibrium structure 1.

6.2.2 Model (b)

The magnetic field profile in this case is shown in the bottom two panels of

Fig. 6.1. Compared with Model (a), the difference is that there is no vertical

current at small radius. Therefore the azimuthal field in the inner region (r < r1)

is zero. In the fluid zone, we assume Bz ∝ r and Bφ(r) ∝ r − r2
1/r such that

both azimuthal and vertical current densities are uniform. Following the same

procedure as in Section 6.2.1, we can derive the dimensionless expression for

gas pressure profile:

P
ρ
=

1
r
−λ+ r2p+2

2p + 2
+v2

Az0

(

λ − 1
r
− 1

2
r2

)

+v2
Aφ0

[(

λ − 1
r

)

1+ r2
1

1− r2
1

− 1

(1− r2
1)

2
(r2 − r2

1 − 2r2
1 ln r)

]

.

(6.17)

Similarly, for a viable equilibrium model to exist, the model parameters must

satisfy the following requirements:

2p + 3− 3v2
Az0 −

3+ r4
1

(1− r2
1)

2
v2

Aφ0 < 0, (6.18)

1− v2
Az0 −

1+ r2
1

1− r2
1

v2
Aφ0 > 0, (6.19)

λ <
1

1− v2
Az0 −

1+r2
1

1−r2
1
v2

Aφ0

(

2p + 3
2p + 2

− 3
2

v2
Az0 −

2+ r2
1

1− r2
1

v2
Aφ0

)

. (6.20)

1This is why in Curry & Pudritz (1996) the one-to-one mapping between r2/r1 and (r2− r0)/r2

remains unchanged for different uniform vertical B field strengths.
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6.3 MHD Equations for Perturbations

Assuming that the Eulerian perturbation of any physical variable f is of the

form δ f ∝ eimφ−iωt (with no dependance on z), the linearized perturbation equa-

tions are

1
r
∂

∂r
(rδur) +

im
r
δuφ = 0 (6.21)

−iω̃δur − 2Ωδuφ = −
1
ρ

∂δΠ

∂r
+

imBφ
4πρr

δBr −
Bφ

2πρr
δBφ (6.22)

−iω̃δuφ +
κ2

2Ω
δur = −

im
ρr
δΠ +

1
4πρ

(

∂

∂r
+

1
r

)

BφδBr +
imBφ
4πρr

δBφ (6.23)

−iω̃δuz =
imBφ
4πρr

δBz +
1

4πρ
dBz

dr
δBr (6.24)

−iω̃δBr = im
Bφ
r
δur (6.25)

−iω̃δBφ =
imBφ

r
δuφ − r

d
dr

(

Bφ
r

)

δur + r
dΩ
dr
δBr (6.26)

−iω̃δBz =
imBφ

r
δuz −

dBz

dr
δur, (6.27)

where ω̃ = ω−mΩ is the wave frequency in the co-rotating frame and the radial

epicyclic frequency κ is given by

κ2 =
2Ω
r

d
dr

(r2
Ω) = 2(p + 2)Ω2. (6.28)

Using ∆u = δu+ξ ·∇u = dξ/dt = −iωξ+(u·∇)ξ, we find that the Eulerian perturba-

tion δu is related to the Lagrangian displacement vector ξ by δu = −iω̃ξ − rΩ′ξrφ̂

(prime donates radial derivative) and we can further combine Eqs. (6.21)-(6.27)

into two equations for ξr (radial Lagrangian displacement) and δΠ/ρ:

dξr
dr
= A11ξr + A12

δΠ

ρ
, (6.29)

d
dr

(

δΠ

ρ

)

= A21ξr + A22
δΠ

ρ
, (6.30)

where

A11 = −
1
r

ω̃2 − 2mω̃Ω + m2ω2
Aφ

ω̃2 − m2ω2
Aφ

, (6.31)

118



A12 =
m2

r2
, (6.32)

A21 = ω̃
2 − m2ω2

Aφ − 2rΩ
dΩ
dr
+

(

2
d ln Bφ
d ln r

− 1

)

ω2
Aφ − 4

(ω̃Ω + mω2
Aφ)

2

(ω̃2 − m2ω2
Aφ)
, (6.33)

A22 =
2m
r

ω̃Ω + mω2
Aφ

ω̃2 − m2ω2
Aφ

, (6.34)

and ωAφ ≡ vAφ/r = Bφ/(r
√

4πρ) is the toroidal Alfvén frequency. Equations (6.29)

and (6.30) are the same as Eqs. (119) and (120) (derived for a pure toroidal mag-

netic field) in Chandrasekhar (1961).

Note that although we start with a mixed magnetic field B = Bφφ̂ + Bz ẑ, the

final Eqs. (6.29) and (6.30) do not contain Bz. The reason is that the z-component

only appears in Eqs. (6.24) and (6.27), which in fact can be decoupled from

the other five perturbation equations. Indeed, using Eq. (6.25) to replace δBr

in Eq. (6.24), and combining with Eq. (6.27), we find

(ω̃2 − m2ω2
Aφ)

(

δBz +
i
ω̃

dBz

dr
δur

)

= 0. (6.35)

In general, ω̃2 − m2ω2
Aφ , 0. Comparing the above equation with Eq. (6.27) we

have δuz = 0. This is to be expected since the perturbed quantities are assumed

to be independent of z. Also note that when the wave frequency ω is real, the

coefficients A11, A21 and A22 are singular at

ω̃2
= m2ω2

Aφ. (6.36)

We shall call them the Magnetic Resonances (MRs). Obviously, they reduce to

the corotation resonance when Bφ = 0.
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6.4 Boundary Conditions

In general, the boundary of any magnetized flow should satisfy the following

conditions:

[

ρun
]

= 0, (6.37)

[n · B] = 0, (6.38)
[

P + ρu2
n +

B2
t

8π

]

= 0, (6.39)

[

ρunut −
BnBt

4π

]

= 0, (6.40)

where n is a unit vector normal to the boundary surface, the subscript n and

t denote the normal and tangential components, and the square bracket repre-

sents the difference in a quantity across the boundary (e.g., Schmidt 1979; Shu

1992). For the system we study in this chapter, there is no radial background

flow, we only need to consider Eqs. (6.38)-(6.40) with un = 0. Obviously, with

the magnetic field continuous across the boundaries and with no radial field

component, our equilibrium models constructed in Sec. 2 already satisfy the

boundary conditions. In the perturbed state, the boundary conditions read

∆ [n · B] = 0, (6.41)

∆

[

P +
B2

t

8π

]

= 0, (6.42)

∆

[

BnBt

4π

]

= 0. (6.43)

Note that ∆[n · B] = [(∆n) · B] + [n · ∆B], and since both n and ∆n are the same

across the boundary 2, Eq. (6.41) simply becomes n · [∆B] = 0, where we have

used [B] = 0 (as assumed in our model setup). Since (∆B)r = (δB + ξ · ∇B)r =

2Note that in the non-axisymmetric case, the perturbed surface normal vector ∆n is not the
same as r̂; see Schmidt (1979) for a derivation of ∆n.
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δBr − ξφBφ/r, and both ξφ and Bφ are continuous across the boundaries, we find

[δBr] = 0. (6.44)

On the other hand, Eqs. (6.41) and (6.42) combine to give

[∆Π] = 0. (6.45)

The condition (6.43) is already satisfied because ∆ [BnBt] = [(∆Bn)Bt ]+ [Bn∆Bt ] =

0 when the background field is continuous. We note that the perturbed magnetic

field does not need to be continuous across the boundary. This means that there

could be surface current induced by the perturbation.

To implement the two boundary conditions (6.44)-(6.45), we need to calcu-

late the perturbed magnetic field in the vacuum region (r < r1 and r > r2). This

can be done by solving

∇ × δB = 0, ∇ · δB = 0. (6.46)

Clearly, δB is a potential field δB = ∇Ψ with Ψ (also ∝ eimφ−iωt) satisfying

∇2
Ψ = 0. (6.47)

The solution of Eq. (6.47) is

Ψ = C1rm
+C2r−m, (6.48)

where C1 and C2 are integration constants. Requiring δB to be regular at r → 0

and r → ∞, we find

δBr = C1mrm−1, δBφ = C1
im
r

rm, for r < r1, (6.49)

and

δBr = −C2mr−m−1, δBφ = C2
im
r

r−m, for r > r2. (6.50)

121



The two constants C1 and C2 can be determined by using [δBr] = 0. At r = r1, this

implies C1mrm−1
= imBφξr/r (see Eq. [6.25] for δBr inside the fluid zone). Thus,

C1 = iBφξrr
−m|r1. (6.51)

Similarly,

C2 = −iBφξrr
m|r2. (6.52)

Since the detailed realization of the boundary condition [∆Π] = 0 depends on

the specific equilibrium model, we address the two models separately.

6.4.1 Model (a)

At the inner boundary r = r1, by using Eq. (6.51), we find that the Lagrangian

perturbation of the total pressure in the vacuum just inside r1 (i.e., r = r1−) is

given by

∆Π|r1− =
BφδBφ

4π
− ξr

B2
φ

4πr
= −(m + 1)ξr

B2
φ

4πr
. (6.53)

In the fluid just outside r1 (i.e., r = r1+), we have

∆Π|r1+
= δΠ + ξr















r2p+1 −
v2

Aφ

r
− 1

r2

(

1− sv2
Az0 − (1+ q)v2

Aφ0

)















ρ. (6.54)

Thus the condition [∆Π] = 0 at r = r1 can be written as

δΠ

ρ
+ ξr















r2p+1
+

mv2
Aφ

r
− 1

r2

(

1− sv2
Az0 − (1+ q)v2

Aφ0

)















= 0, at r = r1+ . (6.55)

Note that in deriving the above equation, we have implicitly used [Bφ] = 0 and

[ξr] = 0. The same procedure yields the boundary condition at r = r2

δΠ

ρ
+ ξr















r2p+1 −
mv2

Aφ

r
− 1

r2

(

1− sv2
Az0 − (1+ q)v2

Aφ0

)















= 0, at r = r2− . (6.56)
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Figure 6.3: The growth rate of Papaloizou-Pringle instability (in units of
Ω0, the fluid rotation rate at the pressure maximum of the
torus) as a function of the relative thickness of the torus for
different values of m. The rotation profile is Ω ∝ r−2. This fig-
ure is similar to Fig. 1 in Blaes & Glatzel (1986) and to Fig. 1 in
Abramowicz et al. (1987).

6.4.2 Model (b)

The derivation is similar to Model (a). In this case, the boundary conditions are

δΠ

ρ
+ ξr

[

r2p+1 − 1
r2

(

1− v2
Az0 −

1+ r2
1

1− r2
1

v2
Aφ0

)]

= 0, at r = r1+ , (6.57)

δΠ

ρ
+ ξr















r2p+1 −
mv2

Aφ0

(1− r2
1)

2

(

1−
r2

1

r2

)

− 1
r2

(

1− v2
Az0 −

1+ r2
1

1− r2
1

v2
Aφ0

)















= 0, at r = r2− .

(6.58)
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Figure 6.4: The instability growth rate as a function of the relative thick-
ness of the torus for a range of toroidal magnetic field strengths.
Different lines represent different vAφ0 with the solid line denot-
ing the hydrodynamic case. The upper and bottom panels are
for the m = 1 and m = 2 modes, respectively.

6.5 Numerical Results

We employ the standard shooting method (Press et al. 1992) to solve Eqs. (6.29)

and (6.30) subjected to the boundary conditions (6.55)-(6.56) [Model (a)] or

(6.57)-(6.58) [Model (b)] to obtain the eigenvalue ω = ωr + iωi. For most of our

analysis, we set the rotation index p = −2 (i.e., Ω ∝ r−2) such that our results can

be directly compared with the original Papaloizou-Pringle instability.
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Figure 6.5: The instability region in the parameter space defined by the
dimensionless torus thickness ∆r/r2 and the toroidal magnetic
field strength. The other parameters are fixed to m = 2, Ω ∝
r−2 and Bφ ∝ r. The dotted area denotes the region where a
growing mode can be found.

Before discussing our results for finite magnetic fields, we briefly review

the main features of the classical (hydrodynamical) PP instability. As seen in

Fig. 6.3, the instability growth rate increases with increasing torus thickness

for small ∆r/r2 but terminates at some finite thickness. As m increases, the ter-

mination point shifts to smaller ∆r/r2, although the peak growth rate remains

approximately the same. This means that the PP instability only exists for rel-

atively thin tori, as shown by Blaes & Glatzel (1986) and by Abramowicz et
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Figure 6.6: The instability growth rate as a function of vAφ0 = vAφ(r0)/(r0Ω0)
for tori with different thickness ∆r/r2. The upper and bottom
panels depict the cases with m = 1 and m = 2, respectively.

al. (1987). The former also provides an approximate analytical expression for

the limiting maximum growth rate as m→ ∞. These features can be understood

from the fact that the PP instability arises from the interaction of the surface

gravity waves at the torus boundary. For a thin torus, the velocity shear across

the corotation point is small, and there would not be enough shear rotational

energy available to drive the growth. When the torus thickness is too large, the

wave amplitudes at the corotation radius (where the waves exchange angular

momentum) is too small to allow for adequate interactions. Thus, only for the
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Figure 6.7: Some special radii for the m = 1 overstable mode in a torus
as a function of the dimensionless magnetic field strength vAφ0.
The upper and bottom panels correspond to a thin ∆r/r2 = 0.2)
and thick (∆r/r2 = 0.7) torus, respectively. The two solid lines
show the inner and outer torus boundaries (r1 and r2). The dot-
ted line represents the corotation radius, while the shot-dashed
and long-dashed lines show the inner and outer magnetic res-
onances (IMR and OMR), respectively [see Eq. (6.59)]. The thin
solid line is the mode growth rate with the scale shown on the
right. The torus rotation and magnetic field profiles are Ω ∝ r−2

and Bφ ∝ r.
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Figure 6.8: The instability growth rate as a function of vAz0 for a torus with
relative thickness ∆r/r2 = 0.2. Different lines represent different
values of vAφ0. The other parameters are fixed to m = 2, Ω ∝ r−2,
Bφ ∝ r and Bz ∝ r in the fluid.

“intermediate” torus thickness, with m∆r/r <∼ 1, will the instability operates.

This explains why for a larger m, the PP instability terminates at a smaller torus

thickness.
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Figure 6.9: The instability growth rate as a function of vAφ0 for accretion
tori described by Model (b) with a pure toroidal magnetic field.
The solid and dotted lines correspond to two different inner
disc boundary radii. The bottom pane shows the correspond-
ing torus relative thickness.

6.5.1 Model (a): Pure Toroidal Field Configuration

In this section, we present the numerical results for an accretion torus with a

pure power-law profile toroidal magnetic field. We choose the power-law index

q = 1 so that the vertical current density is uniform as in Model (b).

Figure 6.4 shows the growth rate ωi as a function of thickness ∆r/r2 for dif-

ferent vAφ0. The two panels share similar characteristics: (i) For relatively weak
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Figure 6.10: The instability growth rate as a function of vAz0 for a thin torus
(with r1 = 0.9 and ∆r/r2 ≃ 0.2). The different lines represent
different values of vAφ0. Unlike Fig. 6.8, here the magnetic field
profile is described by Model (b).

B field (vAφ0 . 0.1), the instability resembles the B = 0 limit in that it always

starts from infinitely small thickness and terminates beyond a certain ∆r/r2; (ii)

For stronger B fields, the instability starts beyond certain finite ∆r/r2 and then

extends all the way to very large thickness (although as ∆r/r2 approaches unity,

the growth rate becomes increasingly small). As vAφ0 increases, the critical thick-

ness for the onset of instability also increases.

Figure 6.5 maps out the unstable zone in the thickness – magnetic field
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strength parameter space. It shows the similar feature as as Fig. 6.4. We can

see that the unstable region is mainly located at the lower-left (thin torus with

weak B field) and the upper-right (thicker torus with strong B field) corners of

the parameter space.

In Fig. 6.6, we present our numerical results in a different way. We fix the di-

mensionless thickness ∆r/r2 and plot the growth rate as a function of magnetic

field strength. For a thin torus, we find that as vAφ0 increases, the growth rate

first goes up slightly compared to the B = 0 case, then decreases and becomes

completely suppressed when the magnetic field is sufficiently strong (vAφ com-

parable to rotation velocity). For a thick torus, the instability can survive for a

relatively stronger B field and then vanishes beyond a certain vAφ0.

To probe the underlying physics of how magnetic fields affect the PP insta-

bility, we show in Fig. 6.7 the locations of several special points in the fluid:

The corotation radius rc is where the wave pattern corotates with with the back-

ground flow, i.e., ω̃r = ωr − mΩ = 0. The inner/outer magnetic resonances

(IMR/OMR) are defined by [see Eq. (6.36)]

ω̃r = ωr − mΩ = ±mωAφ. (6.59)

At the IMR, the wave is trailing the background flow but corotates with the az-

imuthal Alfvén wave traveling in the counter-rotational direction (viewed in the

corotating frame), while at the OMR, the wave is leading the background flow

and corotates with the Alfvén wave in the rotational direction. Recall that for PP

instability to operate in the B = 0 limit, it is essential that the corotation radius

lies in between torus boundaries (i.e., r1 < rc < r2). Now, with the inclusion of

the magnetic field, we see from Fig. 6.7 that as vAφ0 increases, both rc and rOMR

shift beyond the outer boundary of the torus. The IMR radius, rIMR, however,
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always stays inside the fluid. This suggests that in a magnetic torus, the IMR

plays a similar role as the corotation resonance does in a non-magnetic torus.

6.5.2 Other Magnetic Field Configurations

Model (a): Mixed magnetic field

Although the vertical magnetic field Bz does not enter into the perturbation

equations, the presence of a finite Bz can affect the mode growth rate through

the boundary conditions. Figure 6.8 shows some results for the accretion tori

with a mixture of vertical and toroidal magnetic fields. We take the power-law

index of Bz to be s = 1 so that the azimuthal electric current density is constant.

In Fig. 6.8, we fix the toroidal field and plot the mode growth rate as a function

of the vertical field strength. We find that the effect of finite vAz0 is small (note the

scale of the y-axis). For vAz = 0, the results agree with what is shown in Fig. 6.6b.

Model (b): Pure toroidal field

In this case, since the background toroidal magnetic field has a profile that de-

pends on the inner boundary radius r1, to solve for the equilibrium structure

and the global mode, we must first specify r1. Once we fix r1, we can easily

solve for the other boundary radius r2. In Fig. 6.9, we show in the upper panel

the mode growth rate as a function of vAφ0. The result is qualitatively similar

to Fig. 6.6b. The bottom panel shows that for a fixed inner boundary radius r1,

the thickness does not change appreciably as vAφ0 varies. So the two values of r1

we choose adequately depict the thin and thick tori, respectively. Again, we see

132



that for a thin torus, the original Papaloizou-Pringle instability is suppressed by

the toroidal field, while for a thick torus, the instability can survive for larger

field strengths.

Model (b): Mixed magnetic field

In Fig. 6.10, we show the mode growth rate as a function of vAz0 for different

fixed values of vAφ0. Similar to the case shown in Fig. 6.8, we see that the vertical

magnetic field has a small effect on the stability property of a magnetized accre-

tion torus. Again, this is understandable given that Bz does not enter into the

differential equations for the perturbations, but only affects the modes through

boundary conditions.

6.6 Summary

In this chapter, we have studied the effect of magnetic fields on the global non-

axisymmetric instability (the PP instability) in accretion tori. For simplicity, we

assume that both the perturbation and the background flow variables have no

z-dependance (thus our tori are essentially 2D cylinders). We have explored var-

ious possible magnetic configurations in the torus. Although the detailed prop-

erty of the instability is model-dependent, Figs. 6.4-6.6 illustrate our general

findings: (i) For thin tori (with the dimensionless thickness ∆r/r2 <∼ 0.2, where r2

is the outer torus radius), the instability exists for zero and weak magnetic fields,

but is suppressed when the toroidal field becomes sufficiently strong (with the

corresponding Alfvén speed vAφ >∼ 0.2rΩ measured at gas pressure maximum);

(ii) For thicker tori (∆r/r2 >∼ 0.4), the PP instability does not operate for zero and
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weak magnetic fields, but becomes active when the field is sufficiently strong

(vAφ >∼ 0.2rΩmeasured at gas pressure maximum). A vertical magnetic field also

influences the PP instability, but its effect is generally smaller that that of the

toroidal field.

It is difficult to precisely pin down the physical origin of the magnetic field

effect on the PP instability. For example, with a finite toroidal magnetic field,

we find that the corotation resonance radius may lie outside the torus body, and

yet the torus is still unstable. On the other hand, the inner magnetic resonance

radius, where ωr −mΩ = −mωAφ [see Eq. (6.59)], always lie inside the fluid body.

Thus we suspect that in a magnetic torus, the inner magnetic resonance plays a

similar role as the corotation resonance does in a non-magnetic torus.

Note that boundary conditions play an important role in the PP instability.

In the hydrodynamical case, if we had used a rigid boundary condition (ξr = 0)

(as adopted in the standard treatment of laboratory Couette flows; e.g., Chan-

drasekhar 1961), the torus with constant angular momentum profile would be

stable to two-dimensional perturbations according to the Rayleigh’s inflexion-

point theorem (see Drazin & Reid 1981). Including a finite magnetic field, the

theorem cannot not be applied (our attempt to generalize the theorem did not

reveal a simple instability criterion). The instability for thick, magnetized tori

found in this chapter may be a result of magnetic shear instability.

We note that the PP instability (or its magnetic generalization) involves wave

modes that do not have vertical structure (i.e. kz = 0). Thus it is distinctly

different from the usual MRI (Balbus & Hawley 1998). Our finding about the

instability of thick tori with strong magnetic fields is particularly interesting:

Since the MRI can be suppressed when the magnetic field is too strong, our

134



results suggest that magnetized tori may be subject to the instability even when

it is stable against the usual MRI.
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CHAPTER 7

LOW-T/|W | INSTABILITIES IN DIFFERENTIALLY ROTATING

PROTO-NEUTRON STARS WITH MAGNETIC FIELDS

7.1 Introduction

Recent hydrodynamical simulations have shown that differentially rotating

neutron stars formed in core-collapse supernovae may develop global non-

axisymmetric instabilities even when T/|W | (the ratio of the rotational kinetic en-

ergy T to the gravitational potential energy |W |) is relatively small (less than 0.1).

Such low-T/|W | instability can give rise to efficient gravitational wave emission

from the proto-neutron star. In this chapter, we investigate how this instability

is affected by magnetic fields using a cylindrical stellar model. Wave absorption

at the corotation resonance plays an important role in facilitating the hydrody-

namic low-T/|W | instability. In the presence of a toroidal magnetic field, the

corotation resonance is split into two magnetic resonances where wave absorp-

tions take place. We show that the toroidal magnetic field suppresses the low-

T/|W | instability when the total magnetic energy WB is of order 0.2T or larger,

corresponding to toroidal fields of a few ×1016 G or stronger. Although poloidal

magnetic fields do not influence the instability directly, they can affect the insta-

bility by generating toroidal fields through linear winding of the initial poloidal

field and magneto-rotational instability. We show that an initial poloidal field

with strength as small as 1014 G may suppress the low-T/|W | instability.
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7.2 Equilibrium Model of A Magnetized Rotating Cylinder

We consider a rotating star with purely toroidal magnetic fields and assume a

polytropic equation of state

P = KρΓ = Kρ1+1/N , (7.1)

where P and ρ are the gas pressure and density, K, Γ and N are constants. Al-

though hydromagnetic stellar equilibrium models can be constructed easily us-

ing the HSCF method (Hachisu 1986; Tomimura & Eriguchi 2005; see Lander &

Jones 2009 for recent works on uniformly rotating stars), linear eigenvalue anal-

ysis for such models is difficult. Thus we follow the setup in Saijo & Yoshida

(2006) by treating the star as an infinite cylinder. We adopt the cylindrical co-

ordinates (r, φ, z). All the background variables are assumed to be functions of

cylindrical radius r only. The equilibrium state of the cylinder is determined by

force balance equation in the radial direction

1
ρ

dP
dr
= −dΦ

dr
+ rΩ2 − 1

ρ

dPm

dr
−

B2
φ

4πρr
, (7.2)

where Ω is the flow rotation rate, Bφ is the toroidal magnetic field strength, Pm =

B2
φ/8π is the magnetic pressure, and Φ is the Newtonian gravitational potential

which relates to density ρ via Poisson’s equation

∇2
Φ = 4πGρ. (7.3)

Eliminating Φ from Eqs. (7.2) and (7.3) yields

d
dr

(

r
ρ

dP
dr

)

= −4πGρr +
d
dr

(r2
Ω

2) − d
dr

(

r
ρ

dPm

dr

)

− d
dr















B2
φ

4πρ















. (7.4)

For numerical convenience, we nondimensionalize variables as follows

ρ = ρ̂ρc = θ
Nρc, (7.5)
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r = r̂

√

(N + 1)Kρ1/N−1
c

4πG
, (7.6)

Ω = Ω̂

√

4πGρc, (7.7)

Bφ = B̂φ

√

4π(N + 1)Kρ1+1/N
c , (7.8)

where ρc is the central density and the hatted variables denote dimensionless

quantities. Similar dimensionless variables for other quantities can be con-

structed from the list above. We follow Saijo & Yoshida (2006) to adopt the

following rotation profile:

Ω̂ =
C

r̂2 + A
, (7.9)

where A and C are constants. The toroidal B field profile we employ is

B̂φ = br̂(R̂ − r̂) (7.10)

where R̂ denotes the dimensionless boundary of the cylinder and the constant b

specifies the field strength. For simplicity, we will omit the hats on all variables

hereafter unless otherwise noted. The above profile implies that Bφ = 0 at both

the center and the surface of the star. For small r, we have Bφ ≃ brR, implying a

constant axial current for r → 0. Eq. (7.4) in dimensionless form now reads

d2θ

dr2
+

[

1
r
− Nθ−N−1b2r(R − r)(R − 2r)

]

dθ
dr
+θN
+

[

4b2(R − r)(R − 2r) − b2r(3R − 4r)
]

θ−N
= 2Ω

d
dr

(rΩ).

(7.11)

For an nonmagnetized star, Eq. (7.11) reduces to Eq. (3.2) in Saijo & Yoshida

(2006). In the limit of zero rotation, it recovers the well-known Lane-Emden

equation in cylindrical geometry.

In the limit of Bφ = 0, we can simply integrate Eq. (7.11) starting from r = 0

using boundary condition that θ = 1 and θ′ = 0 to a point where θ goes to zero,

which defines the cylinder surface R. The hydrodynamic equilibrium can thus
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Figure 7.1: Density profiles for hydrodynamic and hydromagnetic equi-
libria. The polytropic index is N = 1. The solid, short-dashed
and long-dashed lines represent different rotation profiles for
non-magnetic models, while the dotted line is for a magnetic
model with WB/|W | = 0.03.

be easily constructed. When Bφ is non-zero, we choose an initial guess for the

surface radius R based on results for the equivalent hydrodynamic model and

integrate Eq. (7.11) imposing the same boundary condition at the center. We

stop the integration at r = R to check the value of θ. We then adjust our guess

for R and go through the same process, until θ|r=R comes close enough to 0. For a

given equilibrium state, the rotational kinetic energy T , gravitational potential

energy W and magnetic energy WB of the cylinder have the following form

T =
1
2

∫

ρr2
Ω

2dV =
∫ R

0
θN
Ω

2r3dr,

W = −
∫

ρr
dΦ
dr

dV =

(∫ R

0
θNrdr

)2

,
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WB =

∫ B2
φ

8π
dV =

R6b2

60
, (7.12)

where all the variables are dimensionless and the corresponding physical unit

for energy is (N + 1)2K2ρ
2/N
c /4. Examples of the equilibrium density profile are

given in Fig. 7.1. We see that the density profile is not always monotonic: for

large C and small A (i.e, large rotation rate and large degree of differential rota-

tion), the density maximum is off-centered.

7.3 Linear Perturbation Analysis

7.3.1 Perturbation equations

The cylindrical flow we are considering satisfies the usual ideal MHD equations

∂ρ

∂t
+ ∇ · (ρv) = 0, (7.13)

∂v
∂t
+ (v · ∇)v = −1

ρ
∇Π − ∇Φ + 1

4πρ
(B · ∇)B, (7.14)

∂B
∂t
= ∇ × (v × B), (7.15)

∇ · B = 0, (7.16)

∇2
Φ = 4πGρ, (7.17)

where Π = P + Pm is the total pressure. We apply linear perturbations to the

above equations by assuming the perturbation of any physical variable f to

have the form δ f ∝ eimφ−iωt with m being the azimuthal mode number and ω

the wave frequency. The resulting linearized perturbation equations contain

variables δv, δρ, δΠ, δΦ and δB. To simply the algebra, we define a new variable

δh =
δΠ

ρ
=
δP
ρ
+

B · δB
4πρ

.
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Using ∆v = δv+ ξ · ∇v = dξ/dt = −iωξ + (v · ∇)ξ = −iωξ +Ω∂ξ/∂φ, we find that the

Eulerian perturbation δv is related to the Lagrangian displacement vector ξ by

δv = −iω̃ξ − rΩ′ξrφ̂ (prime denotes radial derivative). In terms of ξr, δh and δΦ,

the MHD perturbation equations (in dimensionless form) can be cast into four

first-order differential equations:

dξr
dr
= A11ξr + A12δh + A13δΦ + A14

dδΦ
dr
, (7.18)

dδh
dr
= A21ξr + A22δh + A23δΦ + A24

dδΦ
dr
, (7.19)

dδΦ
dr
= A31ξr + A32δh + A33δΦ + A34

dδΦ
dr
, (7.20)

d
dr

(

dδΦ
dr

)

= A41ξr + A42δh + A43δΦ + A44
dδΦ
dr
, (7.21)

where

A11 =
rω̃2

[

(ω2
Aφ −Ω2)ω̃2

+ ω2
Aφω

2
]

(c2
s + v2

Aφ)(ω̃
2 − m2ω2

Aφ)(ω̃
2 − ω2

s)
+

gω̃2

(c2
s + v2

Aφ)(ω̃
2 − ω2

s)
−
ω̃2
+ 2mω̃Ω + m2ω2

Aφ

r(ω̃2 − m2ω2
Aφ)

,

(7.22)

A12 = −
ω̃4

(c2
s + v2

Aφ)(ω̃
2 − m2ω2

Aφ)(ω̃
2 − ω2

s)
+

m2

r2(ω̃2 − m2ω2
Aφ)
, (7.23)

A13 =
m2

r2ω̃2
, (7.24)

A14 = 0, (7.25)

A21 = ω̃
2 − m2ω2

Aφ −
4(mω2

Aφ + ω̃Ω)2

ω̃2 − m2ω2
Aφ

+ r
d
dr

(ω2
Aφ − Ω2) + (ω2

Aφ − Ω2)
r
ρ

dρ
dr
+

g
ρ

dρ
dr

+
1

(c2
s + v2

Aφ)(ω̃
2 − m2ω2

Aφ)(ω̃
2 − ω2

s)

{

r
[

(ω2
Aφ − Ω2)ω̃2

+ ω2
Aφω

2
]

+ g(ω̃2 − m2ω2
Aφ)

}2
,

(7.26)

A22 = −
rω̃2

[

(ω2
Aφ −Ω2)ω̃2

+ ω2
Aφω

2
]

(c2
s + v2

Aφ)(ω̃
2 − m2ω2

Aφ)(ω̃
2 − ω2

s)
− gω̃2

(c2
s + v2

Aφ)(ω̃
2 − ω2

s)
+

2m(mω2
Aφ + ω̃Ω)

r(ω̃2 − m2ω2
Aφ)
−1
ρ

dρ
dr
.

(7.27)

A23 =
2mΩ
rω̃
, (7.28)

A24 = −1, (7.29)
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A31 = A32 = A33 = 0, (7.30)

A34 = 1 (7.31)

A41 = −
ρ

r
− dρ

dr
+ ρ















m2ω2
Aφ

ω̃2
− 1















A11 − ρ
m2ω2

Aφ

rω̃2
− 2ρmΩ

rω̃
, (7.32)

A42 = ρ















m2ω2
Aφ

ω̃2
− 1















A12 + ρ
m2

r2ω̃2
, (7.33)

A43 = ρ
m4ω2

Aφ

r2ω̃4
+

m2

r2
, (7.34)

A44 = −
1
r
. (7.35)

In the above expressions, ω̃ = ω − mΩ is the wave frequency in the co-rotating

frame, ρ = θN is the dimensionless density, cs =
√

dP/dρ =
√
θ/N is the dimen-

sionless sound speed,

vAφ =

√

B2
φ

4πρ
= br(R − r)θ−N/2 (7.36)

is the toroidal Alfvén velocity, ωAφ = vAφ/r = b(R − r)θ−N/2 is the toroidal

Alfvén frequency,

ωs =

√

c2
s

c2
s + v2

Aφ

m2ω2
Aφ (7.37)

is the slow magnetosonic wave frequency for k = (m/r)φ̂, and

g =
dΦ
dr
= rΩ2 − dθ

dr
−

[

b2r(R − r)(2R − 3r)
]

θ−N (7.38)

is the gravitational acceleration in radial direction.

7.3.2 Boundary conditions

To solve Eqs. (7.18)-(7.21) as an eigenvalue problem, we need four boundary

conditions. The outer boundary conditions are straightforward. From the per-

turbed Poisson equation, we know the perturbed potential outside the star
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scales as δΦ ∝ r−m. By requiring this potential to match smoothly with the po-

tential inside, we obtain our first outer boundary condition:

dδΦ
dr
+

m
r
δΦ = 0 at r = R. (7.39)

Requiring the Lagrangian pressure perturbation to vanish at the stellar surface

yields

δh +
dθ
dr
ξr = 0 at r = R. (7.40)

The inner boundary conditions are more involved. As r → 0, we observe that

g → 0, Ω → constant, ρ → constant, ωAφ ∝ Bφ/r → constant and δρ is finite.

Thus, near the center of the star, Eqs. (7.18)-(7.21) can be simplified as

dξr
dr
= −X + mY

X
ξr

r
+

m2

X
δh
r2
+

m2

ω̃2

δΦ

r2
(7.41)

dδh
dr
=

X2 − Y2

X
ξr +

mY
X
δh
r
+

2mΩ
ω̃

δΦ

r
− dδΦ

dr
, (7.42)

1
r

d
dr

(

r
dδΦ
dr

)

− m2

r2
δΦ = 0, (7.43)

where,

X = ω̃2 − m2ω2
Aφ, Y = 2(mω2

Aφ + ω̃Ω). (7.44)

Eq. (7.43) has the following solution

δΦ = rm, at r ∼ 0, (7.45)

where we have taken the coefficient of the power-law term to be 1 for simplicity.

The perturbations ξr and δh generally take the form

ξr = C1rm−1
+ C2rm−1 ln r, δh = C3rm

+C4rm ln r, (7.46)

where C1, C2, C3, C4 are constants so that perturbations remain regular at the

center. Eq. (B.1) represents the leading terms of the Frobenius expansions of

these functions.
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Substituting solution (B.1) into Eqs. (7.41) and (7.42) leads to two equations

which have the structure a1 + a2 ln r = 0, where a1, a2 are constants that depend

on the values of m, Ω, ω̃, ωAφ, C1, C2, C3, C4 near the center. Since these equa-

tions should be satisfied everywhere around the center, we demand a1 = a2 = 0.

This yields

C2 +
m(X + Y)

X
C1 =

m2

X
C3 +

m2

ω̃2
, (7.47)

mC4 = (X + Y)C2, (7.48)

C4 +
m(X − Y)

X
C3 =

X2 − Y2

X
C1 + m

2Ω − ω̃
ω̃
, (7.49)

from which we can determine three constants

C2 = −
m3(m + 2)

2X
ω2

Aφ, (7.50)

C4 = −
m2(m + 2)

2
X + Y

X
ω2

Aφ, (7.51)

C1 =
m

X + Y
C3 +

m2(m + 2)
2(X + Y)

ω2
Aφ +

m
ω̃2

X
X + Y

, (7.52)

once we specify C3. When we solve the eigenvalue problem, C3 will be deter-

mined together with the eigenfrequency ω. We see that since for the specific Bφ

profile we are considering (see Eq. [7.10]), ωAφ remains approximately constant

near the center, C2 and C4 are both finite. Therefore the logarithmic parts in

solution (B.1) cannot be neglected.

In the hydrodynamic limit (Bφ = 0, ωAφ = 0), we have C2 = C4 = 0 so that the

solutions of ξr and δh take a purely power-law form, and Eq. (7.52) reduces to

C1 =
m

ω̃(ω̃ + 2Ω)
(C3 + 1), (7.53)

which is equivalent to

ξr =
m

rω̃(ω̃ + 2Ω)
(δh + δΦ) at r ∼ 0. (7.54)
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Again, constant C3 = δh/δΦwill be determined as a part of the eigenvalue prob-

lem. Clearly, for the magnetic cases where d ln Bφ/d ln r > 1 at r ∼ 0 so that

ωAφ → 0 as r → 0, the above hydrodynamic boundary condition is also valid.

7.3.3 Cowling approximation

In the Cowling approximation, we neglect the gravitational potential perturba-

tion δΦ. The perturbation equations then become

dξr
dr
= A11ξr + A12δh, (7.55)

dδh
dr
= A21ξr + A22δh, (7.56)

with the four coefficients given by the same equations as before. Similarly, for

r → 0 the simplified version of Eqs. (7.41) and (7.42) are

dξr
dr
= −X + mY

X
ξr

r
+

m2

X
δh
r2

(7.57)

dδh
dr
=

X2 − Y2

X
ξr +

mY
X
δh
r
. (7.58)

The outer boundary condition in this case is again given by Eq. (7.40)

δh +
dθ
dr
ξr = 0 at r = R. (7.59)

The inner boundary condition can be obtained by substituting the power-law

solutions ξr ∝ rm−1 and δh ∝ rm into Eqs. (7.57) and (7.58), giving

ξr =
m

r[ω̃2 + 2ω̃Ω − m(m − 2)ω2
Aφ]
δh. (7.60)

Note that for either m = 2 perturbations or a unmagnetized flow, the above inner

B.C. reduces to the same form

ξr =
m

rω̃(ω̃ + 2Ω)
δh. (7.61)
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Figure 7.2: The m = 2 mode frequency as a function of T/|W | with and
with out Cowling approximation. The upper and bottom pan-
els show the real and imaginary parts of the frequency, respec-
tively, with Ωc being the rotation frequency at the center. The
star has no magnetic field and the polytropic index is N = 1.

7.4 Numerical Results

For most part of this section, we will employ the standard shooting method

(Press et al 1992) to solve the two ODEs, Eqs. (7.55) and (7.56), subject to bound-

ary conditions (7.59) and (7.60). We focus on the effects of toroidal magnetic

fields on the low-T/|W | instability previously found for purely hydrodynamic

stars.

Before moving on to our main results, let us first examine the validity of

Cowling approximation for low-T/|W | instability. To this end, we compare

the eigenfrequency calculation with and without Cowling approximation. In

Fig. 7.2, we fix one of the rotation parameters, A, while change the other, C, to

obtain different values of T/|W |. We see that for the whole range of T/|W | con-
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Figure 7.3: The m = 2 mode frequency as a function of WB/|W | for stellar
models with different rotation profiles (thus different T/|W |’s).
The upper and bottom panels show the real and imaginary
parts of the frequency, respectively, with Ωc being the rotation
frequency at the center. The other parameters are the same as
in Fig. 7.2.

sidered, the real part of the mode frequency does not show much difference

between those two cases. The bottom panel of Fig. 7.2 shows that, for the low

T/|W | range (. 0.1), the mode growth rate exhibits qualitatively similar behavior

with an approximate factor of 2 difference between the two cases. For relatively

large T/|W | (& 0.2), the growth rate no longer follows the similar trend when

T/|W | increases. Shibata et al. (2002) also found from their hydrodynamic sim-

ulation of a similar stellar model that the mode growth rate declines beyond

certain T/|W |. The solid lines (“no Cowling”) in our Fig. 7.2 agree well with the
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Figure 7.4: The m = 2 mode growth rate as a function of T/|W | with and
without toroidal magnetic field. The other parameters are A =
0.86 and N = 1.

results depicted in Fig. 4 of Shibata et al.. With Cowling approximation, we find

that the growth always increases with increasing T/|W |. Overall, Fig. 7.2 shows

that using the Cowling approximation captures the essential feature of the low-

T/|W | instability, especially when T/|W | is not much larger than the threshold.

Figs. 7.3 and 7.4 contain the most important results of this chapter. In Fig. 7.3,

we plot the eigenfrequency of the m = 2 mode as a function of WB/|W | (the ra-

tio of magnetic energy to gravitational energy) for different rotation profiles.

Note that as we change the magnetic field strength, the equilibrium structure,

therefore T/|W | will also change. However, for the range of WB/|W | we consid-

ered, the modification to the equilibrium structure is so small (see dotted line in
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Figure 7.5: Example wavefunctions of unstable low-T/|W | (≃ 0.095) mode
with A = 0.86, C = 0.9, m = 2 and N = 1. The left column shows
the radial displacement as a function of radius whereas the
right column shows the radial velocity perturbation, with the
solid and short-dashed lines representing the real and imagi-
nary parts, respectively. The upper and lower panels are for
nonmagnetic and magnetic stellar models, respectively. The
dotted lines indicate the location of the corotation resonance
(in the nonmagnetic case) or slow magnetosonic resonances (in
the magnetic case). The vertical scales of the wavefunctions are
arbitrary.

Fig. 7.1 for the small modification) that T/|W | is approximately a constant along

the three curves. Fig. 7.3 demonstrates that the low-T/|W | instability can be sup-

pressed by the toroidal magnetic field. The point where the mode growth is

completely suppressed corresponds to WB/|W | ∼ 0.2 T/|W |. In this figure, we

choose those three models so that one can readily see that the instability is more

prominent with larger degree of differential rotation (smaller A) and larger ro-

tation rate (larger C). Fig. 7.4 shows the mode growth rate as a function of

T/|W | for stellar models with different WB/|W |. We see that the finite magnetic

field shifts the curve towards larger T/|W |. In particular, the magnetic field in-

creases the threshold for the instability from T/|W | ≃ 0.03 for the nonmagnetic
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Figure 7.6: Angular momentum carried by the wave as a function of r. The
model parameters are the same as in Fig. 7.5. The upper and
lower panels show the nonmagnetic and magnetic models, re-
spectively. The locations of the corotation resonance and slow
resonances are indicated by the vertical dotted lines.

model to T/|W | ≃ 0.035for the WB/|W | ≃ 0.001model. This finding can be easily

understood: increasing rotation drives the instability, whereas magnetic field

suppresses the instability. Therefore when a finite B field is included, in order

to maintain the instability a larger rotation rate is needed to overcome the sup-

pressing effect.

Fig. 7.5 depicts two example wavefunctions of the overstable low-T/|W |

mode. In the nonmagnetic case, the perturbation equations are singular at the

corotation radius where ω̃ = ω − mΩ = 0. For low-T/|W | modes, the corotation
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resonance lies inside the star, so both the radial displacement and the gradi-

ent of the radial velocity perturbation undergo large variations across the coro-

tation resonance (see the upper panels). In the magnetic case, however, the

corotation resonance is no longer a singularity. Instead, the perturbation equa-

tions are singular at two slow magnetosonic resonances (Fu & Lai 2011a) where

ω̃ = ±ωs, with ωs given by Eq. (7.37) 1. Therefore, the wavefunctions exhibit

sudden changes at these two particular locations (see the lower panels). This

splitting of corotation resonance into two magnetic slow resonances can also

be seen in the angular momentum flux. In Fig. 7.6, we show the angular mo-

mentum carried by the wave across the star as a function of radius (see Fu &

Lai 2011a for the flux formula). In the upper panel (nonmagnetic case), we see

that F(r) experiences a sudden jump at the corotation resonance, whereas in

the lower panel (magnetic case), two jumps occur at the two slow resonances

and have different signs. This is similar to thin accretion discs studied in Fu &

Lai (2011a). However, since the outer boundary condition we employed here

(free surface) is totally different from the one used in Fu & Lai (2011a) (outgoing

waves), we cannot directly relate the flux jump (or the net jump in the case of

two resonances) to the magnitude of the growth rate. In any case, it is clear from

Fig. 7.6 that the corotation resonance indeed plays an important role in driving

the hydrodynamic low-T/|W | instability and the toroidal magnetic field affects

the instability by splitting the corotation resonance into two magnetic slow res-

onances. The property of the unstable mode in the presence of a magnetic field

is determined by the combined effects from both slow resonances.

1Note that ω̃2 − m2ω2
Aφ = 0 is not a singularity even though it appears to be a singular term

similar to ω̃2−ω2
s in those coefficients of differential equations. This apparent singular term, one

can show, will be canceled by some subtle mathematical manipulations. But this cancelation
only works for the particular setup we consider here (pure toroidal B field, no vertical structure
in perturbations). In general (i.e., with mixed B field or finite kz), equations will be singular at
both ω̃2

= m2ω2
Aφ and ω̃2

= ω2
s (see Fu & Lai 2011a).
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7.5 Summary

Recent studies of rotating (but nonmagnetic) core-collapse supernovae (e.g.,

Dimmelmeier et al. 2008) have demonstrated that newly formed neutron stars

can develop nonaxisymmetric global instabilities with low T/|W |, and such in-

stabilities lead to significant gravitational wave emission. In this chapter, we

have carried out the linear stability analysis of magnetic, differentially rotat-

ing stars (modeled as a cylinder) to examine how magnegic fields affect the

low-T/|W | rotational instability. We show that the wave absorption at the coro-

tation resonance plays an important role in the instability. In the presence of a

toroidal magnetic field, the corotation resonance is split into two magnetic res-

onances, where wave absorptions of opposite signs take place. Our main result

is that toroidal magnetic fields reduce the growth rate of the low-T/|W | instabil-

ity and increase the threshold T/|W | value above which the instability occurs.

To significantly affect the instability, the required WB/|W | (the ratio of the mag-

netic energy WB to the gravitational potential energy |W |) should be of order

0.2T/|W | or larger (see Figs. 7.3-7.4). As the critical T/|W | ranges from 0.01 to 0.1,

the required WB/|W | lies between 0.002 and 0.02. Using |W | ∼ (3/5)GM2/R and

WB ∼ (B2
φ/8π)(4πR

3/3), we have

WB

|W |
∼ 1

300

(

Bφ
2× 1016 G

)2 ( R
20 km

)4 (

M
1.4M⊙

)−2

. (7.62)

Thus, only toroidal magnetic fields stronger than 2 × 1016 G can significantly

affect the low-T/|W | instability.

In our simple (cylindrical) stellar model, poloidal (vertical) magnetic fields

do not directly affect the rotational instability because the unstable modes do

not have vertical structure (i.e., the vertical wavenumber is zero). We believe
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that this also holds for more realistic stellar models (spherical geometry, non-

zero vertical wavenumbers, etc.), although more investigations are needed.

Nevertheless, even a relatively weak poloidal magnetic field present in the

proto-neutron star may indirectly affect the T/|W | instability. In the core-collapse

supernova scenario, differential rotation naturally arises inside the stellar core

during the collapse (e.g., Akiyama & Wheeler 2005; Ott et al. 2006). This differ-

ential rotation can generate significant toroidal magnetic fields by winding the

initial poloidal field and by magneto-rotational instability (Akiyama et al. 2003;

Obergaulinger et al. 2009). Consider first the linear winding of the poloidal

field Bp. The toroidal field grows in time as Bφ ∼ Bp∆Ωt, where ∆Ω is the

difference in the rotation rate across the proto-neutron star. Thus the ratio of

magnetic energy WB ∼ B2
φR

3/6 and the rotational energy T ∼ 0.2MR2(∆Ω)2 in-

creases as WB/T ∼ B2
pRt2/M. The time to reach a given WB/T ≡ f is then

ttwist ∼ ( f M/B2
pR)1/2

=
√

f /3R/vAp, where vAp = Bp/
√

4πρ is the Alfvén speed

associated with Bp. On the other hand, the growth time of the low-T/|W | insta-

bility is tgrow ∼ 1/ωi ∼ (R3/GM)1/2/ω̂i, where ω̂i is the dimensionless growth rate

in units of the Keplerian frequency (ω̂i is approximately the vertical axis of the

bottom panel in Fig. 7.3). For the low-T/|W | instability to operate before being

suppressed by the large Bφ (generated by twisting the initial poloidal field Bp),

we require ttwist & tgrow, i.e.,

Bp . ω̂i

(

f
GM2

R4

)1/2

≃
(

8× 1013 G
)

(

f
0.2

)1/2 (

ω̂i

10−3

) (

M
1.4M⊙

)

( R
20 km

)−2

. (7.63)

Since ω̂i is of order 10−3 or larger, and the toroidal field suppresses the instability

when f = WB/T ∼ 0.2 (see Fig. 7.3), we see that an initial poloidal field strong

than 1014 G can lead to the suppression of the instability. In other words, when

the initial poloidal field is less than 1014 G, the toroidal field will not grow fast

enough by linear winding so that the low-T/|W | instability still has a chance to
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develop.

The effect of magneto-rotational instability (MRI) is harder to quantify. In the

linear regime, MRI operates in modes with vertical structure (i.e., finite vertical

wave number), which are independent from the T/|W |-unstable modes stud-

ied in this chapter. However, the nonlinear development of MRI may generate

significant magnetic fields (both poloidal and toroidal) on a short timescale (of

order the rotation period). There have been many MHD simulations of core col-

lapse supernovae (e.g., Ardeljan et al. 2000, 2005; Kotake et al. 2004; Yamada

& Sawai 2004; Obergaulinger et al. 2006; Burrows et al. 2007). Most of these

simulations cannot resolve the MRI unless they employ drastically strong ini-

tial fields. It has been suggested that when MRI saturates, a large fraction of the

kinetic energy in the differential rotation is converted to the magnetic energy

(Akiyama et al. 2003; Obergaulinger et al. 2009), i.e., WB/T may approach unity

on a dynamical time. Our result in this chapter shows that the T/|W | instability

is strongly reduced when WB/|T | reaches 0.2. Therefore it would be important

to quantify the saturation field of the MRI in proto-neutron stars. In addition,

the MRI can lead to efficient angular momentum transport in different region of

the star. This may also affect the T/|W | instability. Clearly, these issues must be

resolved in order to evaluate whether the low-T/|W | instability can develop in

astrophysically realistic proto-neutron stars.
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CHAPTER 8

CONCLUSION

Quasi-periodic variability has been observed from a number of Galactic

compact X-ray binary systems. Of particular interest are several accreting black

hole (BH) binaries which show pairs of quasi-periodic oscillations (QPOs) of

fixed frequencies having ratios close to 2 : 3. Various theories/models have been

proposed to explain the origin of QPOs. Perhaps the theoretically most devel-

oped model for QPOs is the relativistic diskoseismic oscillation model, in which

general relativistic (GR) effect produces trapped modes/oscillations in the in-

ner region of the disk. C-modes (corrugation modes) are non-axisymmetric and

have nodes in vertical direction. They generally have frequencies lower than

the observed QPO frequencies and they suffer corotational damping (Tsang &

Lai 2009a). G-modes (inertial-gravity modes) used to be the most promising

and most studied discoseismic modes as their trapping zone naturally arise due

to GR potential and has nothing to do with the disk boundaries. However, re-

cent progress in this field showed that the survival of g-modes faces two main

challenges: firstly, the non-axisymmetric g-modes, like c-modes, are also subject

to corotation damping (Kato 2003; Li, Goodman & Narayan 2003; Silbergleit &

Wagoner 2007); secondly, its trapping zone can be easily destroyed by a weak

(subthermal) magnetic field as we demonstrated in Chapter 2.

P-modes (inertial-acoustic modes) have no vertical structure, are trapped be-

tween the inner disc edge and the inner Lindblad resonance, and have the char-

acter of inertial-fast magnetosonic waves in their propagation zone. Previous

works have shown that in a hydrodynamic disc (with B = 0) these modes can

be overstable due to wave absorption at the corotation resonance (CR) when
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the vortensity (or its generalization for non-barotropic flows) of the disc has

a positive gradient (TL08, LT09, Tsang & Lai 2009b). In Chapter 3 we found

that the inclusion of a finite toroidal field Bφ splits the CR into two magnetic

(slow) resonances (MRs), where the wave frequency in the rotating frame of the

fluid, ω − mΩ, matches the slow magnetosonic wave frequency. At the inner

and outer MRs, the angular momentum flux carried by the wave undergoes

significant change, indicating angular momentum (and energy) absorption at

both MRs. One of the resonances absorbs positive angular momentum while

the other emits positive angular momentum. Independent of the background

flow vortensity gradient, the net angular momentum absorption across the res-

onance region is always reduced or becomes more negative in discs with Bφ , 0

compared to the B = 0 case. This leads to a reduced growth rate of the p-modes.

Our calculations showed that the hydrodynamically overstable inertial-acoustic

modes can be completely stabilized by the toroidal field at relatively small field

strengths (see Fig. 3.10)

For discs with a pure vertical field, the corotation resonance persists for

the p-modes, with no additional magnetic resonances. This is understandable

since p-modes have no vertical structure (kz = 0). With no bending of the field

lines, the vertical field simply modifies the background pressure, or equiva-

lently, changes the effective background sound speed. However, when Bz , 0,

the effective potential for wave propagation contains a second-order singularity

term, in addition to the first-order singularity already present in a Bz = 0 disc.

For discs containing mixed (toroidal and vertical) magnetic fields, the coro-

tation resonance is split into four resonances: in addition to the inner/outer

MRs (already present in discs with pure toroidal fields), two Alfvén resonances
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appear, where ω−mΩmatches the local Alfvén wave frequency. We showed that

the effect of these additional resonances is to further reduce the super-reflection

and the growth rate of the disc p-modes (see Fig. 3.11). Overall, the toroidal field

has a larger effect on the corotational wave absorption and the mode growth rate

than the vertical field.

As we summarized in the end of Chapter 3, our findings imply that in order

to sustain the overstable disc p-modes, other mode excitation/destabilization

methods are needed. One possibility is the accretion-ejection instability pro-

posed by Tagger et al. Yu & Lai (2012) recently showed that this instability

mechanism indeed could save the p-modes from being completely stabilized

by disk toroidal B fields. This means that unstable disk p-modes can still be a

promising candidate for HFQPO origin. In Chapter 4, we extended our study on

disk p-modes into the non-linear regime. We employed numerical code PLUTO

to simulate the non-linear evolution of unstable p-modes. We found very sat-

isfactory agreement between our linear mode calculation (e.g. Chapter 3) and

non-linear simulation in terms of frequencies of fastest growing modes. We

showed that the mode frequencies obtained from linear mode calculation are

quite robust. They vary by less than 4% even after the non-linear saturation.

All our analysis in Chapter 3 and Chapter 4 assumed a simple reflective in-

ner disc boundary condition (radial velocity perturbation vanishes) whereas the

condition at a real disc’s inner boundary could be much more complicated. In

Chapter 5, we made the first attempt to consider more general inner disc bound-

ary conditions. We studied the dynamics of a magnetosphere-disc system and

we found that a magnetosphere inner to the disc, a scenario that could be re-

alized in BH and NS X-ray binaries, can serve as the required “reflector” for
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unstable disc p-modes. We also studied another type unstable modes – inter-

face modes and the effects of magnetic fields, inner disk boundary locations on

them. The large-scale (m = 1, 2, 3, . . .), overstable oscillation modes studied in

Chapter 5 may provide an explanation for the high-frequency QPOs observed

in NS and BH X-ray binaries (see Section 5.1). Obviously, the simplicity of our

model setup precludes detailed comparison with the phenomenology of QPOs.

But we note the following relevant features of disc inertial-acosutic modes and

interface modes.

(1) The disc inertial-acoustic modes have frquencies ω = βdmΩd (with Ωd the

disc rotation rate at rin), with βd < 1 (typically ∼ 0.5) depending on model pa-

rameters (such as disc sound speed) and boundary conditions. If the inner disk

is located at the ISCO, the mode frequencies can be computed ab initio, and the

results are generally consistent with the observations of the HFQPOs in black-

hole X-ray binaries (see Lai & Tsang 2009; Tsang & Lai 2009c). The problem

with these modes is that even a weak (sub-thermal) disc toroidal magnetic field

can suppress their instabilities (see Section 5.3 and Fu & Lai 2011a). Although

large-scale poloidal fields can enhance the instability under certain conditions

(see Tagger & Pallet 1999; Tagger & Varniere 2006), it is not clear at this point

which effects (disc toroidal field vs large-scale poloidal field) will dominate.

(2) The interface modes have frqeuencies ω = βimΩd, with βi ∼ 1. If rin ≃ rISCO,

the implied QPO frequencies would be too high compared to observations. Of

course, as discussed before (see Sections 5.1 and 5.4.3), it is certainly possible

that rin is somewhat larger than rISCO in real systems, but then we would lose the

predictive power of our calculations (since in our model rin is a free parameter).

On the other hand, the interface modes are robustly unstable, driven by the RT
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and KH instabilities, and by the corotation effect, especially when the GR effect

is included. In most cases, the growth rates of the interface modes are much

larger than the disc modes.

Overall, the results of Chapter 5 suggest that if the real accreting NS or BH

systems can be approximated by our magnetosphere-disc model, the interface

oscillations are more likely to provide an explnanation for the observed QPOs.

This is reasonable for NS systems, and is consistent with spectral analysis of

kHz QPOs in NS X-ray binaries (e.g., Gilfanov et al. 2003). For BH systems, this

would require that the inner disc radius in the “transitional state” to be slightly

larger than rISCO (e.g., Done et al. 2007; Oda et al. 2010).

Using the similar techniques as we did in studying disc flows, we also in-

vestigated the dynamics of other rotating astrophysical flow, such as accreting

tori (Chapter 6) and rotating protoneutron stars (Chapter 7). In the case of ac-

creting tori, we found that magnetic fields tend to suppress the well-known

Papaloizou-Pringle instability if the torus is relatively thin; while for a rela-

tively thick torus, sufficiently strong magnetic fields could give rise to a new

instability, one that is absent when the torus is non-magnetized. In the case of

protoneutron stars, our main finding is that toroidal magnetic fields reduce the

growth rate of the low-T/|W | instability and increase the threshold T/|W | value

above which the instability occurs.

Although our work in this thesis has made some progress in understand-

ing the dynamics of various astrophysical flows, we note that the flow models

employed are still too simplified to allow for any direction comparison with

observations. For instance, in all chapters, the fluid perturbations have no ver-

tical structures (kz = 0) while in real disks the perturbation very likely has finite
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vertical wavenumber. How would our conclusions hold up when more gen-

eral perturbation structures are considered? With finite kz and finite magnetic

field, MRI will develop in the flow, how would it interact with the other modes

that we studied here? Also, we have always neglecting viscosity, which could

play a very important role in determining the dynamics of many fluid systems.

Our inner disk boundary condition which does not incorporate inflow is still

far from being realistic. Real accreting tori could be compressible while we only

considered incompressible tori. Real stars are mostly spherical or near spherical

while our stellar model for T/|W | instability study is an idealized cylinder. All

these issues certainly need to be addressed in future investigations.
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APPENDIX A

GENERAL MAGNETIC FIELD PROFILES IN THE MAGNETOSPHERE

In the main text of Chapter 5 we adopt a special toroidal magnetic field profile

Bφ ∝ r in the magnetosphere so that the perturbation equations have simple an-

alytical solutions. For a more general magnetic field profile Bφ ∝ rq, with q > 1,

analytical solutions are no longer attainable, and we must solve numerically

the perturbation equations for both the disc (Eqs. [5.22]-[5.23]) and the magne-

tosphere (Eqs. [5.9]-[5.10]). To this end, we first need to derive the boundary

condition at the the inner boundary of the magnetosphere, which is close to the

center of the system (r = 0). This is done by requiring the solutions to be reg-

ular at small radius. As r → 0, we observe that ωAφ ∝ Bφ/r → 0. In this limit,

Eqs. (5.9)-(5.10) then reduce to

dξr
dr
= −1

r
ω̃ − 2mΩ
ω̃

ξr +
m2

r2
δh, (A.1)

dδh
dr
= (ω̃2 − rΩ2)ξr +

2mΩ
rω̃
δh, (A.2)

i.e, recovering the hydrodynamic equations1. These simplified equations can be

readily solved, leadimg to a relation between ξr and δh:

ξr =
mδh

rω̃(ω̃ + 2Ω)
. (A.3)

With this regularity condition implemented at some finite yet small inner

boundary rc, we carry out the integration in the magnetosphere towards the

interface, while at the same time we also integrate the disc equations towards

the same interface and employ shooting procedure to solve for the eigenvalues

by requiring solutions from both regions satisfy the matching condition at the

1See Fu & Lai (2011c) for the derivation of the regularity condition for a even more general
system (differentially rotating, magnetized, self-gravitating, etc.).
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interface (i.e., continuity of ξr and ∆Π). Note that the eigenvalues of the system

now have two components: the wave frequency ω, and the relation between the

solutions in two regions, e.g., δh(rc)/δh(rout) or ξr(rc)/ξr(rout).
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APPENDIX B

PLANE-PARALLEL FLOW WITH A COMPRESSIBLE UPPER LAYER AND

A MAGNETIZED LOWER LAYER

Consider a system with two separate fluid layers in a constant gravitational

field g = −gẑ. The upper layer (z > 0) is a compressible fluid of density

ρ = ρ+e
−z/Hz and constant horizontal velocity u+, and the lower layer (z < 0) is

an incompressible fluid of constant density ρ− and horizontal velocity u−. Here,

Hz = c2
s/g is the density scale height with cs being the sound speed, and both

velocities are along the x-axis. This system was studied by Tsang & Lai (2009b),

but here in Chapter 5 we we add a uniform horizontal magnetic field Bx in the

lower fluid. As in Tsang & Lai (2009b) (correcting typos in their Appendix), we

apply perturbations of the form eikx−iωt to both layers and solve forω by demand-

ing the Lagrangian displacement and Lagrangian total pressure perturbation be

continuous across the interface between upper and lower fluids. Denoting

ω̃+ = ω − ku+,

k2
z = (k2 − ω̃2

+
/c2

s),

k̃ = (
√

1+ 4H2
z k2

z − 1)/2Hz,

and

ρ̃+ = ρ+k/k̃,

the final solution for ω can be written as

ω =
k(ρ̃+u+ + ρ−u−)
ρ̃+ + ρ−

±

√

−k2(u+ − u−)2ρ̃+ρ−

(ρ̃+ + ρ−)2
− kg(ρ+ − ρ−)
ρ̃+ + ρ−

+
k2B2

x

4π(ρ̃+ + ρ−)
. (B.1)

The three terms under the square root clearly have different physics mean-

ings. The first term signifies the Kelvin-Helmholtz instability which disappears
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when velocity shear across the interface vanishes; the second term depicts the

Rayleigh-Taylor instability which only exists for non-zero density contrast; the

last term, the only difference between Eq. (B.1) and Eq. (A14) in Tsang & Lai

(2009b), describes the stabilizing effect of the magnetic field that lies along the

direction of the perturbation wave vector. If we take the incompressible and

hydrodynamic limit (i.e., cs → ∞, Hz → ∞ so that k̃ → k, ρ̃+ → ρ+, and Bx → 0),

then the above equation reduces to Eq. (B12) in Li & Narayan (2004).

164



BIBLIOGRAPHY

[1] Abramowicz M. A., Kluzniak, W. 2001, A&A, 374, L19

[2] Altamirano D., Belloni T., 2012, arXiv:1201.2106

[3] Acheson, D. J. & Gibbsons, M. P., 1978, Phil. Trans. Roy. Soc. Lond. A 289,
459

[4] Akiyama, S., Wheeler, J. C., Meier, D. L., Lichtenstadt, I., 2003, ApJ, 584, 954

[5] Akiyama, S., Wheeler, J. C., 2005, ApJ, 629, 414

[6] Andersson, N., 2003, Class. Quantum Grav., 20, 105

[7] Ardeljan, N. V., Bisnovatyi-Kogan, G. S., Moiseenko, S. G., 2000, A&A, 355,
1181

[8] Ardeljan, N. V., Bisnovatyi-Kogan, G. S., Moiseenko, S. G., 2005, MNRAS,
359, 333

[9] Arras P., Blaes O.M., Turner N. J., 2006, ApJ, 645, L65

[10] Bachetti M., et al., 2010, MNRAS, 403, 1193

[11] Balbus, S. A., 2003, ARAA, 41, 555

[12] Balbus, S. A. & Hawley, J. F., 1991, ApJ, 376, 214

[13] Balbus, S. A. & Hawley, J. F., 1998, Rev. Mod. Phys., 70, 1

[14] Balmforth, N.J., & Korycansky, D.G., 2001, MNRAS, 326, 833

[15] Baruteau, C. & Masset, F., 2008, ApJ, 672, 1054

[16] Beckwith, K., Hawley, J. F., Krolik, J. H., 2008, MNRAS, 390, 21

[17] Beckwith, K., Hawley, J. F., Krolik, J. H., 2009, ApJ, 707, 428

[18] Begelman, M. C., Blandford, R. D. & Rees, M. J., 1984, Rev. Mod. Phys., 56,
255

165



[19] Belloni T. M., Motta S. E., Munoz-Darias T., 2011, BASI, 39, 409

[20] Bisnovatyi-Kogan G. S., Ruzmaikin A. A., 1974, Ap&SS, 28, 45

[21] Bisnovatyi-Kogan G. S., Ruzmaikin A. A., 1976, Ap&SS, 42, 401

[22] Blaes, O. M., 1987, MNRAS, 227, 975

[23] Blaes, O. M. & Glatzel, W., 1986, MNRAS, 220, 253

[24] Blaes, O. M., Sramkova, E., Abramowicz, M. A., Kluzniak, W. & Torkelsson,
U., 2007, ApJ, 665, 642

[25] Blokland, J. W. S., van der Swaluw, E., Keppens, R. & Goedbloed, J. P., 2005,
A&A, 444, 337

[26] Bondeson, A., Iacono, R. & Bhattacharjee, A., 1987, Phys. Fluids, 30, 2167

[27] Brandenburg, A., Nordlund, A., Stein, R. F. & Torkelsson, U., 1995, ApJ,
446, 741

[28] Brown, J. D., 2000, Phys. Rev. D, 62, 084024

[29] Burrows, A. et al., 2007, ApJ, 664, 416

[30] Camarda, K. D., Anninos, P., Fragile, P. C., Font, J. A., 2009, ApJ, 707, 1610

[31] Cazes, J. E., Tohline, J. E., 2000, ApJ, 532, 1051

[32] Centrella, J. M., New, K. C. B., Lowe, L, Brown, J. D., 2001, ApJ, 550, L193

[33] Cerda-Duran, P., Quilis, V., Font, J. A., 2007, Comp. Phys. Comm., 177, 288

[34] Chan, C-K. 2009, ApJ, 704, 68

[35] Chandrasekhar S., 1961, Hydrodynamic and Hydromagnetic Stability, Ox-
ford University Press, Oxford

[36] Chandrasekhar, S., 1969, Ellipsoidal Figures of Equilibrium, Yale Univer-
sity Press, New York

166



[37] Chandrasekhar, S., 1970, Phys. Rev. Lett., 24, 611

[38] Corvino, G., Rezzolla, L., Bernuzzi, S., De Pietri, R., Giacomazzo, B., 2010,
Class. Quantum Grav., 27, 114104

[39] Curry, C., Pudritz, R. E. & Sutherland, P. G., 1994, ApJ, 434, 206

[40] Curry, C. & Pudritz, R. E., 1995, ApJ, 453, 697

[41] Curry, C. & Pudritz, R. E., 1996, MNRAS, 281, 119

[42] Davis, S. W., Stone, J. M. & Pessah, M. E., 2010, ApJ, 713, 52

[43] de Val-Borro, et al. 2006, MNRAS, 370, 529

[44] De Villiers, J. P., Hawley, J. F., & Krolik, J. H., 2003, ApJ, 599, 1238

[45] Dimmelmeier, H., Ott, C. D., Marek, A., Janka, H.-T., 2008, Phys. Rev. D,
78, 064056

[46] Done C., Gierlinski M., Kubota A., 2007, Astron. Astrophys. Rev., 15, 1

[47] Drazin P. G., Reid W. H., 1981, Hydrodynamic Stability, Cambridge Univ.
Press, Cambridge

[48] Duez, M., Foucart, F., Kidder, L. E., Ott, C. D. & Teukolsky, S. A., 2010,
Class. Quantum Grav., 27, 114106

[49] Etienne, Z. B., Liu, Y. T., Shapiro, S. L. & Baumgarte, T. W., 2009, Phys. Rev.
D, 79, 044024

[50] Feng, H., Rao, F. & Kaaret, P., 2010, ApJ, 710, L137

[51] Ferreira B. T., Ogilvie G. I., 2008, MNRAS, 386, 2297

[52] Fragile, P.C., Blaes, O., Anninos, P., Salmonson, J.D. 2007, ApJ, 668, 417

[53] Friedman, J. L., Schutz, B. F., 1978, ApJ, 222, 281

[54] Frieman, E. & Rotenberg, M., 1960, Rev. Modern Phys., 32, 898

167



[55] Fromang, S., 2010, A&A, 514, L5

[56] Fromang, S. & Papaloizou, J., 2007, A&A, 476, 1113

[57] Fu W., Lai D., 2009, ApJ, 690, 1386

[58] Fu W., Lai D., 2011a, MNRAS, 410, 399

[59] Fu W., Lai D., 2011b, MNRAS, 410, 1617

[60] Fu W., Lai D., 2011c, MNRAS, 413, 2207

[61] Fu W., Lai D., 2012, submitted

[62] Gardiner, T.A., Stone, J.M., 2005, AIPC, 784, 475

[63] Ghosh P., Lamb, F. K., 1978, ApJ, 223, L83

[64] Gierlinski, M., Middleton, M., Ward, M. & Done, C., 2008, Nature, 455, 369

[65] Gilfanov M., Revnivtsev M., Molkov S., 2003, A&A, 410, 217

[66] Glatzel, W., 1987a, MNRAS, 225, 227

[67] Glatzel, W., 1987b, MNRAS, 228, 77

[68] Goldreich, P., Goodman, J. & Narayan, R., 1986, MNRAS, 221, 339

[69] Goodman, J., Narayan, R. & Goldreich, P., 1987, MNRAS, 225, 695

[70] Goldreich, P. & Tremaine, S., 1979, ApJ, 233, 857

[71] Goodman, J., 1993, ApJ, 406, 596

[72] Goossens, M., Hollweg, J. V. & Sakurai, T., 1992, Solar Physics, 138, 233

[73] Guan, X., Gammie, C. F., Simon, J. B. & Johnson, B. M., 2009, ApJ, 694, 1010

[74] Hachisu, I., 1986, ApJS, 61, 479

[75] Hameiri, E., 1981, J. Math. Phys., 22, 2080

168



[76] Hawley, J. F., Gammie, C. F. & Balbus, S. A., 1996, AJ, 464, 690

[77] Hawley, J.F., Guan, X., & Krolik, J.H., 2011, ApJ, 738, 84

[78] Heger, A., Woosley, S. E., Spruit, H. C., 2005, ApJ, 626, 350

[79] Heinemann, T. & Papaloizou, J. C. B., 2009, MNRAS, 397, 52

[80] Henisey, K. B., Blaes, O. M., Fragile, P. C., Ferreira, B. T., 2009, ApJ, 706, 705

[81] Hirose, S., Blaes, O. & Krolik, J. H., 2009, ApJ, 704, 781

[82] Igumenshchev I. V., Narayan R., Abramowicz M. A., 2003, ApJ, 592, 1042

[83] Ikhsanov N. R., Pustil’nik L. A., 1996, A&A, 312, 338

[84] Ipser, J. R., 1994, ApJ, 435, 767

[85] Kato, S., 1990, PASJ, 42, 99

[86] Kato S., 2001, PASJ, 53, 1

[87] Kato S., 2003a, PASJ, 55, 257

[88] Kato S., 2003b, PASJ, 55, 801

[89] Kato S., 2008, PASJ, 60, 111

[90] Kato S., 2011a, PASJ, 63, 125

[91] Kato S., 2011b, PASJ, 63, 861

[92] Kato, S. & Fukue, J., 1980, PASJ, 32, 377

[93] Kato S., Fukue J., Mineshinge S., 2008, Black-Hole Accretion Disks, Kyoto
Univ. Press, Kyoto

[94] Keppens, R., Casse, F. & Goedbloed, J. P., 2002, ApJ, 569, L121

[95] Kotake, K., Sawai, H., Yamada, S., Sato, K., 2004, ApJ, 608, 391

169



[96] Kluzniak, W. & Abramowicz, M. A., 2002, astro-ph/0203314

[97] Knobloch, E., 1992, MNRAS, 255, 25p

[98] Kulkarni, A. K., et al., 2011, MNRAS, 414, 1183

[99] Kulkarni A. K., Romaonva M. M., 2008, MNRAS, 386, 673

[100] Kumar, S., Coleman, C. S. & Kley, W., 1994, MNRAS, 266, 379

[101] Lai, D., Shapiro, S. L., 1995, ApJ, 442, 259

[102] Lai D., Tsang D., 2009, MNRAS, 393, 979

[103] Lander, S. K., Jones, D. I., 2009, MNRAS, 395, 2162

[104] Latter, H. N. & Balbus, S. A., 2009, MNRAS, 399, 1058

[105] Lee, W. H., Abramowicz, M. A. & Kluziniak, W., 2004, ApJ, 603, L93

[106] Li L., Goodman J., Narayan R., 2003, ApJ, 593, 980

[107] Li L.-X., Narayan R., 2004, ApJ, 601, 414

[108] Liu, Y. T., Lindblom, L., 2001, MNRAS, 324, 1063

[109] Liu, Y. T., 2002, Phys. Rev. D, 65, 124003

[110] Longaretti, P. -Y., & Lesur, G., 2010, A&A, 561, A51

[111] Lovelace, R. V. E., Li, H., Colgate, S. A. & Nelson, A. F., 1999, ApJ, 513, 805

[112] Lovelace R. V. E., Turner L., Romanova M. M., 2009, ApJ, 701, 225

[113] Lovelace, R. V. E., Rothstein, D. M. & Bisnovatyi-Kogan, G. S., 2009, ApJ,
701, 885

[114] Lovelace R. V. E., Romanova M. M., Newman W. I., 2010, MNRAS, 402,
2575

[115] Lubow S. H., Spruit, H. C., 1995, ApJ, 445, 337

170



[116] Machida, M., Matsumoto, R. 2003, ApJ, 585, 429

[117] Machida, M., Nakamura, K. E., & Matsumoto, R., 2006, PASJ, 58, 193

[118] Meszaros, P., 2006, Rep. Prog. Phys., 69, 2259

[119] Middleton, M. & Done, C., 2010, MNRAS, 403, 9

[120] Middleton, M., Done, C., Ward, M., Gierlinski, M. & Schurch, N., 2009,
MNRAS, 394, 250

[121] Mignone, A., Bodo, G., Massaglia, S., et al. 2007, ApJS, 170, 228

[122] Mikhailovskii, A. B., Fridman, A. M., Churikov, A. P., Pustovitov, V. D. &
Smolyakov, A. I., 2009, Plasma Phys. Controlled Fusion 51, 045003

[123] Miller, K. A. & Stone, J. M., 2000, ApJ, 534, 398

[124] Miller M. C., Lamb F. K., Psaltis D., 1998, ApJ, 508, 791

[125] Montero, P. J., Zanotti, O., Font, J. A. & Rezzolla, L., 2007, MNRAS, 378,
1101

[126] Montero, P. J., Font, J. A. & Shibata, M., 2010, Phys. Rev. Lett., 104, 191101

[127] Moscibrodzka, M., Gammie, C. F., et al., 2009, ApJ, 706, 497

[128] Muto, T., Machida, M. N. & Inutsuka, Shu-ichiro, 2008, ApJ, 679, 813

[129] Narayan, R., Goldreich, P. & Goodman, J., 1987, MNRAS, 228, 1

[130] Noble, S. C., Krolik, J. H., Hawley, J. F., 2009, ApJ, 692, 411

[131] Noble, S. C., et al., 2011, ApJ, 743, 115

[132] Nowak M. A., Wagoner R. V., 1991, ApJ, 378, 656

[133] Nowak, M. A., Wagoner, R. V., 1992, ApJ, 393, 697

[134] Obergaulinger, M., Aloy, M. A., Dimmelmeier, H., Muller, E., 2006, A&A,
457, 209

171



[135] Obergaulinger, M., Cerda-Duran, P., Muller, E., Aloy, M. A., 2009, A&A,
498, 241

[136] Oda H., et al., 2010, ApJ, 712, 639

[137] Ogilvie, G. I. & Pringle, J. E., 1996, MNRAS, 279, 152

[138] Okazaki A. T., Kato S., Fukue J., 1987, PASJ, 39, 457

[139] O’Neill, S. M., Reynolds, C. S. & Miller, M. C., 2009, ApJ, 693, 1100

[140] O’Neill, S.M., Reynolds, C.S., Miller, C.M. & Sorathia, K. 2011, ApJ, 736,
107

[141] Ortega-Rodriguez, M., Silbergleit, A. S., & Wagoner, R. V. 2008, Geophys.
Astrophys. Fluid Dyn., 102, 75

[142] Ott, C. D., 2009, Class. Quantum Grav., 26, 063001

[143] Ott, C. D., Ou, S., Tohline, J. E., Burrow, A., 2005, ApJ, 625, L119

[144] Ott, C. D., Burrows, A., Thompson, T. A., Livne, E., Walder, R., 2006, ApJS,
164, 130

[145] Ott, C. D., Dimmelmeier, H., Marek, A., Janka, H.-T., Hawke, I., Zink, B.,
Schnetter, E., 2007, Phys. Rev. Lett., 98, 261101

[146] Ou, S., Tohline, J. E., 2006, ApJ, 651, 1068

[147] Paczynski B, Witta P. J., 1980, A&A, 88, 23

[148] Papaloizou, J. C. B. & Pringle, J. E., 1984, MNRAS, 208, 721

[149] Papaloizou, J. C. B. & Pringle, J. E., 1985, MNRAS, 213, 799

[150] Papaloizou, J. C. B. & Pringle, J. E., 1987, MNRAS, 225, 267

[151] Penna, R.F. et al., 2010, MNRAS, 408, 752

[152] Pessah, M. E., Chan, C. & Psaltis, D., 2006, MNRAS, 372, 183

172



[153] Pessah, M. E. & Goodman, J., 2009, ApJ, 608, L72

[154] Pickett, B. K., Durisen, R. H., Davis, G. A., 1996, ApJ, 458, 714

[155] Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, Numer-
ical Recipes. Cambridge Univ. Press, Cambridge

[156] Pringle, J. & King, A., 2007, Astrophysical Flows, Cambridge University
Press, Cambridge

[157] Rebusco, P., 2008, New Astron.Rev., 51, 855

[158] Remillard R. A., McClintock J. E., 2006, ARA&A, 44, 49

[159] Reynolds C. S., Miller M. C., 2009, ApJ, 692, 869

[160] Rezzolla, L., Baiotti, L., Giacomazzo, B., Link, D. & Font, J. A., 2010, Class.
Quantum Grav., 27, 114105

[161] Rezzolla, L., Yoshida, Si., Maccarone, & Zanotti, O. 2003, MNRAS, 344,
L37

[162] Romanova M. M., Kulkarni A. K., Lovelace R. V. E., 2008, ApJ, 673, L171

[163] Rothstein D. M., Lovelace R. V. E., 2008, ApJ, 677, 1221

[164] Saijo, M., Yoshida, S., 2006, MNRAS, 368, 1429

[165] Saijo, M., Shibata, M., Baumgarte, T. W., Shapiro, S. L., 2001, ApJ, 548, 919

[166] Sakurai, T., Goossens, M. & Hollweg, J. V., 1991, Solar Physics, 133, 227

[167] Schmidt, G., 1979, Physics of High Temperature Plasmas, Academic Press

[168] Schnittman, J. D. & Rezzolla, L., 2006, ApJ, 637, L113

[169] Sekiya, M. & Miyama, S. M., 1988, MNRAS, 234, 107

[170] Shafee, R., et al., 2008, ApJ, 687, L25

[171] Shibata, M, Baumgarte, T. W., Shapiro, S. L., 2000, ApJ, 542, 453

173



[172] Shibata, M., Karino, S., Eriguchi, Y., 2002, MNRAS, 334, L27

[173] Shibata, M., Karino, S., Eriguchi, Y., 2003, MNRAS, 343, 619

[174] Shibata, M., Sekiguchi, Y.-I., 2005, Phys. Rev. D, 71, 024014

[175] Shu, F. H., 1992, Gas Dynamics, University Science Books

[176] Silbergleit, A. S., & Wagoner, R. V. 2008, ApJ, 680, 1319

[177] Silbergleit, A. S., Wagoner, R. V., & Ortega-Rodriguez, M. 2001, ApJ, 548,
335

[178] Simon, J. B., Hawley, J. F., Beckwith, K., 2009, ApJ, 690, 974

[179] Sorathia, K. A., Reynolds, C. S. & Armitage, P. J., 2010, ApJ, 712, 1241

[180] Spruit H. C., Stehle R., Papaloizou J. C. B., 1995, MNRAS, 275, 1223

[181] Stella L., Vietri M., Morsink S. M. 1999, ApJ, 524, L63

[182] Stergioulas, N., 2003, Liv. Rev. Rel., 6, 3

[183] Stone, J. M., Hawley, J. F., Gammie, C. F. & Balbus, S. A., 1996, ApJ, 463,
656

[184] Strohmayer, T. E. & Mushotzky, R. F., 2009, ApJ, 703, 1386

[185] Sramkova, E., Torkelsson, U. & Abramowicz, M. A., 2007, A&A, 467, 641

[186] Swank J., 1999, Nuclear Phys. B, Proc. Suppl., 69, 12

[187] Tagger M., Pellat R. 1999, A&A, 349, 1003

[188] Tagger M., Varniere P. 2006, ApJ, 652, 1457

[189] Terquem, C., 2003, MNRAS, 341, 1157

[190] Terquem, C. & Papaloizou, J. C. B. 1996, MNRAS, 279, 767

[191] Tohline, J. E., Durisen, R. H., McCollough, M., 1985, ApJ, 298, 220

174



[192] Toman, J., Imamura, J. N., Pickett, B. K., Durisen, R. H., 1998, ApJ, 497,
370

[193] Tomimura, Y., Eriguchi, Y., 2005, MNRAS, 359, 1117

[194] Tsang D., Lai D., 2008, MNRAS, 387, 446

[195] Tsang D., Lai D., 2009a, MNRAS, 393, 992

[196] Tsang D., Lai D., 2009b, MNRAS, 396, 589

[197] Tsang D., Lai D., 2009c, MNRAS, 400, 470

[198] van der Klis M., 2006, in Lewin W. H. G., van der Kils M., eds, Compact
Stellar X-ray sources. Cambridge Univ. Press, Cambridge

[199] Varniere, P. & Tagger, M., 2002, A&A, 394, 329

[200] Velikhov, E. P., 1959, Sov. Phys. JETP 36, 995

[201] Wagoner R. V., 1999, Phys. Rep., 311, 259

[202] Watts, A. L, Andersson, N., Jones, D. I., 2005, ApJ, 618, L37

[203] Woosley, S. E., 1993, ApJ, 405, 273

[204] Yamada, S., Sawai, H., 2004, ApJ, 608, 907

[205] Yu, C. & Lai, D., 2012, in prep.

[206] Yu, C. & Li, H., 2009, ApJ, 702, 75

[207] Zhang, H. & Lai, D. 2006, MNRAS, 368, 917

[208] Zurek, W. H. & Benz, W., 1986, ApJ, 308, 132

175


