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Protoplanetary disks are disks of gas and dust orbiting young stars which form

planetary systems. This thesis is devoted to understanding how gravitational

interactions in different astrophysical situations effect the structure and dynam-

ical evolution of protoplanetary disks, shaping the planetary systems the disks

give birth to. Chapter 2 shows how disk warping in a hydrodynamical disk

torqued by a spinning central star and inclined binary companion affects the

disk’s structure and drives its long-term evolution. Chapter 3 looks at how

photoevaporation and the formation of a massive, short-period planet modi-

fies the excitation between the spin-axis of a spinning oblate star and angular

momentum axis of a protoplanetary disk generated by the gravitational torque

from an inclined binary companion. Chapter 4 derives the conditions a proto-

planetary disk must satisfy to undergo the Lidov-Kozai instability, where the

disk’s eccentricity grows from the gravitational torque exerted on the disk by

an inclined binary companion. Chapter 5 derives the conditions a protoplane-

tary disk around an eccentric binary must satisfy to evolve into an orientation

perpendicular to the binary’s orbital plane (polar alignment). Chapter 6 shows

an extended circumplanetary disk can remain stably tilted out of the planet’s

orbital plane, provided the torques from the oblate planet and disk self-gravity

are sufficiently strong to resist the tidal torque from the planet’s host star. The

appendix derives a useful dispersion relation for density waves in a viscous,

non-Keplarian disk.



BIOGRAPHICAL SKETCH

J.J. Zanazzi was born in the sprawling hot city of Phoenix, Arizona. His love

for astronomy began while he was in high school, where he did an astronomy

project with an astronomy graduate student at Arizona State University, look-

ing for planets outside the solar system. He then continued his research and

enrolled as an undergraduate at Northern Arizona University, a place whose

hippy vibe matched perfectly with his then long hair and tattered flack jacket

covered with punk rock patches. He spent his summers working as an under-

graduate researcher at Wayne State University, Pennsylvania State University,

and University of California Davis, and somehow convinced mathematicians at

Pennsylvania State University and the Independent University of Moscow (in

Russia) to let him into their intensive one-semester mathematics study abroad

programs. After living like a pampered academic gypsy for four years, he grad-

uated Northern Arizona University with degrees in physics, astronomy, and

mathematics, and entered Cornell University’s Ph.D. program in Astronomy

and Space Sciences. There, he worked with Professor Dong Lai, who opened

his eyes to the wonders of theoretical astrophysics. Now a short-haired recipi-

ent of a Ph.D., J. J. is ready to become a contributing member of society.

iii



To my grandfather, whose attention and encouragement to pursue the sciences

was a major part of me deciding to get a Ph.D. in Astrophysics. I wish he could

be here to see the completion of this work.

iv



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dong Lai, for the tremen-

dous amount of time and energy he put into advising me. I was truly fortunate

to learn from someone with not only an incredibly deep knowledge of many

fields in Astrophysics, but a pragmatic approach to research which leads to

many significant results over a short period of time. It is no accident Dong

is well known not only for his research, but also his many successful students,

and I only hope I can continue this legacy. I would like to thank my commit-

tee members, Jim Cordes, Eanna Flannagan, and Phil Nicholson, for agreeing to

serve on my thesis committee, and tolerating my radical shift of thesis topic in

the middle of my Ph.D. I would also like to thank Amaury H.M.J. Triaud, Doug

Lin, and Re’em Sari, for wonderful scientific collaborations, conversations, and

great times.

My mother, Lorelei Wood, has been a tremendous source of support over

the five years it took me to obtain my Ph.D. She is one of the main reasons I was

driven to get a doctorate in Astrophysics, by encouraging my scientific pursuits

while growing up, and giving me her insight on professional and personal mat-

ters. I could not have achieved what I did without her help. My late grandfather,

Billy Wood, was also a source of gentle guidance and scientific inspiration. This

thesis is dedicated to his memory. My father John Zanazzi, grandmother Ellen

Wood, and grandfather John Zanazzi were also supportive when I found my-

self in a pinch. Some of the advise they gave me, which I dismissed as an angsty

teenager, I have come to realize has been very insightful.

I would like to thank my friends Jeremy Hodis, Samuel Birch, Chelsea

Sharon, Kassandra Anderson, Michael Lam, Tyler Pauly, Paul Corlies, Cristobal

Caleidoscopico, Eamonn O’Shea, Dante Iozzo, Michael Matty, Abinov Jindal,

v



and Jean Teyssandier. You all have made the time I spent here in Ithaca some of

the best years of my life.

And of course, thank to the National Aeronautics and Space Administra-

tion (NASA) for funding three years of my Ph.D. research through a NASA

Earth and Space Sciences Fellowship (NESSF), and Cornell University for offer-

ing me a Teaching Assistantship to support my first two years. I would also

like to thank the Exoplanet Summer Program at the University of California

Santa Cruz, the 33rd Winter school in Theoretical Physics at Hebrew University,

and the Sagan Summer Workshop at the California Institute of Technology, for

funding me to visit their programs, as well as learn and collaborate with some

of the best scientists in the field of exoplanetary science.

vi



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1

2 Effects of Disk Warping on the Inclination Evolution of Star-Disk-
Binary Systems 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Star-Disk-Binary System and Gravitational Torques . . . . . . . . 11
2.3 Disk Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Disk Warp Induced by Binary Companion . . . . . . . . . 17
2.3.2 Disk Warp Indued by Oblate Star . . . . . . . . . . . . . . . 20
2.3.3 Disk Warps Induced by Combined Torques . . . . . . . . . 23
2.3.4 Disk Warp Profile: Summary . . . . . . . . . . . . . . . . . 25
2.3.5 Viscous Evolution . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Evolution of the Star-Disk-Binary System with Viscous Dissipa-
tion from Disk Warping . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.1 Theoretical Uncertainties . . . . . . . . . . . . . . . . . . . 38
2.5.2 Observational Implications . . . . . . . . . . . . . . . . . . 39

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Planet Formation in Disks with Inclined Binary Companions: Can Pri-
mordial Spin-Orbit Misalignment be Produced? 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Spin-Disk Misalignment from Star-Disk-Binary Gravitational In-

teractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 Setup and Parameters . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Gravitational Torques . . . . . . . . . . . . . . . . . . . . . 49
3.2.3 System Evolution and Secular Resonance . . . . . . . . . . 52

3.3 Non-homologous Surface Density Evolution: Photoevaporation . 53
3.4 Planet-Star-Disk-Binary Interactions . . . . . . . . . . . . . . . . . 57

3.4.1 Planet-Disk Interactions: Non-Gap Opening Planets . . . . 59
3.4.2 Planet-Disk Interactions: Gap Opening Planets . . . . . . . 60
3.4.3 Planet Interactions with Outer Disk . . . . . . . . . . . . . 62
3.4.4 Planet-Star and Planet-Binary Interactions . . . . . . . . . 64

3.5 Inclination Evolution of Planet-Star-Disk-Binary Systems . . . . . 67
3.5.1 Early In-Situ Formation of Hot-Jupiters . . . . . . . . . . . 68

vii



3.5.2 Late In-Situ Formation of Hot-Jupiters . . . . . . . . . . . . 71
3.5.3 Formation of Hot-Jupiters through Type-II Migration . . . 75
3.5.4 Hot Jupiters left in disk cavity from photoevaporation . . 78

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6.1 Observational Implications . . . . . . . . . . . . . . . . . . 83
3.6.2 Theoretical Uncertainties . . . . . . . . . . . . . . . . . . . 86

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Lidov-Kozai Mechanism in Hydrodynamical Disks: Linear Stability
Analysis 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Setup and Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Analytic Result for Thin Annulus . . . . . . . . . . . . . . 102
4.3.2 Inviscid Extended Disk . . . . . . . . . . . . . . . . . . . . 105
4.3.3 Effect of Viscosity . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . 108
4.4.1 Summary of Key Results . . . . . . . . . . . . . . . . . . . . 108
4.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Inclination Evolution of Protoplanetary Disks Around Eccentric Bina-
ries 115
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Test Particle Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 Circumbinary Disk Dynamics . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Qualitative Discussion . . . . . . . . . . . . . . . . . . . . . 123
5.3.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.3 Disk Warp Profile . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3.4 Viscous Torques . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Secular Dynamics with Massive Inclined Outer Body . . . . . . . 133
5.5 Torque on Binary and Effect of Accretion . . . . . . . . . . . . . . 136
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.6.1 Theoretical Uncertainties . . . . . . . . . . . . . . . . . . . 138
5.6.2 Observational Implications . . . . . . . . . . . . . . . . . . 139

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 Extended Transiting Disks and Rings Around Planets and Brown
Dwarfs: Theoretical Constraints 148
6.1 External Torques and the Laplace Surface . . . . . . . . . . . . . . 151
6.2 Generalized Laplace Surface: Equilibrium with Self-Gravity . . . 154
6.3 Time Evolution of Disk Warp . . . . . . . . . . . . . . . . . . . . . 159

6.3.1 Stability of Generalized Laplace Equilibria . . . . . . . . . 159
6.3.2 Coherent Disk Precession . . . . . . . . . . . . . . . . . . . 162
6.3.3 Model for high σ disk . . . . . . . . . . . . . . . . . . . . . 164

viii



6.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . 166
6.4.1 Key Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.4.2 Hydrodynamical Effects . . . . . . . . . . . . . . . . . . . . 169
6.4.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A Chapter 1 of appendix 175
A.1 Density Wave Dispersion Relation . . . . . . . . . . . . . . . . . . 176

A.1.1 High kz limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.1.2 Low kz limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.2 Long-Wavelength Bending Wave Dispersion Relation . . . . . . . 180

ix



LIST OF TABLES

2.1 Dimensionless coefficientsUb,Vb, andWbb, tabulated for differ-
ent p and q values . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Dimensionless coefficients Us, Vs, andWss, for different values
of p and q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Dimensionless coefficients Wbs and Wsb, for different values of
p and q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Dimensionless viscosity coefficients Γb, Γs, and Γ(bs), for various
p and q values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Definitions of relevant quantities in the star-disk-binary system . 47
3.2 Definitions of quantities related to planet interactions with the

star-disk-binary system . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Binary eccentricities eb, with their inclinations Icrit and Ipolar, for
the selected eccentric binaries with circumbinary disks . . . . . . 141

x



LIST OF FIGURES
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CHAPTER 1

INTRODUCTION

Protoplanetary disks are the disks of gas and dust orbiting young stars, and

are the nurseries from which planets are born. By looking at the ages of stars in

stellar clusters with disks, we know the typical lifetime of a protoplanetary disk

is of order ∼ 1 − 10 million years [Haisch, Lada & Lada, 2001]. Conveniently for

the inhabitants of planets, the lifetime of protoplanetary disks is (slightly) longer

than the time it takes to form a rocky core. When rocky cores/massive bodies

grow to ∼ 0.01−10 M⊕ by accreting small (∼meter size) bodies in their local feed-

ing zones (oligarchic growth), the massive bodies take ∼ 0.1−10 million years to

reach their respective isolation masses (no more small bodies may be accreted

onto the massive body because the massive body’s gravitational influence has

cleared its feeding zone) [Goldreich, Lithwick & Sari, 2004]. When rocky cores

grow to masses & 10 M⊕ from the accretion of pebbles (∼ cm size bodies) in their

local feeding zones (pebble accretion), the rocky cores take ∼ 10−3 − 1 million

years to grow to the body’s isolation mass [Lambrechts & Johansen, 2012].

The idea that planets form from disks dates all the way back to the 18th cen-

tury philosopher Immanuel Kant, whom argued a disk was a natural place to

form our solar system, composed of planets on nearly circular and coplanar or-

bits. The nebular hypothesis was revitalized by Safronov [1972], who developed

the Solar Nebula Disk Model (SNDM), where the planets in our solar system

form from a disk of gas and dust orbiting our young sun. The SNDM nicely

explained a number of features other solar system formation models had been

struggling to explain for centuries (see Woolfson 1993 for a review) other plan-

etary systems were expected to share:
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1. Because disks have much more mass at their outer edges, low mass planets

form close to their host stars, while massive planets form at larger semi-

major axis.

2. Because interactions between planets and gaseous disks damp planetary

eccentricities, planetary systems form with nearly circular orbits.

3. Since the disk forms from the same cloud of gas as the host star, the plane-

tary systems produced have nearly coplanar orbits, which are also copla-

nar with the host star’s equatorial plane.

Many of the first extra-solar planetary systems discovered did not have these

predicted features. The first planet discovered (51 Pegasi b) orbited it’s host

star at a distance of ∼ 0.03 au [Mayor & Queloz, 1995], a distance ∼ 10 times

shorter than Mercury’s semi-major axis. Many more gas giant planets with or-

bital periods between 1 − 10 days were discovered soon after, a class of planets

which became known as “Hot Jupiters.” Many massive exoplanets were shown

to lie on extremely eccentric orbits, the highest being HD 80606b, which has an

eccentricity of e = 0.93 [Naef, et al., 2001, Hébrard, et al., 2010]. And by using

the Rossiter-McLaughlin effect [Rossiter, 1924, McLaughlin, 1924], many planets

were shown to have their orbital angular momentum vectors highly misaligned

with their host star’s spin axis (e.g. Hébrard et al. 2008, Narita et al. 2009, Winn

et al. 2009, Triaud et al. 2010; see Winn & Fabrycky 2015, Triaud 2017 for recent

reviews).

Theoretical explanations for how these planetary systems form (especially

hot Jupiters) typically fall into one of two categories (see Dawson & Johnson

2018 for a review). The first, called the “high-eccentricity channel,” posits the

massive planet forms far from it’s host star. Later in the planet’s evolution, grav-

2



itational interactions from the torque by an inclined companion (either binary

or planetary; Wu & Murray 2003, Fabrycky & Tremaine 2007, Nagasawa, Ida, &

Bessho 2008, Wu & Lithwick 2011, Naoz, Farr & Rasio 2012, Beaugé & Nesvorný

2012, Petrovich 2015, Anderson et al. 2016, Muñoz, Lai & Liu 2016, Hamers &

Portegies Zwart 2016), or strong encounters with other massive planets leading

to planet-planet scattering [Rasio & Ford, 1996, Chatterjee, Ford, Matsumura

& Rasio, 2008, Ford & Rasio, 2008, Jurić & Tremaine, 2008], places the soon to

be formed hot Jupiter on an eccentric orbit misaligned with the planet’s orig-

inal orbital plane (and host star’s equatorial plane). Tides then circularize the

planet’s orbit, forming a short-period Jovian planet on an orbit misaligned with

the host star’s equatorial plane. Although this is the favored formation path-

way for hot Jupiters, it is unclear what fraction of HJs are formed through these

high-eccentricity routes, and several observations remain difficult to explain,

such as the lack of giant planets with high eccentricities [Dawson, Murray-Clay

& Johnson, 2015], and the correlation between the spin-orbit misalignment and

the effective temperature of the host star (e.g., Albrecht et al. 2012, Mazeh et al.

2015, Li & Winn 2016, Winn et al. 2017).

The second category of models argues these planetary architectures arose

while the planet was still forming in it’s natal protoplanetary disk. A close-

in hot Jupiter may follow the disk’s viscous evolution, and migrate to an orbit

close to the host star [Lin & Papaloizou, 1986, Lin, Bodenheimer & Richardson,

1996], or it can form at the location we observe it today [Batygin, Bodenheimer

& Laughlin, 2016, Boley, Granados Contreras & Gladman, 2016]. The planet’s

eccentricity may in some circumstances be excited by interactions with the disk

(e.g. Ogilvie & Lubow 2003, Goldreich & Sari 2003, Teyssandier & Ogilvie 2017,

Rosotti, Booth, Clarke, Teyssandier, Facchini & Mustill 2017). And the disk it-
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self may become misaligned with the equatorial plane of it’s host star, through

magnetic interactions between the star and the disk [Lai et al., 2011, Spalding

& Batygin, 2015], from accretion onto the disk by turbulent molecular clouds

(Bate et al. 2010, Fielding et al. 2015; although see Spalding, Batygin & Adams

2014), or by the gravitational torque from an inclined binary companion [Baty-

gin, 2012, Batygin & Adams, 2013, Lai, 2014, Spalding & Batygin, 2014].

Specifically, the torque from an inclined binary companion was shown to be

a particularly robust way to generate large misalignments between the disk’s

orbital angular momentum vector and the host star’s spin axis, which occurs

when the system passes through a “secular resonance” [Batygin, 2012, Batygin

& Adams, 2013, Lai, 2014, Spalding & Batygin, 2014]. The disk forms with a

large amount of mass, and exerts a strong gravitational torque on the spinning

host star. This torque causes the stellar spin axis to precess around the disk’s

orbital angular momentum, at a rate much faster than the frequency the disk

is driven into precession around the binary’s orbital angular momentum by the

binary’s gravitational torque. But as the disk looses mass, the star-disk preces-

sion frequency decreases, until it becomes comparable to the disk-binary pre-

cession frequency. When this occurs, a large amount of angular momentum is

transferred from the binary to the mutual star-disk angular momenta, causing

large inclinations to be excited between the stellar spin axis and the disk orbital

angular momentum axis.

The bulk of this thesis is dedicated to understanding to what extent realistic

star-disk-binary systems may suffer secular resonances, generating spin-orbit

misalignments for the planetary systems forming within them (primordial mis-

alignment). Chapter 2 uses the bending wave formalism developed by Lubow
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& Ogilvie [2000] in the “resonant” regime (see Chapter A for details) to inves-

tigate how torques from the spinning host star and inclined binary compan-

ion twist and warp the disk. It also looks at the effect of viscous dissipation

from disk warping to drive the star-disk-binary system’s dynamical evolution

over the disk’s lifetime. Chapter 3 investigates how photoevaporation and the

formation of a short-period gas giant may suppress the star-disk inclinations

generated after the system passes through a secular resonance, or hinder the

system from passing through a secular resonance in the first place. Chapter 4

looks at the conditions the disk no longer remains circular (a critical assumption

of these models), but instead has it’s eccentricity excited by the binary’s grav-

itational torque, and undergoes eccentricity and inclination oscillations via the

Lidov-Kozai effect.

The tools developed to tackle the problems mentioned above found appli-

cations to other types of protoplanetary disks besides star-disk-binary systems.

One such problem is the dynamics of a protoplanetary disk around two binary

stars in eccentric orbits. All circumbinary planets (planets orbiting two binary

stars) lie on orbits nearly coplanar with the binary’s orbital plane [Doyle et al.,

2011, Kostov et al., 2013, 2014, 2016, Orosz et al., 2012a,b, Schwamb et al., 2013,

Welsh et al., 2012, 2015], an expected outcome if the planets formed in a disk

with a low inclination to the binary’s orbital plane. In Foucart & Lai [2013,

2014], it was shown viscous dissipation from disk warping aligns the disk with

the binary’s orbital plane over timescales much shorter than typical protoplan-

etary disk lifetimes. Most observations show circumbinary disks to be nearly

aligned with their binary’s orbital plane within a few degrees (e.g. Andrews

et al. 2010, Czekala et al. 2015, 2016, Kennedy et al. 2012b), supporting the pic-

ture of circumbinary planets forming coplanar to the binary’s orbital plane, but
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some highly inclined circumbinary disks have been discovered (e.g. Chiang &

Murray-Clay 2004, Marino et al. 2015, Brinch et al. 2016, Kennedy et al. 2012a).

Specifically, the debris disk around 99 Herculis has a ∼ 90◦ inclination with it’s

binary orbital plane [Kennedy et al., 2012a].

Martin & Lubow [2017] provided a tentative theoretical explanation for

the evolution of 99 Herculis B’s debris disk to it’s polar orientation. Us-

ing Smoothed Particle Hydrodynamics simulations of a hydrodynamical disk

around an eccentric (eb = 0.5) binary, Martin & Lubow [2017] showed a proto-

planetary disk with an initial disk-binary inclination of 60◦ will evolve to a po-

lar state, due to the interplay of gravitational and viscous disk warping torques.

But this was just one simulation of a gaseous circumbinary disk around an ec-

centric binary: a comprehensive theoretical study was lacking in the literature.

Chapter 5 is such a comprehensive study. Generalizing the perturbative work

of Foucart & Lai [2014] to arbitrary binary eccentricities and disk-binary incli-

nations, I provide a simple analytic criterion a circumbinary disk must satisfy

to polar align with respect to the binary’s orbital plane.

My expertise in protoplanetary disks also found applications to circumplan-

etary disks. By looking at archival light-curves from the K5 star 1 SWASP

J140747-354542, Mamajek et al. [2012] made a tentative detection of an extended

circumplanetary disk/ring system. Because the disk is so extended, to keep

the disk stably tilted out of the planet’s orbital plane, additional torques are

required to resist the external torque exerted on the disk/ring system by tidal

torques from the host star. Chapter 6 shows the combined influence of torques

exerted on the rings by the oblate planet and torques between mutual ringlets

from self-gravity are sufficient to stably tilt the disk/ring system out of the
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planet’s orbital plane.

The appendix derives a useful result related to how bending waves propa-

gate across a hydrodynamical disk. Two different equations describe how bend-

ing waves and viscous torques resist external torques to keep a hydrodynam-

ical disk rigid and drive the disk’s dynamical evolution. When the Shakura-

Sunyaev α parameter and epicyclic frequency κ2 = (2Ω/r) d(r2Ω)/dr (where

Ω2 = r−1∂Φ/∂r|z=0 is the orbital frequency of the disk) satisfy

max
(
α,

∣∣∣∣∣∣Ω2 − κ2

2Ω2

∣∣∣∣∣∣
)
.

H
r
, (1.1)

where H is the disk’s scale-height, the disk lies in the resonant bending wave

regime, and warps propagate across the disk according to a wave-like equa-

tion [Papaloizou & Lin, 1995, Lubow & Ogilvie, 2000]. When condition (1.1)

is violated, the disk lies in the viscous regime, and warps evolve according to

a diffusion equation [Papaloizou & Pringle, 1983, Ogilvie, 1999]. Appendix A

shows condition (1.1) may be understood using the dispersion relation for den-

sity waves propagating across a viscous, non-Keplarian disk.
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CHAPTER 2

EFFECTS OF DISK WARPING ON THE INCLINATION EVOLUTION OF

STAR-DISK-BINARY SYSTEMS

2.1 Introduction

Circumstellar disks in young protostellar binary systems are likely to form with

an inclined orientation relative to the binary orbital plane, as a result of the com-

plex star/binary/disc formation processes (e.g. Bate, Bonnell, & Bromm 2003,

McKee & Ostriker 2007, Klessen 2011). Indeed, many misaligned circumstellar

disks in protostellar binaries have been found in recent years (e.g. Stapelfeldt

et al. 1998, 2003, Neuhäuser et al. 2009, Jensen & Akeson 2014, Williams et al.

2014, Brinch et al. 2016, Fernández-López, Zapata & Gabbasov 2017, Lee et al.

2017). Such misaligned disks experience differential gravitational torques from

the binary companion, and are expected to be twisted/warped while under-

going damped precession around the binary (e.g. Lubow & Ogilvie 2000, Bate

et al. 2000, Foucart & Lai 2014). On the other hand, a spinning protostar has

a rotation-induced quadrupole, and thus exerts a torque on the disk (and also

receives a back-reaction torque) when the stellar spin axis and the disk axis are

misaligned. This torque tends to induce warping in the inner disk and drives

mutual precession between the stellar spin and disk. In the presence of both

torques on the disk, from the binary and from the central star, how does the

disk warp and precess? What is the long-term evolution of the disk and stel-

lar spin in such star-disk-binary systems? These are the questions we intend to

address in this paper.

Several recent studies have examined the secular dynamics of the stellar spin
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and circumstellar disk in the presence of an inclined binary companion [Baty-

gin, 2012, Batygin & Adams, 2013, Lai, 2014, Spalding & Batygin, 2014, 2015].

These studies were motivated by the observations of spin-orbit misalignments

in exoplanetary systems containing hot Jupiters, i.e., the planet’s orbital plane is

often misaligned with the stellar rotational equator (see Winn & Fabrycky 2015

and Triaud 2017 for recent reviews). It was shown that significant “primordial”

misalignments may be generated while the planetary systems are still form-

ing in their natal protoplanetary disks through secular star-disk-binary gravita-

tional interactions [Batygin & Adams, 2013, Lai, 2014, Spalding & Batygin, 2014,

2015]. In these studies, various assumptions were made about the star-disk in-

teractions, and uncertain physical processes such as star/disk winds, magnetic

star-disk interactions, and accretion of disk angular momentum onto the star

were incorporated in a parameterized manner. Nevertheless, the production of

spin-orbit misalignments seems quite robust.

In Zanazzi & Lai [2017b], we showed that the formation of hot Jupiters in

the protoplanetary disks can significantly suppress the excitation of spin-orbit

misalignment in star-disk-binary systems. This is because the presence of such

close-in giant planets lead to strong spin-orbit coupling between the planet and

its host star, so that the spin-orbit misalignment angle is adiabatically main-

tained despite the gravitational perturbation from the binary companion. How-

ever, the formation of small planets or distant planets (e.g. warm Jupiters) do

not affect the generation of primordial misalignments between the host star and

the disk.

A key assumption made in all previous studies on misalignments in star-

disk-binary systems [Batygin & Adams, 2013, Lai, 2014, Spalding & Batygin,
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2015] is that the disk is nearly flat and behaves like a rigid plate in response to

the external torques from the binary and from the host star. The rationale for

this assumption is that different regions of the disk can efficiently communicate

with each other through hydrodynamical forces and/or self-gravity, such that

the disk stays nearly flat. However, to what extent this assumption is valid is

uncertain, especially because in the star-disk-binary system the disk experiences

two distinct torques from the oblate star and from the binary which tend to drive

the disk toward different orientations (see Tremaine & Davis 2014 for examples

of non-trivial disk warps when a disk is torqued by different forces). More-

over, the combined effects of disk warps/twists (even if small) and viscosity can

lead to non-trivial long-term evolution of the star-disk-binary system. Previous

works on warped disks in the bending wave regime have considered a single

external torque, such as an ext binary companion [Lubow & Ogilvie, 2000, Bate

et al., 2000, Foucart & Lai, 2014], an inner binary [Facchini, Lodato, & Price, 2013,

Lodato & Facchini, 2013, Foucart & Lai, 2014, Zanazzi & Lai, 2018a], magnetic

torques from the central star [Foucart & Lai, 2011], a central spinning black hole

[Demianski & Ivanov, 1997, Lubow, Ogilvie, & Pringle, 2002, Franchini, Lodato,

& Facchini, 2016, Chakraborty & Bhattacharyya, 2017], and a system of multiple

planets on nearly coplanar orbits [Lubow & Ogilvie, 2001]. In this paper, we

will focus on the hydrodynamics of warped disks in star-disk-binary systems,

and will present analytical calculations for the warp amplitudes/profiles and

the rate of evolution of disk inclinations due to viscous dissipation associated

with these warps/twists.

This paper is organized as follows. Section 3.2.1 describes the setup and

parameters of the star-disk-binary system we study. Section 2.3 presents all the

technical calculations of our paper, including the disk warp/twist profile and
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effect of viscous dissipation on the evolution of system. Section 2.4 examines

how viscous dissipation from disk warps modifies the long-term evolution of

star-disk-binary systems. Section 2.5 discusses theoretical uncertainties of our

work. Section 3.7 contains our conclusions.

2.2 Star-Disk-Binary System and Gravitational Torques

Consider a central star of mass M?, radius R?, rotation rate Ω?, with a circum-

stellar disk of mass Md, and inner and outer truncation radii of rin and rout, re-

spectively. This star-disk system is in orbit with a distant binary companion of

mass Mb and semimajor axis ab. The binary companion exerts a torque on the

disk, driving it into differential precession around the binary angular momen-

tum axis l̂b. Averaging over the orbital period of the disk annulus and binary,

the torque per unit mass is

Tdb = −r2Ωωdb( l̂· l̂b) l̂b× l̂, (2.1)

where Ω(r) '
√

GM?/r3 is the disk angular frequency, l̂ = l̂(r, t) is the unit orbital

angular momentum axis of a disk “ring” at radius r, and

ωdb(r) =
3GM?

4a3
bΩ

(2.2)

is the characteristic precession frequency of the disk “ring” at radius r. Similarly,

the rotation-induced stellar quadrapole drives the stellar spin axis ŝ and the disk

onto mutual precession. The stellar rotation leads to a difference in the principal

components of the star’s moment of inertia of I3− I1 = kqM?R2
?Ω̄2

?, where kq ' 0.1

for fully convective stars [Lai, Rasio & Shapiro, 1993]. Averaging over the orbital

period of the disk annulus, the torque on the disk from the oblate star is

Tds(r, t) = −r2Ωωsd(ŝ· l̂)ŝ× l̂, (2.3)
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where

ωds(r) =
3G(I3 − I1)

2r5Ω
=

3GkqM?R2
?Ω̄2

?

2r5Ω
(2.4)

is the characteristic precession frequency of the disk ring at radius r. Since ωdb

and ωds both depend on r, the disk would quickly lose coherence if there were

no internal coupling between the different “rings.”

We introduce the following rescaled parameters typical of protostellar sys-

tems:

M̄? =
M?

1 M�

, R̄? =
R?

2 R�
, Ω̄? =

Ω?√
GM?/R3

?

,

M̄d =
Md

0.1 M�

, r̄in =
rin

8 R�
, r̄out =

rout

50 au
,

M̄b =
Mb

1 M�

, āb =
ab

300 au
. (2.5)

The rotation periods of T Tauri stars vary from P? ∼ 1− 10 days [Bouvier, 2013],

corresponding to Ω̄? ∼ 0.3 − 0.03. We fix the canonical value of Ω̄? to be 0.1,

corresponding to a stellar rotation period of P? = 3.3 days. The other canonical

values in Eq. (2.5) are unity, except the disk mass, which can change significantly

during the disk lifetime. Our choice of rin is motivated by typical values of a

T Tauri star’s magnetospheric radius rm, set by the balance of magnetic and

plasma stresses (see Lai 2014b for review)

rin ≈ rm = η

(
µ4
?

GM?Ṁ2

)1/7

= 7.4 η
( B?

1 kG

)4/7 (
10−7 M�/yr

Ṁ

)2/7 R̄12/7
?

M̄1/7
?

R�. (2.6)

Here, µ? = B?R3
? is the stellar dipole moment, B? is the stellar magnetic field, Ṁ

is the accretion rate onto the central star (e.g. Rafikov 2017), and η is a parame-

ter of order unity. We note that we take the stellar radius to be fixed, in contrast

to the models of Batygin & Adams [2013] and Spalding & Batygin [2014, 2015],
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but we argue this will not change our results significantly. We are primarily con-

cerned with the effects of viscous dissipation from disk warping, and a changing

stellar radius will not affect the viscous torque calculations to follow.

We parameterize the disk surface density Σ = Σ(r, t) as

Σ(r, t) = Σout(t)
(rout

r

)p
. (2.7)

We take p = 1 unless otherwise noted. The disk mass Md is then (assuming

rin � rout)

Md =

∫ rout

rin

2πΣrdr '
2πΣoutr2

out

2 − p
. (2.8)

The disk angular momentum vector is Ld = Ld l̂d (assuming a small disk warp),

and stellar spin angular momentum vector is S = S ŝ, where l̂d and ŝ are unit

vectors, and

Ld =

∫ rout

rin

2πΣr3Ωdr '
2 − p

5/2 − p
Md

√
GM?rout, (2.9)

S = k?M?R2
?Ω?. (2.10)

Here k? ' 0.2 for fully convective stars ( e.g. Chandrasekhar 1939). The bi-

nary has orbital angular momentum Lb = Lb l̂b. Because typical star-disk-binary

systems satisfy Lb � Ld, S , we take l̂b to be fixed for the remainder of this work.

2.3 Disk Warping

When α . H/r (α is the Shakura-Sunyaev viscosity parameter, H is the disk

scaleheight), which is satisfied for protostellar disks (e.g. Rafikov 2017), the

main internal torque enforcing disk rigidity and coherent precession comes

from bending wave propagation [Papaloizou & Lin, 1995, Lubow & Ogilvie,
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2000]. As bending waves travel at 1/2 of the sound speed, the wave crossing

time is of order tbw = 2(r/H)Ω−1. When tbw is longer than the characteristic pre-

cession times ω−1
db or ω−1

ds from an external torque, significant disk warps can be

induced. In the extreme nonlinear regime, disk breaking may be possible [Lar-

wood et al., 1996, Doğan et al., 2015]. To compare tbw with ω−1
sd and ω−1

db , we adopt

the disk sound speed profile

cs(r) = H(r)Ω(r) = hout

√
GM?

rout

(rout

r

)q

= hin

√
GM?

rin

(rin

r

)q
, (2.11)

where hin = H(rin)/rin and hout = H(rout)/rout. Passively heated disks have q ≈

0.0 − 0.3 [Chiang & Goldreich, 1997], while actively heated disks have q ≈ 3/8

[Lynden-Bell & Pringle, 1974]. We find

tbwωsd = 4.7 × 10−4
(
0.1
hin

) (
kq

0.1

)
R̄2
?

r̄2
in

(
r

rin

)q−7/2

, (2.12)

tbwωdb = 1.7 × 10−2
(

0.1
hout

)
M̄br̄3

out

M̄?ā3
b

(
r

rout

)q+3/2

. (2.13)

Thus, we expect the small warp approximation to be valid everywhere in the

disk. This expectation is confirmed by our detailed calculation of disk warps

presented later in this section.

Although the disk is flat to a good approximation, the interplay between the

disk warp/twist and viscous dissipation can lead to appreciable damping of the

misalignment between the disk and the external perturber (i.e., the oblate star

or the binary companion). In particular, when an external torque Text (per unit

mass) is applied to a disk in the bending wave regime (which could be either

Tdb or Tds), the disk’s viscosity causes the disk normal to develop a small twist,

of order
∂ l̂
∂ ln r

∼
4α
c2

s
Text. (2.14)
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The detailed derivation of Eq. (2.14) is contained in Sections 2.3.1-2.3.3. Since

Text ∝ l̂ext× l̂ ( l̂ext is the axis around which l̂ precesses), where the viscous twist

interacts with the external torque, effecting the evolution of l̂ over viscous

timescales. To an order of magnitude, we have∣∣∣∣∣d l̂
dt

∣∣∣∣∣
visc
∼

〈(
4α
c2

s

)
T2

ext

r2Ω

〉
∼

〈
4α
c2

s
(r2Ω)ω2

ext

〉
, (2.15)

where ωext is either ωds or ωdb, and 〈· · · 〉 implies proper average over r.

We now study the disk warp and viscous evolution quantitatively, using the

formalism describing the structure and evolution of circular, weakly warped

disks in the bending wave regime. The relevant equations have been derived

by a number of authors [Papaloizou & Lin, 1995, Demianski & Ivanov, 1997,

Lubow & Ogilvie, 2000]. We choose the formalism of Lubow & Ogilvie [2000]

and Lubow, Ogilvie, & Pringle [2002] (see also Ogilvie 2006 when |∂ l̂/∂ ln r| ∼ 1),

where the evolution of the disk is governed by

Σr2Ω
∂ l̂
∂t

= ΣText +
1
r
∂G
∂r
, (2.16)

∂G
∂t

=

(
Ω2 − κ2

2Ω

)
l̂×G − αΩG +

Σc2
s r3Ω

4
∂ l̂
∂r
, (2.17)

where Text is the external torque per unit mass acting on the disk, κ =

(2Ω/r)∂(r2Ω)/∂r|z=0 is the epicyclic frequency, and G is the internal torque, which

arises from slightly eccentric fluid particles with velocities sheared around the

disk mid-plane [Demianski & Ivanov, 1997]. Eq. (2.16) is the 2D momentum

equation generalized to non-coplanar disks. Eq. (2.17) is related to how internal

torques generated from disk warps are communicated across the disk under the

influence of viscosity and precession from non-Keplarian epicyclic frequencies.

See Nixon & King [2016] for a qualitative discussion and review of Eqs. (2.16)-

(2.17).
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Figure 2.1: The rescaled radial functions [see Eq. (2.34) for rescaling] τ̃b

[Eq. (2.30)], Ṽb [Eq. (2.31)], and W̃bb [Eq. (2.32)]. We take (p, q) values [Eq. (2.7)
and (2.11)] of p = 0.5 (solid), p = 1.0 (dashed), and p = 1.5 (dotted) with
q = 0.0 (blue) and q = 0.5 (red). All other parameters take their cannonical
values [Eq. (2.5)]. The re-scaled radial functions trace out the viscous twist (Ṽb)
and warp (τ̃b, W̃bb) profiles of the disk due to the gravitational torque from the
binary companion.

p q Ub Vb Wbb

0.5 0.5 0.857 0.857 0.857
1.0 0.5 1.00 1.00 1.00
1.5 0.5 1.20 1.20 1.20
0.5 0.0 1.65 3.67 1.32
1.0 0.0 1.93 4.26 1.54
1.5 0.0 2.31 5.02 1.85

Table 2.1: Dimensionless coefficients Ub [Eq. (2.35)], Vb [Eq. (2.36)], and Wbb

[Eq. (2.37)] tabulated for various p and q values [Eqs. (2.7) and (2.11)]. All the
parameter values are canonical [Eq. (2.5)]. When varying q, we fix hout = 0.1.

We are concerned with two external torques acting on different regions of the

disk. For clarity, we break up our calculations into three subsections, consider-

ing disk warps produced by individual torques before examining the combined

effects.
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2.3.1 Disk Warp Induced by Binary Companion

The torque from an external binary companion is given by Eq. (2.1). The com-

panion also gives rise to a non-Keplarian epicyclic frequency, given by

Ω2 − κ2

2Ω
= ωdbP2( l̂· l̂b), (2.18)

where Pl are Legendre polynomials.

To make analytic progress, we take advantage of our expectation that

|∂ l̂/∂ ln r| � 1 since tbwωdb � 1 [see Eq. (2.13)]. Specifically, we take

l̂(r, t) = l̂d(t) + l1(r, t) + . . . , (2.19)

G(r, t) = G0(r, t) + G1(r, t) + . . . , (2.20)

where |l1| � | l̂d| = 1. Here, G0(r, t) is the internal torque maintaining coplanarity

of l̂d(t), G1(r, t) is the internal torque maintaining the leading order warp profile

l1(r, t), etc. To leading order, Eq. (2.16) becomes

Σr2Ω
d l̂d

dt
= −Σr2Ωωdb( l̂d· l̂b) l̂b× l̂d +

1
r
∂G0

∂r
. (2.21)

Integrating (2.21) over rdr, and using the boundary condition

G0(rin, t) = G0(rout, t) = 0, (2.22)

we obtain
d l̂d

dt
= −ω̃db( l̂d· l̂b) l̂b× l̂d, (2.23)

where ω̃db is given by

ω̃db =
2π
Ld

∫ rout

rin

ωdbΣr3Ωdr

'
3(5/2 − p)
4(4 − p)

(
Mb

M?

) (
ab

rout

)3
√

GM?

r3
out

. (2.24)
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The physical meaning of l̂d thus becomes clear: l̂d is the unit total angular mo-

mentum vector of the disk, or

l̂d ≡
2π
Ld

∫ rout

rin

Σr3Ω l̂(r, t)dr. (2.25)

Using Eqs. (2.22) and (2.23), we may solve Eq. (2.21) for G0(r, t):

G0(r, t) = gb(r)( l̂d· l̂b) l̂b× l̂d, (2.26)

where

gb(r) =

∫ r

rin

(ωdb − ω̃db)Σr′3Ωdr′. (2.27)

Using Eqs. (2.26) and (2.17), and requiring that l1 not contribute to the total

disk angular momentum vector, or∫ rout

rin

Σr3Ωl1(r, t)dr = 0, (2.28)

we obtain the leading order warp l1(r, t):

l1(r, t) = − ω̃dbτb( l̂d· l̂b)2 l̂b×( l̂b× l̂d)

−Wbb( l̂d· l̂b)P2( l̂d· l̂b) l̂d×( l̂b× l̂d)

+ Vb( l̂d· l̂b) l̂b× l̂d, (2.29)

where

τb(r) =

∫ r

rin

4gb

Σc2
s r′3Ω

dr′ − τb0, (2.30)

Vb(r) =

∫ r

rin

4αgb

Σc2
s r′3

dr′ − Vb0, (2.31)

Wbb(r) =

∫ r

rin

4ωdbgb

Σc2
s r′3Ω

dr′ −Wbb0, (2.32)

and the constants X0 of the functions X(r) (either τb(r), Vb(r), or Wbb(r)) are deter-

mined by requiring ∫ rout

rin

Σr3ΩXdr = 0. (2.33)
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Notice the radial functions τb, Vb, and Wbb trace out the disk’s warp profile |l1(r)|

due to the binary companion’s gravitational torque. Because the magnitudes

for the radial functions (2π/Myr)τb, Vb, and Wbb are much smaller than unity

everywhere [see Eqs. (2.35)-(2.37)], we define the re-scaled radial function X̃(r) =

τ̃b, Ṽb, and W̃bb as

X̃(r) ≡ X(r)
/[

X(rout) − X(rin)
]
. (2.34)

Figure 2.1 plots the dimensionless radial functions τ̃b, Ṽb, and W̃bb for the canon-

ical parameters of the star-disk-binary system [Eq. (2.5)]. The scalings of the

radial functions evaluated at the outer disk radius are

τb(rout) − τb(rin) = −1.82 × 10−5Ub

×

(
0.1
hout

)2 M̄br̄9/2
out

M̄3/2
? ā6

b

Myr
2π

, (2.35)

Vb(rout) − Vb(rin) = −1.54 × 10−3Vb

×

(
α

0.01

) ( 0.1
hout

)2 M̄br̄3
out

M̄?ā3
b

, (2.36)

Wbb(rout) −Wbb(rin) = −8.93 × 10−5Wbb

×

(
0.1
hout

)2 M̄2
b r̄6

out

M̄2
?ā6

b

. (2.37)

Equations (2.35)-(2.37) provide an estimate for the misalignment angle between

the disk’s inner and outer orbital angular momentum vectors, or |X(rout) −

X(rin)| ∼ | l̂(rout, t)× l̂(rin, t)|, where X = (2π/Myr)τb, Vb, and Wbb. The dimensionless

coefficientsUb,Vb, andWbb depend weakly on the parameters p, q, and rin/rout.

Table 2.1 tabulatesUb,Vb, andWbb for values of p and q as indicated, with the

canonical value of rin/rout [Eq. (2.5)].
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Figure 2.2: The rescaled radial functions [see Eq. (2.34) for rescaling] τ̃s

[Eq. (2.47)], Ṽs [Eq. (2.48)], and W̃ss [Eq. (2.49)]. We take (p, q) values [Eq. (2.7)
and (2.11)] of p = 0.5 (solid), p = 1.0 (dashed), and p = 1.5 (dotted) with
q = 0.0 (blue) and q = 0.5 (red). Other parameters assume their canonical values
[Eq. (2.5)]. The re-scaled radial functions trace out the viscous twist (Ṽs) and
warp (τ̃s, W̃ss) profiles of the disk due to the gravitational torque from the oblate
star.

p q Us Vs Wss

0.5 0.5 2.66 0.315 0.800
1.0 0.5 1.00 1.00 1.00
1.5 0.5 0.400 6.18 1.33
0.5 0.0 24.2 0.0735 0.457
1.0 0.0 4.28 0.110 0.533
1.5 0.0 1.20 0.207 0.639

Table 2.2: Dimensionless coefficients Us [Eq. (2.50)], Vs [Eq. (2.51)], and Wss

[Eq. (2.52)], for different values of p and q [Eqs. (2.7) and (2.11)]. All other pa-
rameter values are canonical [Eq. (2.5)]. When varying q, we fix hout = 0.1.

2.3.2 Disk Warp Indued by Oblate Star

The torque on the disk from the oblate star is given by Eq. (2.3). The stel-

lar quadrupole moment also gives rise to a non-Keplarian epicyclic frequency

given by
Ω2 − κ2

2Ω
= ωsdP2( l̂·ŝ). (2.38)

Equations (2.16)-(2.17) are coupled with the motion of the host star’s spin axis:

S
dŝ
dt

= −

∫ rout

rin

[
2πΣr3Ωωsd(ŝ· l̂) l̂×ŝ

]
dr, (2.39)
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Expanding l̂ and G according to Eqs. (2.19) and (2.20), integrating Eq. (2.16)

over rdr, and using the boundary condition (2.22), we obtain the leading order

evolution equations

dŝ
dt

= −ω̃sd(ŝ· l̂d) l̂d×ŝ, (2.40)

d l̂d

dt
= −ωsd( l̂d·ŝ)ŝ× l̂d, (2.41)

where (assuming rin � rout)

ω̃ds =
2π
Ld

∫ rout

rin

ωdsΣr3Ωdr

'
3(5/2 − p)kq

2(1 + p)
R2
?Ω̄2

?

r1−p
out r1+p

in

√
GM?

r3
out

, (2.42)

ω̃sd = (Ld/S )ω̃ds

'
3(2 − p)kq

2(1 + p)k?

(
Md

M?

)
Ω̄?

√
GM?R3

?

r2−p
out r1+p

in

. (2.43)

With d l̂d/dt and dŝ/dt determined, Eq. (2.16) may be integrated to obtain the

leading order internal torque:

G0(r, t) = gs(r)( l̂d·ŝ)ŝ× l̂d, (2.44)

where

gs(r) =

∫ r

rin

(ωsd − ω̃s)Σr′3Ωdr′. (2.45)

Similarly, the leading order warp profile is

l1(r, t) = − ω̃sdτs( l̂d·ŝ)2( l̂d×ŝ)× l̂d

− ωsdτs( l̂d·ŝ)2 ŝ×(ŝ× l̂d)

−Wss( l̂d·ŝ)P2( l̂d·ŝ) l̂d×(ŝ× l̂d)

+ Vs( l̂d·ŝ)ŝ× l̂d, (2.46)
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where

τs(r) =

∫ r

rin

4gs

Σc2
s r′3Ω

dr′ − τs0, (2.47)

Vs(r) =

∫ r

rin

4αgs

Σc2
s r′3

dr′ − Vs0, (2.48)

Wss(r) =

∫ r

rin

4ωsdgs

Σc2
s r′3Ω

dr′ −Wss0. (2.49)

In Figure 2.2, we plot the rescaled radial functions τ̃s, Ṽs, and W̃ss for various p

and q values, tracing out the re-scaled warp profile across the radial extent of the

disk due to the oblate star’s torque. The radial function differences evaluated at

the disk’s outer and inner truncation radii are

τs(rout) − τs(rin) = 2.21 × 10−6Us

(
0.1
hout

)2 (
kq

0.1

)
×

(
1358 r̄out

r̄in

)p−1 R̄2
?r̄3/2

out

r̄2
inM̄1/2

?

(
Ω̄?

0.1

)2 Myr
2π

, (2.50)

Vs(rout) − Vs(rin) = 1.13 × 10−3Vs

×

(
α

0.01

) (0.1
hin

)2 (
kq

0.1

)
R̄2
?

r̄2
in

(
Ω̄?

0.1

)2

, (2.51)

Wss(rout) −Wss(rin) = 4.39 × 10−7Wss

×

(
kq

0.1

)2 (
0.1
hin

)2 R̄4
?

r̄4
in

(
Ω̄?

0.1

)2

. (2.52)

Equations (2.50)-(2.52) provide an estimate for the misalignment angle be-

tween the disk’s outer and inner orbital angular momentum unit vectors

| l̂(rout, t)× l̂(rin, t)| due to the oblate star’s torque. The dimensionless coefficients

Us,Vs, andWss depend weakly on the parameters p, q, and rin/rout. In Table 2.2,

we tabulateUs,Vs, andWss for the p and q values indicated, with rin/rout taking

the canonical value [Eq. (2.5)].
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Figure 2.3: The rescaled radial functions [see Eq. (2.34) for rescaling] W̃bs

[Eq. (2.54)], and W̃sb [Eq. (2.55)]. We take (p, q) values [Eq. (2.7) and (2.11)] of
p = 0.5 (solid), p = 1.0 (dashed), and p = 1.5 (dotted) with q = 0.0 (blue) and
q = 0.5 (red). We take all parameters to be cannonical [Eq. (2.5)]. The re-scaled
radial functions trace out the the warp (W̃bs, W̃sb) profiles of the disk due to the
interaction between the binary companion and oblate star torques (see text for
discussion).

p q Wbs Wsb

0.5 0.5 2.13 0.917
1.0 0.5 1.00 1.00
1.5 0.5 0.457 1.06
0.5 0.0 4.57 312
1.0 0.0 1.93 319
1.5 0.0 0.823 307

Table 2.3: Dimensionless coefficients Wbs [Eq. (2.56)] and Wsb [Eq. (2.57)] for
values of p and q as indicated [Eqs. (2.7) and (2.11)]. All parameter values are
canonical [Eq. (2.5)]. When varying q, we fix hout = 0.1.

2.3.3 Disk Warps Induced by Combined Torques

The combined torques from the distant binary and oblate star are given by

Eqs. (2.1) and (2.3), and the non-Keplarian epicyclic frequencies are given by

Eqs. (2.18) and (2.38). Using the same procedure as Sections 2.3.1-2.3.2, the lead-

ing order correction to the disk’s warp is

l1(r, t) = (l1)bin + (l1)star
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− ωsdτb( l̂d · ŝ)
[
(ŝ× l̂d)· l̂b

]
l̂b× l̂d

− ωsdτb( l̂d· l̂b)( l̂d·ŝ) l̂b×(ŝ× l̂d)

− ω̃dbτs( l̂d· l̂b)
[
( l̂b× l̂d)·ŝ

]
ŝ× l̂d

− ω̃dbτs( l̂d·ŝ)( l̂d· l̂b)ŝ×( l̂b× l̂d)

−Wsb( l̂d· l̂b)P2( l̂d·ŝ) l̂d×( l̂b× l̂d)

−Wbs( l̂d·ŝ)P2( l̂d· l̂b) l̂d×(ŝ× l̂d), (2.53)

where (l1)bin is Eq. (2.29), (l1)star is Eq. (2.46), τb and τs are given in Eqs. (2.30)

and (2.47), and

Wbs(r) =

∫ r

rin

4ωdbgs

Σc2
s r′3Ω

dr′ −Wbs0, (2.54)

Wsb(r) =

∫ r

rin

4ωsdgb

Σc2
s r′3Ω

dr′ −Wsb0. (2.55)

Notice l1 is not simply the sum l1 = (l1)bin + (l1)star. The cross ωdsτb (ωdbτs) terms

come from the motion of the internal torque resisting Tds (Tdb) induced by Tdb

(Tds). The cross Wbs (Wsb) terms come from the internal torque resisting Tds

(Tdb) twisted by the non-Keplarian epicyclic frequency induced by the binary

[Eq. (2.18)] [star, Eq. (2.38)]. In Figure 2.3, we plot the re-scaled radial functions

W̃bs and W̃sb for various p and q values, tracing out the warp profile across the

radial extent of the disk due to the combined binary and stellar torques. The

radial functions Wbs and Wsb evaluated at the disk’s outer and inner truncation

radii are

Wbs(rout) −Wbs(rin) = −7.23 × 10−6Wbs

(
0.1
hout

)2

×

(
kq

0.1

) (
1358 r̄out

r̄in

)p−1 M̄bR̄2
?r̄3

out

M̄?ā3
br̄2

in

(
Ω̄?

0.1

)2

, (2.56)

Wsb(rout) −Wsb(rin) = 1.23 × 10−9Wsb

×

(
0.1
hout

)2 (
kq

0.1

)
M̄bR̄?r̄out

M̄?ā3
b

(
Ω̄?

0.1

)2

. (2.57)
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Figure 2.4: Disk misalignment angle β [Eq. (2.58)] as a function of radius r, for
the hin [Eq. (2.11)] values indicated, all for hout = 0.05 [Eq. (2.11)]. The disk
masses are Md = 0.1 M� (solid) and Md = 0.01 M� (dashed), with p = 1 [Eq. (2.7)],
α = 0.01, ab = 300 au, and ŝ, l̂d, and l̂b lying in the same plane with θsd = θdb = 30◦.

These provide an estimate for the misalignment angle between the disk’s outer

and inner orbital angular momentum unit vectors | l̂(rout, t)× l̂(rin, t)| due to the

binary and stellar torques. The dimensionless coefficientsWbs andWsb depend

on the parameters p, q, and rin/rout. Table 2.3 tabulatesWbs andWsb for several

p and q values, with rin/rout taking the canonical value [Eq. (2.5)].

2.3.4 Disk Warp Profile: Summary

In the previous subsections, we have derived semi-analytic expressions for the

disk warp profiles due to the combined torques from the oblate host star and the

binary companion. Our general conclusion is that the warp is quite small across

the whole disk. We illustrate this conclusion with a few examples (Figs. 2.4-2.5).

We define the disk misalignment angle β = β(r, t) as the misalignment of the
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Figure 2.5: Same as Fig. 2.4, except ab = 200 au.

disk’s local angular momentum unit vector l̂(r, t) by

sin β(r, t) ≡
∣∣∣ l̂(r, t)× l̂d(t)

∣∣∣, (2.58)

where l̂d is unit vector along the total angular momentum of the disk [Eq. (2.25)].

Figures 2.4-2.5 that the disk warp angle is less than a few degrees for the

range of parameters considered. When hin = 0.05, the binary’s torque has

the strongest influence on the disk’s warp profile. As a result, the disk warp

(∂β/∂ ln r) is strongest near the disk’s outer truncation radius (r & 10 au). When

hin = 0.01, the spinning star’s torque has a strong influence on the disk’s warp

profile, and the warp becomes large near the inner truncation radius (r . 1 au).

Notice that the differences between the high disk-mass (Md = 0.1 M�, solid

lines) and low disk-mass (Md = 0.01M�, dashed lines) are marginal. This is be-

cause only the precession rate of the star around the disk ω̃sd [Eq. (2.43)] depends

on the disk mass, and it enters the disk warp profile only through the term ω̃sdτs

[see Eq. (2.46)]. Because the disk’s internal torque from bending waves is purely
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p q Γb Γs Γ(bs)

0.5 0.5 0.698 0.522 1.70
1.0 0.5 1.00 1.00 1.00
1.5 0.5 1.41 2.86 0.527
0.5 0.0 1.44 0.0964 8.64
1.0 0.0 2.31 0.0970 5.38
1.5 0.0 3.82 0.108 3.05

Table 2.4: Dimensionless viscosity coefficients Γb [Eq. (5.47)], Γs [Eq. (2.70)], and
Γ(bs) [Eq. (2.71)], for various p and q values. All other parameter values are
canonical [Eq. (2.5)].

hydrodynamical, the other terms in the disk warp profile are independent of

the disk mass.

2.3.5 Viscous Evolution

As noted above, when a hydrodynamical disk in the bending wave regime is

torqued externally, viscosity causes the disk to develop a small twist, which

exerts a back-reaction torque on the disk. When torqued by a central oblate star

and a distant binary, the leading order viscous twist in the disk is

(l1)visc = Vb( l̂b· l̂d) l̂b× l̂d + Vs(ŝ· l̂d)ŝ× l̂d, (2.59)

where Vb and Vs are defined in Eqs. (2.31) and (2.48). All other terms in Eq. (2.53)

are non-dissipative, and do not contribute to the alignment evolution of the

disk. Inserting (l1)visc into Eqs. (2.16) and (2.39), and integrating over 2πrdr, we

obtain (
dLd

dt

)
visc

= Ldγb( l̂d· l̂b)2 l̂b×( l̂b× l̂d)

+ Ldγs( l̂d·ŝ)2 ŝ×(ŝ× l̂d)

+ Ldγ(bs)( l̂d· l̂b)( l̂d·ŝ) l̂b×(ŝ× l̂d)
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Figure 2.6: The damping rate γb [Eq. (5.47)] as a function of the binary semi-
major axis ab. We take the p [Eq. (2.7)] value to be p = 0.5 (solid), p = 1.0
(dashed), and p = 1.5 (dotted), with the q [Eq. (2.11)] value of q = 0.0 (blue)
and q = 0.5 (red). We take all other parameter values to be canonical [Eq. (2.5)].
When varying q, we fix hout = 0.05 [Eq. (2.11)]. When the damping rate γb &
0.1(2π/Myr), viscous torques from disk warping may significantly decrease the
mutual disk-binary inclination θdb [Eq. (2.79)] over the disk’s lifetime.

+ Ldγ(bs)( l̂d·ŝ)( l̂d· l̂b)ŝ×( l̂b× l̂d), (2.60)(
dS
dt

)
visc

= − Ldγs( l̂d·ŝ)2 ŝ×(ŝ× l̂d)

− Ldγ(bs)( l̂d·ŝ)( l̂d· l̂b)ŝ×( l̂b× l̂d), (2.61)

where

γb ≡
2π
Ld

∫ rout

rin

4αg2
b

Σc2
s r3 dr

= −
2π
Ld

∫ rout

rin

Σr3Ω(ωdb − ω̃db)Vbdr, (2.62)

γs ≡
2π
Ld

∫ rout

rin

4αg2
s

Σc2
s r3 dr

= −
2π
Ld

∫ rout

rin

Σr3Ω(ωsd − ω̃s)Vsdr, (2.63)

28



0.05 0.1 0.2

Ω̄?

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

γ
sd

(2
π

/M
yr

)

Efficient Alignment

Figure 2.7: The damping rate γsd [Eq. (2.72)] as a function of the normalized
stellar rotation frequency Ω̄? [Eq. (2.5)]. We take the p [Eq. (2.7)] values to be p =

0.5 (solid), p = 1.0 (dashed), and p = 1.5 (dotted), with q [Eq. (2.11)] values of q =

0.0 (blue) and q = 0.5 (red). We take all other parameter values to be canonical
[Eq. (2.5)]. When varying q, we fix hin = 0.03 [Eq. (2.11)]. When the damping
rate γsd & 0.1(2π/Myr), viscous torques from disk warping may significantly
decrease the mutual star-disk inclination θsd [Eq. (2.77)] over the disk’s lifetime.

γ(bs) ≡
2π
Ld

∫ rout

rin

4αgbgs

Σc2
s r3 dr

= −
2π
Ld

∫ rout

rin

Σr3Ω(ωsd − ω̃s)Vbdr

= −
2π
Ld

∫ rout

rin

Σr3Ω(ωdb − ω̃db)Vsdr. (2.64)

When deriving Eqs. (2.60) and (2.61), we have neglected terms proportional to

l1·ŝ or l1· l̂b, as these only modify the dynamics by changing the star-disk and

disk-binary precessional frequencies, respectively. Using

d l̂d

dt
=

1
Ld

(
dLd

dt
− l̂d

dLd

dt

)
, (2.65)

dŝ
dt

=
1
S

(
dS
dt
− ŝ

dS
dt

)
, (2.66)
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the leading order effect of viscous disk twisting on the time evolution of l̂d and

ŝ is (d l̂d

dt

)
visc

= γb( l̂d· l̂b)3 l̂d×( l̂b× l̂d)

+ γs( l̂d·ŝ)3 l̂d×(ŝ× l̂d)

+ γ(bs)( l̂d· l̂b)( l̂d·ŝ)2 l̂d×( l̂b× l̂d)

+ γ(bs)( l̂d·ŝ)( l̂d· l̂b)2 l̂d×(ŝ× l̂d), (2.67)(dŝ
dt

)
visc

= −
Ld

S
γs( l̂d·ŝ)2 ŝ×(ŝ× l̂d)

−
Ld

S
γ(bs)( l̂d·ŝ)( l̂d· l̂b)ŝ×( l̂b× l̂d). (2.68)

The four terms in (d l̂d/dt)visc [Eq. (2.67)] arises from four different back-

reaction torques of the disk in response to Tds [Eq. (2.3)] and Tdb [Eq. (2.1)]. To

resist the influence of the two external torques Tds and Tdb, the disk develops

two twists (∂ l̂/∂ ln r)ds and (∂ l̂/∂ ln r)db, given by Eqs. (2.46) and (2.29). The terms

in Eqs. (2.67)-(2.68) proportional to γs arise from the back reaction of (∂ l̂/∂ ln r)ds

to Tds, and works to align ŝ with l̂d. The term in Eq. (2.67) proportional to γb

arises from the back reaction of Tdb to (∂ l̂/∂ ln r)db , and works to align l̂d with

l̂b. Because γ(bs) < 0, the terms in Eqs. (2.67)-(2.68) proportional to γ(bs) have

different effects than the terms proportional to γs and γb. One of the terms

in Eqs. (2.67)-(2.68) proportional to γ(bs) arises from the back reaction of Tds to

(∂ l̂/∂ ln r)db, and works to drive l̂d perpendicular to ŝ, while the other arises from

the back-reaction of Tdb to (∂ l̂/∂ ln r)ds, and works to drive l̂d perpendicular to l̂b.

Although typically |γs| > |γ(bs)| or |γb| > |γ(bs)| (so the dynamical effect of γ(bs) may

be absorbed into γb and γs), the magnitude of γ(bs) is not negligible compared

to γs and γb. For completeness, we include the effects of the γ(bs) terms in the

analysis below.
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The damping rates (2.62)-(2.64) may be evaluated and rescaled to give

γb = 1.26 × 10−9Γb

(
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0.01

) ( 0.1
hout

)2

×
M̄2

b r̄9/2
out

ā6
bM̄3/2

?

(
2π
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)
, (2.69)

γs = 2.04 × 10−10Γs
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γ(bs) = − 2.04 × 10−10Γ(bs)
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where hin = (rin/rout)q−1/2hout. The rescaling above has removed the strongest

dependencies of the damping rates on p, q, and rin/rout. Table 2.4 lists values of

the dimensionless viscous coefficients Γb, Γs, and Γ(bs), varying p and q.

Note that there are “mixed” terms in Eqs. (2.67)-(2.68): the counter-aligment

rate of l̂d and l̂b depends on ŝ, while the counter-alignment rate of l̂d and ŝ de-

pends on l̂b. Also note that net spin-disk alignment rate is given by

γsd =

(
1 +

Ld

S

)
γs. (2.72)

Assuming Ld � S , γsd evaluates to be

γsd ' 7.52 × 10−9 (2 − p)Γs

5/2 − p
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Figure 2.6 plots the disk-binary damping rate γb as a function of the binary

semi-major axis ab. In agreement with Foucart & Lai [2014], we find the damp-

ing rate to be small, and weakly dependent on the power-law surface density
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and sound-speed indices p and q. This is because the torque from the binary

companion is strongest around r ∼ rout. The properties of the disk near rout are

“global,” since the amount of inertia of disk annuli near rout is set mainly by

the total disk mass rather than the surface density profile, and the disk sound-

speed does not vary greatly around r ∼ rout. We conclude that viscous torques

from disk warping are unlikely to significantly decrease the mutual disk-binary

inclination θdb unless ab . 200 au.

Figure 2.7 plots the star-disk alignment rate γsd as a function of the normal-

ized stellar rotation frequency Ω̄?. Unlike the disk-binary alignment rate γb

(Fig. 2.6), γsd depends strongly on the surface density and sound-speed power-

law indices p and q. The alignment rate of a circumbinary disk with its binary

orbital plane has a similarly strong dependence on p and q [Foucart & Lai, 2013,

2014, Lubow & Martin, 2018]. This strong dependence arises because the torque

on the inner part of a disk from an oblate star or binary is strongest near rin. The

disk properties near r ∼ rin are very local (both the amount of inertia for disk

annuli and disk sound-speed), and hence will depend heavily on p and q. De-

spite this uncertainty, Figure 2.7 shows that there are reasonable parameters for

which viscous torques from disk warping can significantly reduce the star-disk

inclination θsd [when γsd & 0.1(2π/Myr)], especially when the stellar rotation rate

is sufficiently high (Ω̄? & 0.2).
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Figure 2.8: Inclination evolution of star-disk-binary systems. The top pan-
els and bottom left panel plot the time evolution of the angles θsd [Eq. (2.77)],
θsb [Eq. (2.78)], and θdb [Eq. (2.79)], integrated using Eqs. (2.74) and (5.22),
with values of α and hin [Eq. (2.11)] as indicated. The bottom right panel
shows the precession frequencies ω̃sd [Eq. (2.43)] and ω̃db [Eq. (2.24)]. We take
θdb(0) = 60◦, θsd(0) = 5◦, and hout = 0.05 [Eq. (2.11)]. The damping rates are
γb = 5.05 × 10−9(2π/yr) [Eq. (2.69)], γsd(0) = 2.00 × 10−7(2π/yr) [Eq. (2.72)], and
γbs = −8.18 × 10−10(2π/yr) [Eq. (2.71)] for hin = 0.05, and γb = 7.12 × 10−9(2π/yr),
γsd(0) = 1.37 × 10−6(2π/yr), and γ(bs) = −1.51 × 10−9(2π/yr) for hin = 0.01.

2.4 Evolution of the Star-Disk-Binary System with Viscous

Dissipation from Disk Warping

This section investigates the evolution of star-disk-binary systems under gravi-

tational and viscous torques:

dŝ
dt

= − ω̃sd(ŝ· l̂d) l̂d×ŝ +

(
dŝ
dt

)
visc

, (2.74)
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Figure 2.9: Total disk warp ∆β [Eq. (2.80)] for the integrations of Fig. 2.8. The
blue curve denotes the integration where (hin, α) = (0.05, 0.0), the red is (hin, α) =

(0.05, 0.01), and the green is (hin, α) = (0.01, 0.01). All other parameters are listed
in Fig. 2.8. All examples considered have ∆β < 1.2◦, indicating the disk remains
highly coplanar throughout the system’s evolution. Notice ∆β � 1◦ when α = 0
(blue, hugs the x-axis).

d l̂d

dt
= − ω̃ds( l̂d·ŝ)ŝ× l̂d

− ω̃db( l̂d· l̂b) l̂b× l̂d +

(d l̂d

dt

)
visc
. (2.75)

The viscous terms are given by Eqs. (2.67)-(2.68). As in Batygin & Adams [2013]

and Lai [2014], we assume the disk’s mass is depleted according to

Md(t) =
Md0

1 + t/tv
, (2.76)

where Md0 = 0.1 M� and tv = 0.5 Myr. See Lai [2014] and Zanazzi & Lai [2017b]

for discussions on the dynamical evolution of ŝ and l̂d and secular resonance

(ω̃sd ∼ ω̃db) when viscous dissipation from disk warping is neglected.

The effect of the γs term on the dynamical evolution of ŝ over viscous

timescales depends on the precessional dynamics of the star-disk-binary sys-

tem. If ω̃sd � ω̃db, ŝ rapidly precesses around l̂d, and the γs term works to align

ŝ with l̂d. If ω̃sd � ω̃db, ŝ cannot “follow” the rapidly varying l̂d, and effectively
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Figure 2.10: Same as Figure 2.8, except ab = 200 AU. The damping rates are
γb = 5.75 × 10−8(2π/yr), γsd(0) = 2.00 × 10−7(2π/yr), and γ(bs) = −2.76 × 10−9(2π/yr)
for hin = 0.05, and γb = 8.11 × 10−8(2π/yr), γsd(0) = 1.37 × 10−6(2π/yr), and γ(bs) =

−5.10 × 10−9(2π/yr) for hin = 0.01.

precesses around l̂b. In the latter case, because of the rapid variation of l̂d around

l̂b, ŝ is only effected by the secular l̂d. As a result, γs works to drive θsb to θdb. The

effect of the γb term is simpler: it always works to align l̂d with l̂b.

Figure 2.8 shows several examples of the evolution of star-disk-binary sys-

tems. The top panels and bottom left panel of Fig. 2.8 show the time evolution

of the angles

θsd = cos−1(ŝ· l̂d), (2.77)

θsb = cos−1(ŝ· l̂b), (2.78)
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Figure 2.11: Same as Fig. 2.9, except for the examples considered in Fig. 2.10.
All examples considered have ∆β < 1.9◦, indicating the disk remains highly
coplanar throughout the disk’s lifetime.

θdb = cos−1( l̂d· l̂b), (2.79)

from integrating Eqs. (2.74)-(2.75), while the bottom right panel plots the char-

acteristic precession frequencies ω̃sd and ω̃db. The top left panel of Fig. 2.8 does

not include viscous torques (α = 0). Because the damping rates γb [Eq. (2.69)]

and γsd [Eq. (2.72)] are much less than 0.1(2π/Myr) over most of the system’s

lifetime (10 Myr), viscous torques have a negligible effect on the evolution of

θsd, θsb, and θdb. The bottom left panel of Fig. 2.8 shows the evolution of θsd, θsb,

and θdb with α = 0.01 and hin = 0.01. Because the inner edge of the disc has

a much smaller scaleheight, the oblate star warps the inner edge of the disk

more [Eq. (2.14)], resulting in γsd taking a value larger than 0.1(2π/Myr). This

increase in γsd causes a much tighter coupling of ŝ to l̂d before secular resonance

(ω̃sd & ω̃db), evidenced by the damped oscillations in θsd. After secular resonance

(ω̃sd . ω̃db), the γs term damps ŝ toward l̂b. Notice θsb approaches θdb because of

the rapid precession of l̂d around l̂b after secular resonance, not θsb → 0.
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To gain insight to how the disk warp evolves during the star-disk-binary

system’s evolution, we introduce the misalignment angle ∆β between the disk’s

outer and inner orbital angular momentum unit vectors:

sin ∆β(t) =
∣∣∣ l̂(rout, t)× l̂(rin, t)

∣∣∣
'

∣∣∣[l1(rout, t) − l1(rin, t)]× l̂d(t)
∣∣∣ (2.80)

Figure 2.9 plots ∆β as a function of time, for the examples considered in Fig. 2.8.

We see even when viscous torques from disk warping significantly alter the

star-disk-binary system dynamics (e.g. α = 0.01 and hin = 0.01), ∆β < 1.2◦ over

the disk’s lifetime, indicating a high degree of disk coplanarity throughout the

system’s evolution.

Figure 2.10 is identical to Fig. 2.8, except we take ab = 200 au instead of

ab = 300 au. Since γb is greater than 0.1(2π/Myr), l̂d aligns with γb over the

disk’s lifetime. In the top right panel of Fig. 2.10, γsd is less than 0.1(2π/Myr)

for most of the disk’s lifetime, so ŝ stays misaligned with both l̂d and l̂b. At the

end of the disk’s lifetime, ŝ precesses around l̂b, which is aligned with l̂d. In the

bottom left panel, both γb and γsd are greater than 0.1(2π/Myr) for most of the

disk’s lifetime. This results in alignment of l̂d, ŝ, and l̂b over 10 Myr. Figure 2.11

shows the evolution of disk misalignment angles for the examples considered

in Fig. 2.10. We see ∆β < 1.9◦ for all examples considered, indicating the disk

remains highly co-planar throughout the system’s evolution.
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2.5 Discussion

2.5.1 Theoretical Uncertainties

Our study of warped disks in star-disk-binary systems relies critically on the

warp evolution equations derived in Lubow & Ogilvie [2000] for disks in the

bending wave regime (α . H/r), assuming a small disk warp (|∂ l̂/∂ ln r| � 1).

A non-linear disk warp will change the surface density evolution of the disk

through advection and viscosity where the warp is strongest (e.g. Ogilvie

1999, Tremaine & Davis 2014). In addition, even a small warp may interact

resonantly with inertial waves, resulting in a parametric instability which en-

hances the disk’s dissipation rate [Gammie, Goodman, & Ogilvie, 2000, Ogilvie

& Latter, 2013]. Because we have found for typical parameters, the warp in

the disk torqued externally by a central oblate star and distant binary is small

[see Eqs. (2.35)-(2.37), (2.50)-(2.52), and (2.54)-(2.55)], such effects are unlikely to

change the main results of this paper.

In this study, we have assumed that the circumstellar disk in a binary system

is circular. This may not be a valid assumption, as the disk may undergo eccen-

tricity growth through resonant Lindblad torques [Lubow, 1991] or the Lidov-

Kozai effect [Martin et al., 2014, Fu et al., 2015a, Zanazzi & Lai, 2017a, Lubow

& Ogilvie, 2017]. Lindblad torques only cause eccentricity growth where the

binary orbital frequency is commensurate with the disk orbital frequency, so

they are unlikely to be relevant unless the outer edge of the disk is close to tidal

truncation by the binary companion. Lidov-Kozai oscillations are a much more

likely culprit for causing eccentricity growth of circumstellar disks in binaries

when θdb & 40◦. Lidov-Kozai oscillations may be suppressed by the disk’s self-
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gravity when [Fu et al., 2015b]

Md & 0.04 Mb

(
3rout

ab

)3

, (2.81)

and by the disk’s pressure gradients when [Zanazzi & Lai, 2017a, Lubow &

Ogilvie, 2017]

ab & 4.2 rout

(
Mb

M?

)1/3 (
hout

0.1

)−2/3

. (2.82)

For our canonical parameters [Eq. (2.5)], the Lidov-Kozai effect is unlikely to be

relevant unless ab . 4rout.

2.5.2 Observational Implications

In our companion work [Zanazzi & Lai, 2017b], we show that the formation

of a short-period (orbital periods less than 10 days) massive planet in many

instances significantly reduces or completely suppresses primordial misalign-

ments generated by the gravitational torque from an inclined binary compan-

ion. Primordial misalignments are still robustly generated in protostellar sys-

tems forming low-mass (∼ 1 M⊕) multiple planets, and systems with cold (or-

bital periods greater than one year) Jupiters. On the other hand, observations

suggest that most Kepler compact multi-planet systems have small stellar obliq-

uities (e.g. Albrecht et al. 2013, Winn et al. 2017). A major goal of this work was

to examine if viscous torques from disk warping may reduce or suppress the

generation of primordial misalignments in star-disk-binary systems. We find

that for some parameters, the star-disk inclination damping rate can be signif-

icant (see Fig. 2.7); in particular, the star-disk misalignment may be reduced

when the disk is sufficiently cold with strong external torques (Figs. 2.8 & 2.10).
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Observational evidence is mounting which suggests hot stars (effective tem-

peratures & 6000◦K) have higher obliquities than cold stars [Winn et al., 2010,

Albrecht et al., 2012, Mazeh et al., 2015, Li & Winn, 2016]. Since all damp-

ing rates from viscous disk-warping torques in star-disk-binary systems are in-

versely proportional to the disk’s sound-speed squared [see Eqs. (2.69)-(2.72)],

a tempting explanation for this correlation is that hot stars have hot disks with

low damping rates which remain misaligned, while cold stars have cold disks

with high damping rates which have star-disk misalignments significantly re-

duced over the disk’s lifetime. However, we do not believe this is a likely expla-

nation, since the protostellar disk’s temperature should not vary strongly with

the T-Tauri stellar mass. If a disk is passively heated from irradiation by its

young host star [Chiang & Goldreich, 1997], low mass (. 3 M�) pre-main se-

quence stars have effective temperatures which are not strongly correlated with

their masses [Hayashi, 1961]. If the disk is actively heated by turbulent viscos-

ity [Lynden-Bell & Pringle, 1974], the disk’s accretion rate does not vary enough

between different host star masses to create a difference in disk temperature

[Rafikov, 2017].

Even in systems where viscous torques from disk warping alter the dynam-

ics of the star-disk-binary system over the disk’s lifetime (Figs. 2.8 & 2.10), we

find the misalignment angle between the outer and inner disk orbital angular

momentum unit vectors to not exceed a few degrees (Figs. 2.9 & 2.11). There-

fore, it is unlikely that the disk warp profile plays a role in setting the mutual

inclinations of forming exoplanetary systems with inclined binary companions.
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2.6 Conclusions

We have studied how disk warps and the associated viscous dissipation affect

the evolution of star-disk inclinations in binary systems. Our calculation of the

disk warp profile shows that when the circumstellar disk is torqued by both the

exterior companion and the central oblate star, the deviation of the disk angular

momentum unit vector from coplanarity is less than a few degrees for the entire

parameter space considered (Figs. 2.9 & 2.11). This indicates that disk warp-

ing in star-disk-binary systems does not alter exoplanetary architectures while

the planets are forming in the disk. We have derived analytical expressions for

the viscous damping rates of relative inclinations (Sec. 2.3.5), and have exam-

ined how viscous dissipation affects the inclination evolution of star-disk-binary

systems. Because the star-disk [Eq. (2.72), Fig. 2.7] and disk-binary [Eq. (2.69),

Fig. 2.6] alignment timescales are typically longer than the protoplanetary disk’s

lifetime (. 10 Myrs), viscous dissipation from disk warping does not signifi-

cantly modify the long-term inclination evolution of most star-disk-binary sys-

tems (Fig. 2.8, top left panel). However, in sufficiently cold disks (small H/r)

with strong external torques from the oblate star or inclined binary companion,

the star-disk-binary evolution may be altered by viscous dissipation from disk

warping, reducing the star-disk misalignment generated by star-disk-binary in-

teractions (Figs. 2.8 & 2.10). In particular, we find when the stellar rotatation

rate is sufficiently high (rotation periods . 2 days), the star-disk damping is

particularly efficient (Fig. 2.7). This viscous damping may explain the observed

spin-orbit alignment in some multiplanetary systems (e.g. Albrecht et al. 2013,

Winn et al. 2017) in the presence of inclined binary companions.
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CHAPTER 3

PLANET FORMATION IN DISKS WITH INCLINED BINARY

COMPANIONS: CAN PRIMORDIAL SPIN-ORBIT MISALIGNMENT BE

PRODUCED?

3.1 Introduction

Many exoplanetary systems containing hot Jupiters (HJs, giant planets with pe-

riods of order a few days) have been found to have their orbital angular mo-

mentum axis significantly misaligned with the spin axis of the host star (e.g.

Hébrard et al. 2008, Narita et al. 2009, Winn et al. 2009, Triaud et al. 2010; see

Winn & Fabrycky 2015, Triaud 2017 for recent reviews). This “spin-orbit mis-

alignment” is unexpected for a planet formed in a protoplanetary disk, as a

young star’s spin axis is expected to be aligned with the disk’s angular mo-

mentum vector. One explanation is HJs are formed through high-eccentricity

channels, in which the planet is pumped into a very eccentric orbit as a result

of gravitational interactions with other planets or with a distant stellar com-

panion, followed by tidal dissipation which circularizes the planet’s orbit (e.g.,

Wu & Murray 2003, Fabrycky & Tremaine 2007, Nagasawa, Ida, & Bessho 2008,

Wu & Lithwick 2011, Naoz, Farr & Rasio 2012, Beaugé & Nesvorný 2012, Petro-

vich 2015, Anderson et al. 2016, Muñoz, Lai & Liu 2016, Hamers & Portegies

Zwart 2016). In this “high-eccentricity migration” scenario, the chaotic spin

evolution of the parent star driven by the changing orbit of the planet (even

for planets which do not suffer “orbit flips”) plays the dominant role in setting

the final spin-orbit misalignment [Storch, Anderson & Lai, 2014, Storch & Lai,

2015, Storch, Lai & Anderson, 2017]. Currently, it is unclear what fraction of
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HJs are formed through these high-eccentricity routes, and several observations

remain difficult to explain, such as the lack of giant planets with high eccen-

tricities [Dawson, Murray-Clay & Johnson, 2015], and the correlation between

the spin-orbit misalignment and the effective temperature of the host star (e.g.,

Albrecht et al. 2012, Mazeh et al. 2015, Li & Winn 2016, Winn et al. 2017).

Other mechanisms have been proposed to explain spin-orbit misalignments

of HJ systems. One idea is that the misalignment is indicative of stellar astro-

physics rather than planetary formation. In Rogers, Lin, & Lau [2012], it was

suggested that internal gravity waves in massive stars may transport angular

momentum in the radiative envelope, altering the star’s surface rotation direc-

tion in a quasi-periodic manner.

There is observational evidence that a non-negligible fraction of HJs may be

formed in protoplanetary disks in-situ or through disk-driven migration. For

example, HJs (or hot Neptunes) around young T Tauri stars have recently been

detected [Donati et al., 2016, David et al., 2016]; such young HJs can only form

in protoplanetary disks or through disk-driven migration. The HJ WASP-47b

has two low-mass neighbors [Becker et al., 2015], and thus cannot be formed

through high-eccentricity migration. Boley, Granados Contreras & Gladman

[2016] and Batygin, Bodenheimer & Laughlin [2016] have advocated in-situ for-

mation for such systems. Schlaufman & Winn [2016] found that HJs are equally

likely to have exterior giant planet companions inside the ice line compared to

longer-period giant planets, and argued against the high-e migration scenario

for HJ formation. For HJs formed in-situ or through disk-driven migration, the

observed stellar obliquities may result from “primordial misalignment,” where

spin-orbit misalignments are produced while the planets are embedded in the
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protoplanetary disk. Ways of generating primordially misaligned disks include

chaotic star formation [Bate et al., 2010, Fielding et al., 2015], dynamical encoun-

ters with other proto-stellar systems [Thies et al., 2011], magnetic star - disk in-

teractions [Lai et al., 2011, Foucart & Lai, 2011], and gravitational interactions

with inclined planets [Matsakos & Königl, 2017].

Batygin [2012] first suggested that the gravitational torque from an inclined

binary companion can change the orientation of a protoplanetary disk with re-

spect to its host star. Batygin & Adams [2013], Lai [2014] and Spalding & Baty-

gin [2014] included the gravitational coupling between the host star and the

disk, and showed that a secular resonance occurs during the disk evolution,

leading to a robust excitation of misalignment between the stellar spin axis and

the disk axis. Although these works incorporated various effects such as stel-

lar winds, stellar contraction, accretion and magnetic star-disk interactions, the

disk physics included was highly idealized. In particular, these previous works

assumed a flat disk with homologous surface density evolution (i.e. the disk

density profile remains constant in shape but decreases in magnitude during

the disk evolution). Moreover, although these works aimed at explaining the

misalignment between the planet’s orbit and the spin of the host star, the grav-

itational influence of a massive planet on the dynamics of the star-disk-binary

system was neglected.

In this paper we study how the non-homologous surface density evolution

of disks due to photoevaporation and the formation/migration of a planet or-

biting close to its host star influence the generation of spin-orbit misalignments

in star-disk-binary systems. In a companion paper [Zanazzi & Lai, 2017b] we

consider non-flat (warped) disks and examine the effect of viscous dissipation
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from disk warping on the spin-disk misalignments. Our paper is organized as

follows. Section 3.2 reviews the physics of stellar obliquity excitation through

star-disk-binary interactions. Section 3.3 introduces a prescription parameter-

izing how photoevaporation affects the disk’s surface density evolution, and

studies how such evolution affects the inclination excitation in star-disk-binary

systems. Section 3.4 presents an overview of how an inclined planet interacts

with the disk, the central oblate star, and the distant binary companion. Sec-

tion 3.5 investigates how the formation/migration of a short-period, massive

planet affects the inclination evolution of star-disk-binary systems. We discuss

the theoretical uncertainties and observational implications in Section 3.6, and

provide a summary of our key results in Section 3.7.

3.2 Spin-Disk Misalignment from Star-Disk-Binary Gravita-

tional Interactions

Previous works [Batygin & Adams, 2013, Lai, 2014, Spalding & Batygin, 2014]

have shown that secular resonance can generate misalignment between the stel-

lar spin and protoplanetary disk in star-disk-binary systems. In this section, we

set up the problem and review the main physics behind this mechanism. We

assume the disk is flat with orbital angular momentum unit vector l̂d, justified

in a companion paper [Zanazzi & Lai, 2017b]. Our treatment follows Lai [2014]

(hereafter L14) based on the dynamics of angular momentum vectors. For clar-

ity, we display all quantities defined in Sections 3.2-3.3 in Table 3.1.
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Symbol Meaning Eq.
M? central star mass -
R? central star radius -
Ω? central star’s rotation rate -
P? central star’s rotation period -
Md disk mass (3.3)
rin disk inner truncation radius -
rout disk outer truncation radius -
Mb binary mass -
ab binary semi-major axis -
X̄ normalized quantity X (3.1)
Σ disk surface density -
Σout disk surface density at r = rout (3.2)
p power-law surface density index (3.2)
Ld disk total orbital angular momentum (3.4)
S stellar spin angular momentum (3.5)
k? stellar spin normalization (3.5)
kq stellar quadrupole moment normalization -
ŝ stellar spin unit vector -
l̂d disk orbital angular momentum unit vector -
ω̃ds precession rate of disk around star (3.7)
ω̃sd precession rate of star around disk (3.8)
ω̃db precession rate of disk around binary (3.10)
Md0 disk initial mass -
tv disk viscous timescale (3.16)
M̄d0 normalized disk initial mass -
θsd mutual star-disk inclination (3.17)
θsb mutual star-binary inclination (3.18)
θdb mutual disk-binary inclination (3.19)
rc critical photoevaporation radius -
tw critical photoevaporation time -
tv,out outer disk’s viscous time -
tv,in inner disk’s viscous time -
Σc disk surface density at r = rc -
ω̃sd> precession rate of star

around disk exterior to rc (3.25)
ω̃sd< precession rate of star

around disk interior to rc (3.26)
ω̃d>s precession rate of disk

interior to rc around star (3.27)
ω̃d<s precession rate of disk

exterior to rc around star (3.28)

Table 3.1: Definitions of relevant quantities in the star-disk-binary system.
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3.2.1 Setup and Parameters

Consider a central star of mass M?, radius R?, rotation rate Ω?, with a circum-

stellar disk of mass Md, and inner and outer truncation radii of rin and rout, re-

spectively. This star-disk system is in orbit with a distant binary companion of

mass Mb and semimajor axis ab. We introduce the following rescaled parameters

typical of protostellar systems:

M̄? =
M?

1 M�

, R̄? =
R?

2 R�
, Ω̄? =

Ω?√
GM?/R3

?

,

M̄d =
Md

0.01 M�

, r̄in =
rin

8 R�
, r̄out =

rout

50 au
,

M̄b =
Mb

1 M�

, āb =
ab

300 au
. (3.1)

The cannonical value of Ω̄? is 0.1, corresponding to a stellar rotation period of

P? = 3.3 days. The other canonical values in Eq. (3.1) are unity, except the disk

mass, which can change significantly during the disk lifetime.

In the simplest model, we parameterize the disk surface density Σ = Σ(r, t) as

Σ(r, t) = Σout(t)
(rout

r

)p
. (3.2)

L14 used p = 1. We will introduce a more complex parameterization of Σ(r, t) in

Section 3.3 to account for the effect of photoevaporation. We choose p between 1

and 3/2. This choice is motivated by various observations. In the outer regions

of disks around YSO’s (r & few au), p is constrained to lie in between ∼ 0.5 − 1

[Williams & Cieza, 2011]. For the inner regions (r . few au), direct observa-

tional constraints are lacking. The Minimum Mass Solar Nebulae has p = 3/2

[Weidenschilling, 1977], and the Minimum Mass Extra-Solar Nebulae (assum-

ing the planets discovered by Kepler formed in-situ; Chiang & Laughlin 2013)

have p ' 1.6. The main effect of increasing p is to increase the amount of mass
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available to form a short-period gas-giant planet [see Eq. (3.63)], and increase

the mutual star-disk precession frequencies [see Eqs. (3.7)-(3.8)]. We will always

assume p < 2 when calculating global disk properties (mass, angular momen-

tum, precession frequencies, etc.), the expressions for many of these quantities

will differ when p ≥ 2 in the limit rin � rout.

The disk mass Md is then (assuming rin � rout)

Md =

∫ rout

rin

2πΣrdr '
2πΣoutr2

out

2 − p
. (3.3)

The disk angular momentum vector is Ld = Ld l̂d, and the stellar spin angular

momentum vector is S = S ŝ, where l̂d and ŝ are unit vectors, and

Ld =

∫ rout

rin

2πΣr3Ωdr '
2 − p

5/2 − p
Md

√
GM?rout, (3.4)

S = k?M?R2
?Ω?, (3.5)

with Ω(r) '
√

GM?/r3 and k? ' 0.2.

3.2.2 Gravitational Torques

The stellar rotation leads to a difference in the principal components of the star’s

moment of inertia of I3− I1 = kqM?R2
?Ω̄2

?, where kq ' 0.1 for fully convective stars

[Lai, Rasio & Shapiro, 1993]. The gravitational torque on the disk from the star

is1

T̃ds = −

∫ rout

rin

3G(I3 − I1)
2r3 ( l̂d·ŝ)(ŝ× l̂d)2πΣr3Ωdr

= −Ldω̃ds( l̂d·ŝ)ŝ× l̂d, (3.6)

1Throughout this paper, quantities with a tilde (˜) imply an average or integration over the
disk
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where (assuming rin � rout)

ω̃ds '
3(5/2 − p)kq

2(1 + p)
R2
?Ω̄2

?

r1−p
out r1+p

in

√
GM?

r3
out

(3.7)

characterizes the precession frequency of the disk around the star. The back-

reaction torque on the star from the disk is T̃sd = −T̃ds, and causes the star to

precess around the disk at a characteristic frequency

ω̃sd = (Ld/S )ω̃ds

'
3(2 − p)kq

2(1 + p)k?

(
Md

M?

)
Ω̄?

√
GM?R3

?

r2−p
out r1+p

in

. (3.8)

The torque on the disk from the inclined binary companion is (assuming

rout � ab)

T̃db ' −

∫ rout

rin

(
3GMbr2

4a3
b

)
( l̂d· l̂b)( l̂b× l̂d)2πΣr3Ωdr

= −Ldω̃db( l̂d· l̂b) l̂b× l̂d, (3.9)

where

ω̃db '
3(5/2 − p)
4(4 − p)

(
Mb

M?

) (
rout

ab

)3
√

GM?

r3
out

(3.10)

characterizes the precession frequency of the disk around the binary.

Taking p = 1, the precession frequencies (3.7), (3.8), and (3.10) evaluate to

ωsd = 2.0 × 10−7
(

kq

0.1

)
R̄2
?M̄1/2

?

r̄2
inr̄3/2

out

(
Ω̄?

0.1

)2 (
2π
yr

)
, (3.11)

ω̃db = 4.9 × 10−6 M̄br̄3/2
out

M̄1/2
? ā3

b

(
2π
yr

)
, (3.12)

ω̃sd = 4.9 × 10−5
(
2kq

k?

)
M̄d

M̄1/2
? R̄1/2

? r̄2
inr̄out

(
Ω̄?

0.1

) (
2π
yr

)
. (3.13)
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Figure 3.1: Sample evolution of the star-disk-binary system. The top and mid-
dle panels plot the evolution of the star-disk inclination θsd [Eq. (3.17)] and star-
binary inclination θsb [Eq. (3.18)]. We take the initial disk-binary inclination θdb

to be θdb(0) = 10◦ (top panel) and θdb(0) = 60◦ (middle panel) with θsd(0) = 5◦ for
both panels. The bottom panel plots the time evolution of the precession rates
ω̃sd [Eq. (3.8)] and ω̃db [Eq. (3.10)]. We take all parameter values to be canoni-
cal [Eq. (3.1)].
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3.2.3 System Evolution and Secular Resonance

The time evolution of the star-disk-binary system is given by

dŝ
dt

= −ω̃sd(ŝ· l̂d) l̂d×ŝ, (3.14)

d l̂d

dt
= −ω̃ds( l̂d·ŝ)ŝ× l̂d − ω̃db( l̂d· l̂b) l̂b× l̂d. (3.15)

As in Batygin & Adams [2013] and Lai [2014], we assume the disk mass evolves

according to

Md =
Md0

1 + t/tv
. (3.16)

For our canonical parameters, we choose Md0 = 0.1 M� and tv = 0.5 Myr. We

define M̄d0 = Md0/0.1 M�.

Figure 3.1 shows an example of the star-disk-binary system evolution. We

define the angles

θsd = cos−1(ŝ· l̂d), (3.17)

θsb = cos−1(ŝ· l̂b), (3.18)

θdb = cos−1( l̂d· l̂b). (3.19)

The angles θsd, θsb, and θdb denote the mutual star-disk, star-binary, and disk-

binary inclinations, respectively. We take ŝ, l̂, and l̂b to initially all lie in the same

plane, with θsd(0) = 5◦ and two different values of θdb(0). We choose our initial

value of θsd to be θsd(0) � 1. The dynamics of the star-disk-binary system remain

qualitatively unchanged as long as θsd(0) is much smaller than unity [Spalding

& Batygin, 2014].

When ω̃db � ω̃sd early in the disk’s lifetime, ŝ adiabatically tracks l̂d, and

θsd ∼ constant. When ω̃db � ω̃sd later in the disk’s lifetime, ŝ tracks l̂b with
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θsb ∼ constant. A secular resonance occurs when ω̃db ∼ ω̃sd, and large θsd can

be generated due to the change in the dynamical behavior of the stellar spin

axis (see L14 for discussion). This resonant excitation of θsd is prominent when

Ld & S at the resonance crossing.

3.3 Non-homologous Surface Density Evolution: Photoevapo-

ration

Section 3.2 assumes (as in previous works) the disk surface density evolves ho-

mologously, maintaining the power-law r−p profile while decreasing in the over-

all magnitude. Realistic protostellar disks do not evolve in such a homologeous

way. This section explores an alternate prescription for the surface density evo-

lution that captures the essential physics of photoevaporation (e.g. Clarke et al.

2001, Alexander et al. 2014).

As described in Clarke et al. [2001], the combined influence of photoevapora-

tion and viscous accretion dramatically influence the surface density evolution

of disks around T-Tauri stars (see Alexander et al. 2014, Owen 2016 for recent re-

views). The surface density Σ has distinct behaviors before and after the charac-

teristic time tw, when the viscous accretion rate and photo-evaporative mass loss

rate become comparable at the critical photoevaporation radius rc ∼ a few au

(the maximal radius where photoionized gas remains bound to the central star;

Hollenbach et al. 1994, Alexander, Clarke & Pringle 2006). Before tw, viscous

accretion drives the disk’s mass depletion, and the surface density evolves over

the outer disk’s viscous time tv,out = tv. After tw, Σ at r > rc continues to evolve

viscously over the timescale tv,out = tv [see Eq. (3.16)]; interior to rc, photoevapo-
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Figure 3.2: Evolution of the disk surface density Σ(r, t), given by Eq. (3.20). We
take the disk’s outer viscous timescale to be tv = 0.5 Myr, the time when the
disk’s photo-ionization rate is comparable to viscous depletion rate tw = 2 Myr,
the disk’s inner viscous time tv,in = 0.02 Myr, and the critical radius separating
the inner and outer regions of the disk rc = 2 au.

ration starves the inner disk from resupply by the outer disk’s viscous evolution,

and the inner disk is drained over the inner disk’s viscous time tv,in � tv,out.

To capture the main effect of photoevaporation, we parameterize the disk’s

surface density evolution as

Σ(r, t) =


Σc(t)(rc/r)p rin ≤ r ≤ rc

Σout(t)(rout/r)p rc < r ≤ rout

, (3.20)

where Σout(t) = Σout(0)/(1 + t/tv) [see Eq. (3.16)], while

Σc(t) =


Σc(0)(1 + t/tv)−1 t ≤ tw

Σc(tw)[1 + (t − tw)/tv,in]−1 t > tw

, (3.21)

and

Σc(0) = Σout(0)(rc/rout)p. (3.22)

Figure 3.2 shows a sample evolution of Σ(r, t). Our prescription of Σ(r, t) in-

troduces three new parameters: tw (when the inner disk begins to be rapidly

depleted), tv,in (the timescale over which the inner disk is depleted), and rc (the
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Figure 3.3: Same as Fig. 3.1, except the disk surface density Σ(r, t) evolves ac-
cording to the prescription (3.20), with values of tw as indicated. The bottom
panel shows the disk-binary precession rate ω̃db [Eq. (3.10)] and the star-disk
precession rate ω̃sd [Eq. (3.23)], with tw = 8 Myr (solid), and tw = 2 Myr (dashed).
We take rc = 2 AU, tv = 0.5 Myr, tv,in = 0.02 Myr. All other parameters canoni-
cal, with the initial star-disk inclination θsd(0) = 5◦ and disk-binary inclination
θdb(0) = 10◦.
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critical radius separating the inner and outer disks). Observations constrain

tw ∼ 106 − 107 years, tv,in ∼ 102 − 105 years, and rc ∼ few × au [Alexander et al.,

2014, Owen, 2016]. We choose rc = 2 au throughout this paper, varying tw and

tv,in for different disk models.

To model the dynamics of the star-disk-binary system, we neglect any mis-

alignments which may develop between the inner and outer disk planes, since

the gravitational influence of the inner disk quickly becomes irrelevant to the

dynamics of the star-disk-binary system. Coplanarity between these two disk

planes is maintained via bending waves [Papaloizou & Lin, 1995, Lubow &

Ogilvie, 2000, Zanazzi & Lai, 2017b] and disk self-gravity [Batygin, 2012, Baty-

gin & Adams, 2013, Zanazzi & Lai, 2017a].

The modified surface density evolution alters the mutual star-disk preces-

sion frequencies:

ω̃sd = ω̃sd< + ω̃sd>, (3.23)

ω̃ds = ω̃d<s + ω̃d>s. (3.24)

Here, d < (d >) denotes the disk interior (exterior) to rc. In terms of model pa-

rameters, the frequencies in Eqs. (3.23)-(3.24) evaluate to be (assuming rin �

rc � rout)

ω̃sd> '
3kq

(1 + p)k?
Ω̄?

(
πΣoutr2

out

M?

) √
GM?R3

?

r1+p
c r2−p

out

, (3.25)

ω̃sd< '
3kq

(1 + p)k?
Ω̄?

(
πΣcr2

c

M?

) √
GM?R3

?

r1+p
in r2−p

c

, (3.26)

ω̃d>s '
3(5/2 − p)kq

2(1 + p)
Ω̄2
?

R2
?

r1+p
c r1−p

out

√
GM?

r3
out

, (3.27)

ω̃d<s '
3(5/2 − p)kq

2(1 + p)
Ω̄2
?

Σcr
p
c R2

?

Σoutr
1+p
in rout

√
GM?

r3
out

. (3.28)

56



The disk-binary precession frequency [ω̃db, Eq. (3.10)] is unchanged (assuming

rc � rout). The frequency ω̃sd> (ω̃sd<) denotes the precession frequency of the star

around the disk exterior (interior) to rc, while ω̃d>s (ω̃d<s) denotes the precession

frequency of the disk exterior (interior) to rc around the star.

Figure 3.3 shows examples of the star-disk-binary evolution under the Σ(r, t)

prescription (3.20), for two values of tw. We see that the main effect of photo-

evaporation is a potential change in resonance crossing time. If the resonance

(ω̃sd ∼ ω̃db) occurs before tw, the excitation of θsd is more or less unaffected. If

the resonance occurs after tw, the rapid depletion of the inner disk causes ω̃sd

to rapidly approach zero over the time tv,in, and ω̃sd ∼ ω̃db at t ≈ tw + tv,in. The

resuting θsd excitation is smaller because the resonance crossing is fast. In either

case, after tw, the spin-binary misalignment angle θsb freezes to a constant value

because of the greatly diminished inner disk mass.

3.4 Planet-Star-Disk-Binary Interactions

We now add a planet in our star-disk-binary sytem. This section examines how

the planet interacts with the protoplanetary disk, the host star, and the inclined

binary. We take the planet to lie on a circular orbit, with mass Mp, semi-major

axis ap, and orbital angular momentum Lp = Mp
√

GM?ap l̂p. For clarity, we dis-

play all quantities defined in Sections 3.4-3.5 in Table 3.2.
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Symbol Meaning Eq.
Mp planet mass -
ap planet semi-major axis -
l̂p planet orbital angular momentum unit vector -
h disk aspect ratio -
∆p gap width -
Σ̄ average disk surface density at gap edges -
hp maximum of h(ap) and ∆p/ap -
ω̃pd precession rate of planet around disk (3.34)
ω̃db precession rate of disk around planet (3.35)
Λmig Migration rate free parameter (3.39)
tmig type II migration timescale (3.39)
ω̃pd< precession rate of planet

around disk interior to rc (3.40)
ω̃pd> precession rate of planet

around disk exterior to rc (3.42)
ω̃d<p precession rate of disk

interior to rc around planet (3.44)
ω̃d>p precession rate of disk

exterior to rc around planet (3.43)
ωps precession rate of planet around star (3.48)
ωsp precession rate of star around planet (3.49)
ωpb precession rate of planet around binary (3.51)
ξ feeding zone free parameter (3.62)
θps mutual planet-star inclination (3.58)
θpd mutual planet-disk inclination (3.59)
θpb mutual planet-binary inclination (3.60)
ω̃′sd modified precession frequency

of star around disk (3.67)
ω̃′ds modified precession frequency

of disk around star (3.68)
ω̃′db modified precession frequency

of disk around binary (3.69)

Table 3.2: Definitions of quantities related to planet interactions with the star-
disk-binary system.
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3.4.1 Planet-Disk Interactions: Non-Gap Opening Planets

When the planet has a mass insufficient to open a gap in the disk, the gravita-

tional torque on the planet from the disk causes l̂p to precess around l̂d at a rate

[Ward, 1981, Hahn, 2003]

ω̃pd, no gap '
πΣ(ap, t)a2

p

M?h(ap)

√
GM?

a3
p

(3.29)

where Σ(ap, t) is the disk surface density at r = ap, and h(ap) is the disk aspect

ratio h = H/r (H is the disk scaleheight) evaluated at r = ap. Equation (3.29)

was derived assuming | l̂p× l̂d| � h(ap) � 1, using a disk potential with softening

length H.

In addition to the direct gravitational torque, when l̂p is misaligned with l̂d,

the planet drives bending waves which propagate through the disk, working

to cause l̂p to precess and align with l̂d on a characteristic timescale [Tanaka &

Ward, 2004, Cresswell et al., 2007, Kley & Nelson, 2012]

tbw =
M?

Σ(ap, t)a2
p

(
M?

Mp

)
h4(ap)

√
a3

p

GM?

. (3.30)

Since

tbwω̃pd, no gap = 1.05 × 103
(

Mp

1 M⊕

)−1

M̄?

(
h(ap)
0.1

)3

, (3.31)

we expect l̂p to precess around l̂d mainly due to the gravitational torque, with

the bending waves aligning l̂p with l̂d over a longer time-scale.

The planet also drives density waves in the disk, leading to its radial mi-

gration [Goldreich & Tremaine, 1979, Tanaka, Takeuchi, & Ward, 2002, Kley &

Nelson, 2012]. The characteristic migration time is

tmig, no gap =
tbw

h2(ap)
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=
M?

Σ(ap, t)a2
p

(
M?

Mp

)
h2(ap)

√
a3

p

GM?

. (3.32)

The migration rate depends on the detailed local properties of the disk, such as

if the disk lies in a dead zone (e.g. McNally et al. 2017), the local temperature

gradient (e.g. Jiménez & Masset 2017), and the disk’s thermal diffusivity and

planet’s accretion rate [Benı́tez-Llambay et al., 2015, Masset & Velasco Romero,

2017, Masset, 2017]. These effects may drive ap to increase or decrease with

time. Because the planet becomes dynamically important only when its mass

becomes sufficiently large to open a gap, we will neglect its orbital evolution,

and fix ap in time before a gap is opened.

3.4.2 Planet-Disk Interactions: Gap Opening Planets

When the planet has sufficient mass Mp & 40M?αh2(ap) (e.g. Lin & Papaloizou

1993), it can open a gap in the disk, with a width ∆p = ξap(Mp/3M?)1/3 (ξ is a free

parameter). The disk surface density around the gap is clearly complex. In our

calculation, we adopt the simple prescription that Σ(r, t) ' 0 for |r − ap| < ∆p/2,

and Σ(r, t) obeys Eqs. (3.2) or (3.20) otherwise. The mutual planet-disk inter-

actions are modified from the non-gap opening planet case. When the planet

opens a gap, because we expect the disk gravitational potential Φd to not ex-

ceed 2πGΣ̄(ap, t)a2
p/∆p, where Σ̄(ap, t) = 1

2 [Σ(ap − ∆p/2, t) + Σ(ap + ∆/2, t)], we may

replace the softening length in the disk potential Φd by ∆p. The characteristic

precession frequency of the planet around the disk is then modified to become

[cf. Eq. (3.29)]

ω̃pd, gap '
πΣ̄(ap, t)a3

p

M?∆p

√
GM?

a3
p
. (3.33)
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From now on, we define

ω̃pd =
πΣ̄(ap, t)a2

p

M?hp

√
GM?

a3
p
, (3.34)

where hp = max[h(ap),∆p/ap]. The planet exerts a back-reaction torque on the

disk, causing l̂d to precess around l̂p at a characteristic rate

ω̃dp = (Lp/Ld)ω̃pd

'
5/2 − p

2hp

(
ap

rout

)1−p (
Mp

M?

) √
GM?

r3
out

. (3.35)

Because bending waves propagate through the disk as a result of resonant

Lindblad and co-rotational torques, a gap ∆p lengthens tbw to be [c.f. Eq. (3.31)]

tbw = Λgap
M?

Σ̄(ap)a2
p

(
M?

Mp

)
h4(ap)

√
a3

p

GM?

. (3.36)

The numerical value of Λgap must be obtained via hydrodynamical simulations

to account for non-linear effects. No simulations have carefully calculated Λgap

as a function of the planet’s parameters and local disk properties, but simula-

tions suggest Λgap � 1 (e.g. Xiang-Gruess & Papaloizou 2013, Bitsch et al. 2013,

Chametla et al. 2017). Comparing ω̃pd to tbw,

ω̃pd, gaptbw = 3.29 × 102
(
Λgap

100

) (
Mp

1 MJ

)−1

× M̄?

(
h(ap)
0.1

)4 (
∆p/ap

0.1

)−1

. (3.37)

From this, we see a gap-opening planet should interact with a disk mainly

through gravitational torques.

When a planet opens a gap in the disk, ap evolves due to the disk’s vis-

cous evolution (Type II migration). If Mp . 2πΣ̄(ap)a2
p, the planet follows the

viscous evolution of the disk, and ap decreases over the disk’s viscous time tv
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[Lin & Papaloizou, 1985, Lin, Bodenheimer & Richardson, 1996, Kley & Nel-

son, 2012]. When Mp & 2πΣ̄(ap)a2
p, the planet’s gravitational torque balances the

disk’s viscous torque, and migrates inward over a timescale longer than tv [Lin

& Papaloizou, 1985, Ida & Lin, 2004, Kley & Nelson, 2012]. Motivated by simu-

lations of gap-opening planets migrating through viscous disks (e.g. Duffell et

al. 2014, Dürmann & Kley 2015), we assume ap evolves in time according to

dap

dt
= −

ap

tmig
, (3.38)

where

tmig = Λmig max

1, Mp

2πΣ̄(ap)a2
p

 tv, (3.39)

and Λmig ∼ 1 is a factor parameterizing the uncertainty in tmig. When Mp <

2πΣ̄(ap, t)a2
p, a smaller (larger) Λmig value corresponds to a migration timescale

tmig shorter (longer) than the disk’s viscous timescale tv, parameterizing the ef-

fects seen in Duffell et al. [2014].

For photo-ionized disks (Sec. 3.3), Eq. (3.38) applies to planets in the outer

disk (r > rc). We neglect the migration of planets in the inner depleted disk

(r < rc).

3.4.3 Planet Interactions with Outer Disk

As discussed in Section 3.3, photoevaporation may deplete the inner disk (r < rc)

on a very short timescale. If the planet’s semi-major axis ap lies inside rc, the

mutual gravitational torques between the planet and the disk are modified. As

noted in Section 3.3, we neglect any misalignment between the inner (r < rc) and

outer (r > rc) disks, since the timescale over which the inner disk is depleted is
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much shorter than the age of the system. The precession rate of l̂p around l̂d due

to the mass of the inner disk,

ω̃pd< '
πΣ̄(ap, t)a2

p

M?hp

√
GM?

a3
p
, (3.40)

is diminished due to the inner disk’s rapid depletion from photoevaporation

(see Sec. 3.3). Instead, the precession of l̂p around l̂d is mainly governed by the

torque on the planet from the outer disk (r > rc):

T̃pd> ' −

∫ rout

rc

3GMpa2
p

4r3

 ( l̂p· l̂d)( l̂d× l̂p)2πΣrdr

= −Lpω̃pd>( l̂p· l̂d) l̂d× l̂p, (3.41)

where

ω̃pd> '
3πGΣ(rc, t)
2(1 + p)rc

√
a3

p

GM?

(3.42)

characterizes the precession frequency of the planet around the outer disk (as-

suming ap � rc � rout).

The planet also exerts a back-reaction torque on the disk, causing the

outer/inner disk to precess around the planet at the characteristic rates

ω̃d>p '
3(5/2 − p)
4(1 + p)

(
Mp

M?

) a2
p

r1+p
c r1−p

out

√
GM?

r3
out

, (3.43)

ω̃d<p '
5/2 − p
2∆p/ap

Σcr
p
c a1−p

p

Σoutrout

 ( Mp

M?

) √
GM?

r3
out

. (3.44)

[Compare the scaling of Eq. (3.43) to (3.7), and (3.44) to (3.35)] The total planet-

disk mutual precession rates are then

ω̃pd = ω̃pd> + ω̃pd<, (3.45)

ω̃dp = ω̃d>p + ω̃d<p. (3.46)
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Figure 3.4: Ratio of the precession frequency of the planet driven by the disk
ω̃pd [Eq. (3.34)] to the precession frequency of the planet driven by the star ωps

[Eq. (3.48)] and binary ωpb [Eq. (3.51)] for different planetary semi-major axis ap,
with p = 3/2 and all other parameters canonical. This plot shows the planet is
tightly coupled to the disk, so we may approximate l̂p ' l̂d. We assume hp = 0.1.

3.4.4 Planet-Star and Planet-Binary Interactions

The oblate central star exerts a torque on the planet, given by

Tps = −Lpωps( l̂p·ŝ)ŝ× l̂p, (3.47)

where

ωps =
3kq

2
Ω̄2
?

(
R?

ap

)2
√

GM?

a3
p

(3.48)
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characterizes the precession frequency of l̂p around ŝ. The back-reaction torque

on the star from the planet causes ŝ to precess around l̂p at a characteristic rate

ωsp = (Lp/S )ωps

=
3kq

2k?
Ω̄?

(
Mp

M?

) √
GM?R3

?

a3
p

. (3.49)

The binary companion also exerts torque on the planet:

Tpb = −Lpωpb( l̂p· l̂b) l̂b× l̂p, (3.50)

where

ωpb =
3Mb

4M?

(
ap

ab

)3
√

GM?

a3
p

(3.51)

characterizes the precession frequency of l̂p around l̂b. Because the binary has

orbital angular momentum Lb � Lp, the back reaction torque on the binary from

the planet is neglected.

As discussed in Sections 3.4.1-3.4.3, the dominant planet-disk coupling in-

volves mutual precession, with characteristic frequency ω̃pd. For homologeously

evolving disks, comparing ω̃pd [Eq. (3.34)] to ωps and ωpb, we see (assuming

p = 3/2)

ω̃pd

ωps
= 7.27

(
kq

0.1

)−1 (
hp

0.1

)−1 M̄d

M̄?

×

(
Ω̄?

0.1

)−2 r̄5/2
in

r̄1/2
outR̄

2
?

(
ap

rin

)5/2

, (3.52)

ω̃pd

ωpb
= 7.20

(
hp

0.1

)−1 M̄dā3
b

M̄br̄3
out

(
rout

ap

)5/2

, (3.53)

where we have used Eqs. (3.2) and (3.3) to relate Σ̄(ap, t) to Md. Figure 3.4 plots

the ratios (3.52) and (3.53) for a standard disk model. We see for most values

of ap (with ap & a few rin and ap � rout), ω̃pd � ωps, ωpb over the disk’s lifetime.
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This allows us to make the simplifying assumption l̂p(t) ' l̂d(t) when Σ evolves

homologously. We note that in certain situations, a secular resonance between a

planet, disk, and binary may greatly increase the planet-disk inclination [Lubow

& Martin, 2016, Martin et al., 2016], breaking the assumption that l̂p ' l̂d.

When the planet lies in the inner region (ap < rc) of a photo-ionized disk, we

have (assuming p = 3/2)

ω̃pd>

ωps
= 2.1 × 10−5

(
kq

0.1

)−1 (
Ω̄?

0.1

)−2 (
rout

25 rc

)5/2

×
r̄5

inM̄d

R̄2
?r̄3

outM̄?

(
ap

rin

)5

, (3.54)

ω̃pd>

ωpb
= 1.3 × 103 M̄dā3

b

M̄br̄3
out

(
rout

25 rc

)5/2

. (3.55)

Clearly, the planet-outer disk precession frequency greatly exceeds the planet-

binary precession frequency when ap < rc. However, the ratio ω̃pd>/ωps depends

depends sensitively on the distance of the planet from the star. The planet’s full

response to the star, disk and binary will need to be taken into account when

the inner disk is depleted.

The star’s response to the planet is important in the context of planet-star-

disk-binary dynamics. Comparing ωsp [Eq. (3.49)] to ω̃sd [Eq. (3.8)], we have

(assuming p = 3/2)
ωsp

ω̃sd
= 3.5

(
Mp

1 MJ

)
r̄1/2

out

M̄dr̄1/2
in

(
rin

ap

)3

. (3.56)

Equation (3.56) shows ωsp & ω̃sd near the end of the disk’s lifetime (M̄d � 1),

when the planet lies close to the disk’s inner truncation radius. More interesting

is the magnitude of ωsp compared to ω̃db [Eq. (3.10)] (assuming p = 3/2):

ωsp

ω̃db
= 333

(
2kq

k?

) (
Ω̄?

0.1

) (
Mp

1 MJ

)
ā3

bR3/2
?

M̄br̄3
inr̄3/2

out

(
rin

ap

)3

. (3.57)

Equation (3.57) shows for a substantial region of parameter space, ωsp & ω̃db.

This implies that a close-in massive planet can suppress secular resonance. The next

66



section explores different formation scenarios of close-in massive planets (hot

Jupiters), and their implications to spin-orbit misalignments generated via star-

disk-binary interactions.

3.5 Inclination Evolution of Planet-Star-Disk-Binary Systems

This section explores how the formation and migration of a gas giant in pro-

toplanetary disks affects the generation of primordial spin-orbit misalignments

through star-disk-binary interactions. The core-accretion scenario assumes a gas

giant forms following the run-away accretion of protoplanetary disk gas onto a

∼ 10 M⊕ core (e.g. Pollack et al. 1996). After the formation of the massive planet,

we consider three different models for its evolution through the disk. The first

assumes the planet forms in-situ, with the planet’s semi-major axis ap fixed in

time (Secs. 3.5.1-3.5.2), the second models the formation of a hot Jupiter via Type

II migration (Sec. 3.5.3), while the last considers the system’s dynamics after the

hot Jupiter is left in a photo-ionized disk cavity (Sec. 3.5.4).

We will frequently refer to the angles θps, θpd, and θpb throughout this section,

defined as

θps = cos−1( l̂p·ŝ), (3.58)

θpd = cos−1( l̂p· l̂d), (3.59)

θpb = cos−1( l̂p· l̂b), (3.60)

which define the mutual planet-star, planet-disk, and planet-binary inclinations,

respectively.
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Figure 3.5: Evolution of the star-disk/star-planet angle θsd = θsp (top panel),
modified star-disk precession frequency ω̃′sd [Eq. (3.67)] and modified disk-
binary precession frequency ω̃′db [Eq. (3.69)] (bottom panel) for planetary semi-
major axis of ap = 2 rin = 0.0736 au (thick lines) and ap = 7 rin = 0.258 au (thin
lines). We take all parameters to be canonical except Ω̄? = 0.03, p = 3/2,
tv = 0.1 Myr, with tp = 0.3 Myr and ξ = 10. Here, the planet’s mass Mp = 0.201 MJ

when ap = 2 rin and Mp = 0.514 MJ when ap = 7rin. We take the initial star-disk in-
clination θsd(0) = 5◦ and disk-binary inclination θdb(0) = 60◦ for all integrations.
The hot Jupiter formed in-situ (thick lines) does not experience appreciable ex-
citations of spin-orbit misalignment.

3.5.1 Early In-Situ Formation of Hot-Jupiters

Batygin, Bodenheimer & Laughlin [2016] proposed Hot-Jupiters form in-situ in

their protoplanetary disks over timescales shorter than 1 million years. They

argued that a 10 M⊕ core with ap . 0.1 au may undergo run-away accretion
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early in the disk’s lifetime. This scenario may explain why hot Jupiters do not

have close, low-mass planetary companions [Batygin, Bodenheimer & Laugh-

lin, 2016, Spalding & Batygin, 2017]. Here we explore how in-situ formation

affects the star-disk-binary system dynamics.

For early formation of a gas giant, we assume the planet’s mass is accreted

from the disk within the planet’s feeding zone. Specifically, we take the time-

dependent planetary mass to be

Mp(t) =


2πΣ(ap, t)ap∆ap, t < tp

2πΣ(ap, tp)ap∆ap t ≥ tp

(3.61)

where tp is the formation time,

∆ap = ξap(Mp/3M?)1/3 (3.62)

is the width of the planet’s feeding zone, and ξ is a free parameter. This yields a

final (t ≥ tp) planetary mass of

Mp

M?

=
ξ3/2

31/2

2πΣ(ap, tp)a2
p

M?

3/2

. (3.63)

This model neglects accretion of gas onto the planet due to the viscous transport

of disk material across the planet’s gap. This is a reasonable approximation,

since simulations show the accretion rate onto a planet undergoing run-away

gas accretion is typically much greater than the global accretion rate of the disk

onto the host star (e.g. Papaloizou & Nelson 2005, D’Angelo & Lubow 2008,

Ayliffe & Bate 2009a, Tanigawa & Tanaka 2016)

Equation (3.63) with p = 3/2 gives a final planetary mass for a hot Jupiter

formed in-situ of

Mp

M?

=
1.93 × 10−3

(1 + tp/tv)3/2

(
ξ

10

)3/2 M̄3/2
d0

M̄?
3/2r̄3/4

out

( ap

0.1 au

)3/4
. (3.64)
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Even with a large feeding zone (ξ = 10), we see that the hot Jupiter must form

at a time tp . few × tv ∼ 1 Myr to attain mass Mp ∼ 1 MJ.

We assume in this subsection that l̂p(t) ' l̂d(t), since ω̃pd � ωps, ωpb when the

planet is embedded in the disk (see Fig. 3.4). The evolution equations for ŝ and

l̂d = l̂p become

dŝ
dt

= −ω̃′sd(ŝ· l̂d) l̂d×ŝ, (3.65)

d l̂d

dt
= −ω̃′ds( l̂d·ŝ)ŝ× l̂d − ω̃

′
db( l̂d· l̂b) l̂b× l̂d, (3.66)

where

ω̃′sd = ω̃sd + ωsp, (3.67)

ω̃′ds = ω̃ds + (Lp/Ld)ωps, (3.68)

ω̃′db = ω̃db + (Lp/Ld)ωpb, (3.69)

are the mutual star-disk-binary precession frequencies modified by the presence

of a massive planet.

Figure 3.5 shows the evolution of θsd = θsp (top panel) and precession fre-

quencies ω̃′sd and ω̃′db (bottom panel). We see when the planet forms too close

to its host star (ap = 2 rin), ω̃′sd is always larger than ω̃′db thoughout the disk evo-

lution, the system averts secular resonance, and no significant spin-orbit mis-

alignment is generated. In other words, a close-in giant planet makes ŝ closely

follow l̂d ' l̂p. When the planet forms further from it’s host star (ap = 7 rin), ωsp

is reduced, and the system goes through secular resonance, and significant θsp

is achieved. The star-planet-disk-binary system may undergo secular resonance

when the planet forms at a sufficiently large ap, so thatωsp . ω̃db. This inequality

gives a lower bound for ap:

ap &

[
2(4 − p)kq

(5/2 − p)k?

]1/3

Ω̄
1/3
?

(
Mp

Mb

)1/3 (
R?

rout

)1/2

ab. (3.70)
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Taking p = 3/2, we have

ap & 0.23
(
2kq

k?

)1/3 (
Ω̄?

0.1

)1/3 (
Mp

1 MJ

)1/3 R̄1/2
? āb

M̄1/3
b r̄1/2

out

au. (3.71)

Thus, only giant planets formed at large distances (ap & 0.2 au) have any chance

of experiencing excitation of spin-orbit misalignment from star-disk-binary in-

teractions. Lower mass planets (Mp . 0.1 MJ) formed around slowly-spinning

stars (Ω̄? . 0.03) with close binary companions (ab . 200 au) may experience

excitation of spin-orbit misalignments when ap & 0.04 au, but this is a very lim-

ited region of the parameter space of observed star-disk-binary systems. We

conclude significant θsp is unlikely to be excited when a HJ forms in-situ early

(tp . 1 Myr).

3.5.2 Late In-Situ Formation of Hot-Jupiters

Boley, Granados Contreras & Gladman [2016] proposed that a ∼ 10 M⊕ core may

form at orbital periods . 10 days after a phase of dynamical instability in a

short-period (. 200 days) multi-planet system. If this critical core forms late

in the disk’s lifetime (tp & 1 Myr), the planet cannot accrete much of the disk’s

mass locally [Eq. (3.64)]. Therefore, we assume a hot Jupiter formed late (tp &

1 Myr) in the disk’s lifetime grows primarily from disk mass advected through

the planets gap. Simulations show the accretion rate of viscously advected disk-

mass onto a gap-opening planet may be written as

dMp

dt
= −η

dMd

dt
, (3.72)

where η ∼ 0.7 − 0.9 depending on the planet’s mass and local disk properties

(e.g. Lubow & D’Angelo 2006). The accretion rate (3.72) will cause the planet’s

71



0 2 4 6 8 10
0

20

40

60

80

100

120

140

160

180

θ s
p

=
θ s

d
(d

eg
re

es
) tgrow = 3 kyr

0 2 4 6 8 10
0

20

40

60

80

100

120

140

160

180

θ s
p

=
θ s

d
(d

eg
re

es
) tgrow = 30 kyr

0 2 4 6 8 10
Time (Myr)

0

20

40

60

80

100

120

140

160

180

θ s
p

=
θ s

d
(d

eg
re

es
) tgrow = 300 kyr

0 2 4 6 8 10
Time (Myr)

100

101

102

ω̃
′ sd
,ω̃
′ d
b

(2
π

/M
yr

)

ω̃′sd

ω̃′db

Figure 3.6: Evolution of the star-planet/star-disk inclination θsp = θsd in the late
in-situ model, for different planet mass growth timescale tgrow [Eq. (3.73)] as indi-
cated (top and bottom left panels). The bottom right panel shows the modified
star-disk precession frequency ω̃′sd [Eq. (3.67)] and modified disk-binary preces-
sion frequency ω̃′db [Eq. (3.69)] for tgrow = 3 kyr (solid), tgrow = 30 kyr (dashed),
and tgrow = 300 kyr (dotted). All parameter values are canonical [Eq. (3.1)] ex-
cept the binary’s semi-major axis ab = 200 au. The planet has a semi-major axis
of ap = 2 rin = 0.0736 au, and forms at time tp = 4 Myr. The adiabatic parameter A
[Eq. (3.75)] takes values of A = 0.312 (tgrow = 3 kyr), A = 3.12 (tgrow = 30 kyr), and
A = 31.2 (tgrow = 300 kyr). Large star-planet/disk inclinations are maintained
only when A . a few.
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mass Mp to grow on a timescale

tgrow ≡
Mp

dMp/dt
∼

tv

η

(
Mp

Md

)
= 2.15 kyr

(
tv

0.5 Myr

) (
0.7
η

) (
Mp

10 M⊕

)
M̄−1

d . (3.73)

Because in this model the planet’s mass is accreted globally from the disk, we

assume that Mp remains independent of the local disk properties (most notably

the disk surface density near r = ap), and prescribe Mp = Mp(t) as

Mp(t) = min
[
10 M⊕ exp

(
t − tp

tgrow

)
, 1 MJ

]
. (3.74)

Notice our early in-situ formation model for hot Jupiters [Eq. (3.63)] fixes ωsp =

constant when t ≥ tp, while our late in-situ formation model [Eq. (3.74)] causes

ωsp to grow until Mp = 1 MJ.

Because the late in-situ formation of a hot Jupiter causes an increase of ω̃′sd

after formation, we expect the system to encounter a second secular resonance

(when ωsp ∼ ω̃db) if the system undergoes an initial secular resonance (when

ω̃sd ∼ ω̃db) before the planet forms. The timescale of this second resonance

crossing is of order tgrow. If tgrow is sufficiently long compared to (ω̃db)−1, a large

amount of angular momentum may be exchanged throughout the planet-star-

disk-binary system during the resonance crossing, significantly influencing the

final star-planet/disk inclinations θsp = θsd. If tgrow is comparable or shorter than

(ω̃db)−1, the system cannot exchange much angular momentum during its period

of secular resonance, effectively freezing the star-planet/disk inclination at the

time the planet forms (θsp(t) ≈ θsp(tp) when t ≥ tp). We introduce the adiabaticity

parameter

A = tgrowω̃db. (3.75)

When A � 1, we expect a large amount of angular momentum to be exchanged

between the stellar spin and the planet/disk orbital angular momenta.
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Figure 3.7: Evolution of the planet’s semi-major axis ap with time, for different
Λmig values as indicated [see Eq. (3.39)]. We assume the planet forms at tp =

1 Myr and ap = 5 au with Mp = 0.93 MJ, assuming ξ = 4 (assuming p = 1, and
canonical disk parameters). The planet migrates to ap = 0.07 au (Λmig = 0.3,
fast migration), ap = 0.23 au (Λmig = 1.0, moderate migration), and ap = 0.68 au
(Λmig = 3.0, slow migration).

Figure 3.6 shows the evolution of θsp = θsd (top and bottom left panels) and

precession frequencies ω̃′sd and ω̃′db (bottom right panel) using our late in-situ hot

Jupiter formation model, with tgrow indicated. In the top two panels, A . a few,

so the system’s second secular resonance does not allow a significant amount

of angular momentum to be transferred from the stellar spin to the planet/disk

angular momenta. As a result, the star-planet/disk inclinations freeze to θsp ≈

60◦ (top left) and θsp ≈ 120◦ (top right) after the planet forms (tp = 4 Myr). In the

bottom left panel, A = 31.2 � 1, so the star-planet/disk inclination settles down

to θsp ≈ 10◦ after the second resonance crossing.
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Figure 3.8: Evolution of the star-disk/star-planet angle θsd = θsp (top and bottom
left panels) and precession frequencies ω̃′sd [Eq. (3.67)] and ω̃′db [Eq. (3.69)] (bot-
tom right panel) with time, for the Λmig values indicated. In the bottom right
panel, the different lines correspond to fast migration (Λmig = 0.3, dotted), mod-
erate migration (Λmig = 1.0, dashed), and slow migration (Λmig = 3.0, solid). We
take all parameters to be cannonical with p = 1 and tv = 0.5 Myr. The planet
forms at tp = 1 Myr and ap = 5 au with Mp = 0.931 MJ [assuming ξ = 4 in
Eq. (3.63)]. We take θsd(0) = 5◦ and θdb(0) = 60◦ in all integrations. See Fig. 3.7 for
the ap evolution. No appreciable θsp is generated when a hot Jupiter is produced
(see the Λmig = 0.3 case).

3.5.3 Formation of Hot-Jupiters through Type-II Migration

We now consider the scenario where the giant planet forms at a large semi-

major axis and subsequently undergoes Type-II migration. The planet forms

with a mass Mp given by Eq. (3.61), where ap is fixed when t ≤ tp, afterwards it
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Figure 3.9: Evolution of the star-disk/star-planet angle θsd = θsp (top and middle
panels) and precession frequencies ω̃′sd [Eq. (3.67)] and ω̃′db [Eq. (3.69)] (bottom
panel) with θdb(t) approximately equal to θdb(0) = 20◦ (top) and θdb(0) = 60◦

(middle), for Λmig = 0.3 and θsd(0) = 5◦ in all integrations. We take all parameters
to be canonical except ab = 200 au with p = 1 and tv = 0.5 Myr. The planet forms
at tp = 1 Myr and ap = 5 au with Mp = 0.931 MJ [assuming ξ = 4 in Eq. (3.63)].
See Fig. 3.7 for the ap evolution. Significant (θsp & 30) spin-orbit misalignments
are not sustained when a Jovian planet migrates close to it’s host star after the
star-disk-binary system experiences secular resonance (ω̃sd ∼ ω̃db).
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migrates inwards according to Eqs. (3.38) and (3.39). For p = 1, Eq. (3.63) gives

Mp

M?

=
1.63 × 10−3

(1 + tp/tv)3/2

(
ξ

4

)3/2 M̄3/2
d0

M̄3/2
? r̄3/2

out

(
ap(tp)
5 au

)3/2

. (3.76)

Figure 3.7 shows the semi-major axis evolution of a planet formed at tp = 1 Myr

with ap(tp) = 5 au. The shortest migration time parameter (Λmig = 0.3) leads

to a hot Jupiter at the end of the disk’s lifetime (ap . 0.1 au at t = 10 Myr),

while longer migration time parameters allow ap to decrease and stop at a value

& 0.1 au. Fig. 3.7 also shows that most of the planet’s migration occurs when

the disk is young (t . few × tv), since the reduction of disk mass lengthens tmig

significantly [see Eq. (3.39)].

Figure 3.8 plots θsp = θsd (top and bottom left panels), ω̃′sd, and ω̃′db (bottom

right panel) with time, for the Λmig values indicated. When Λmig = 0.3, the planet

quickly migrates close to its host star within the first few Myr’s (see Fig. 3.7).

This causes ω̃′sd to increase in time after a few Myr’s, ensuring that the secular

resonance is never achieved (bottom right panel of Fig. 3.8). As a result, θsp

is not excited by star-disk-binary interactions (top left panel of Fig. 3.8), and

the hot Jupiter forms without spin-orbit misalignment. When Λmig = 1.0, the

planet migrates to an ap value so that ω̃′sd ∼ ω̃
′
db after a few Myr’s. The star-disk-

binary system proceeds to pass into and out of secular resonance, generating a

planet with spin-orbit misalignment (top right panel of Fig. 3.8). However, this

planet has become a warm Jupiter, with a final semi-major axis ap = 0.234 au at

t = 10 Myr (see Fig. 3.7). When Λmig = 3.0, the planet stays sufficiently far from

its host star so that secular resonance may occur without modification by ωsp,

allowing θsp to be excited by star-disk-binary interactions (bottom left panel of

Fig. 3.8). The Λmig = 3.0 planet ends at a semi-major axis of ap = 0.683 au, far too

large to be considered a hot Jupiter.

77



Figure 3.9 shows another example of the evolution of star-disk-binary sys-

tem, in which a hot Jupiter forms via Type-II migration after secular resonance

(when ω̃′sd ∼ ω̃′db). A large θsp is achieved while ω̃′sd . ω̃′db. However, once the

planet migrates close enough to its host star so that ωsp & ω̃db, the system passes

through secular resonance again, and ŝ switches from precessing around l̂b to

precessing around l̂d ' l̂p. Although θsd evolves to values significantly larger

than the initial θsd(0) = 5◦, the final stellar obliquity is modest, and border on

being considered coplanar (θsp . 20◦). We see that even when the star-disk-

planet-binary system does undergo secular resonance, the star-planet interac-

tion significantly reduces spin-orbit misalignment after the planet has migrated

near the vicinity of the host star.

3.5.4 Hot Jupiters left in disk cavity from photoevaporation

This section examines the fate of hot Jupiters in star-disk-binary systems when

the disk’s inner cavity is rapidly cleared by photoevaporation. We adopt the

Σ(r, t) prescription of Section 3.3. For simplicity, we assume the hot Jupiters

form in-situ, although they could have undergone Type-II migration before the

inner disk is depleted at t ≈ tw. Note that when the planet lies in the inner disk

depleted by photoevaporation [see Eq. (3.39)], radial migration is negligible,

halting the hot Jupiter at ap ≈ ap(tw). We assume the planet forms at t = tp < tw

with mass Mp given by Eq. (3.63).

The evolution of the planet-star-disk-binary system proceeds in two stages.

For t ≤ tw, the planet is embedded in the “full” disk, so l̂p ' l̂d and Eqs. (3.65)-

(3.66) apply. For t > tw, the planet resides in a depleted disk cavity and ω̃pd .
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Figure 3.10: Star-disk-planet-binary evolution under a prescribed Σ depletion
due to photoevaporation (see Sec. 3.3). Top panels display θsd, θpd, and θps

with time, bottom panels display numerous characteristic precession frequen-
cies with time. Left panels show the system’s entire dynamical evolution over
10 Myr, right panels show the system’s dynamics near t ≈ tw = 5 Myr. All
parameters are cannonical except p = 3/2 and tv = 0.1 Myr, with tw = 5 Myr,
tv,in = 0.01 Myr, rc = 2 au, hp = 0.2, ap(t) = ap(0) = 4 rin = 0.147 au, tp = 0.3 Myr,
and Mp = 0.338 MJ (assuming ξ = 10). We take θsd(0) = 5◦ and θdb(t) ≈ θdb(0) = 60◦

for all integrations. Because ω̃′sd & ω̃′db at t ≈ tw, the star-planet inclination θsp

stays negligible.
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Figure 3.11: Same as Fig. 3.10 except ap(t) = ap(0) = 8 rin = 0.294 au, tp = 0.3 Myr
with Mp = 0.568MJ (assuming ξ = 10). Because ω̃′sd . ω̃′db at t ≈ tw, the star-planet
inclination θsp is excited after tw.

ωps, ωpb [see Eqs. (3.54)-(3.55)], so l̂p and l̂d decouple and evolve separately. The

evolution equations for t > tw are

dŝ
dt

= − ω̃sd(ŝ· l̂d) l̂d×ŝ − ωsp(ŝ· l̂p) l̂p×ŝ, (3.77)

d l̂d

dt
= − ω̃ds( l̂d·ŝ)ŝ× l̂d − ω̃dp( l̂d· l̂p) l̂p× l̂d

− ω̃db( l̂d· l̂b) l̂b× l̂d, (3.78)

d l̂p

dt
= − ω̃pd( l̂p· l̂d) l̂d× l̂p − ωps( l̂p·ŝ)ŝ× l̂p

− ωpb( l̂p· l̂b) l̂b× l̂p, (3.79)

where ω̃pd and ω̃dp are given by Eqs. (3.45) and (3.46).
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Before tw, the disk/planet is strongly coupled to the star (ω̃′sd � ω̃′db). Im-

mediately following tw, the inner disk’s rapid depletion causes ω̃sd to fall well

below ωsp. The main coupling allowing ŝ to track l̂p and l̂d is ωsp, while the main

external forcing trying to disrupt the mutual planet-star-disk coupling is ω̃db.

Since ω̃pd is typically much larger than the other frequencies during this time,

l̂p and l̂d are coupled. Whether ŝ is allowed to become significantly misaligned

with l̂p and l̂d after tw depends on the magnitude of ωsp compared to ω̃db:

1. If ωsp & ω̃db, the planet star-disk coupling is stronger than the disk-binary

coupling working to misalign the planet-star-disk system. The stellar spin

ŝ stays aligned l̂p and l̂d, and stellar obliquity is not excited at t ≈ tw.

2. If ωsp . ω̃db, the planet star-disk coupling is weaker than the disk-binary

coupling. The stellar spin ŝ decouples from l̂p and l̂d, and stellar obliquities

are excited at t ≈ tw.

Soon after tw, ω̃pd ≈ ω̃pd> falls well below ωps, and l̂p decouples from l̂d but

remains strongly coupled ŝ. The stellar obliquities excited in planet-star-disk-

binary systems over the disk’s lifetime depends on the magnitude of ωsp com-

pared to ω̃db.

Figure 3.10 displays the evolution of the star-disk-planet-binary system for

ap = 4 rin = 0.147 au, which implies ωsp & ω̃db. We assume Σ(r, t) evolves un-

der prescription (3.20) with tv,in = 0.01 Myr and tw = 5 Myr. The left panels of

Fig. 3.10 show the evolution of various angles and frequencies over the disk’s

lifetime, while the right panels zoom in around t ≈ tw. The top right panel shows

ŝ and l̂d decouple first, since θsd > θpd, θsp after tw. The bottom panel of Fig. 3.10

shows that because ω̃pd & ωps directly after tw, l̂p remains strongly coupled to l̂d,
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while ω̃sd has fallen well below ωsp and ω̃db in magnitude. Because ωsp & ω̃db, ŝ

decouples from l̂d and begins to adiabatically follow l̂p. The adiabatic trailing of

ŝ around l̂p directly following tw suppresses any θsp excitation (top right panel of

Fig. 3.10). The top left panel shows by the end of the disk’s lifetime, θsp is not

excited, the expected outcome since ωsp & ω̃db (bottom left panel of Fig. 3.10).

The star-planet system ends up decoupled from the disk, which continues to

precess around the binary’s orbital angular momentum vector l̂b.

Figure 3.11 is identical to Fig. 3.10, except ap = 8 rin = 0.294 au so the system

falls into the ωsp . ω̃db regime. The bottom right panel of Fig. 3.11 shows for

a brief amount of time following tw, l̂p is still strongly coupled to l̂d but not to

ŝ (ω̃pd & ωps), while ŝ quickly decouples from l̂d and couples to l̂p (ωsp & ω̃sd).

Because ωsp . ω̃db, ŝ cannot adiabatically track l̂p due to its rapid precession

around l̂b through the strong coupling of l̂p to l̂d, explaining why θsd > θpd, θsp

when t > tw (top right panel of Fig. 3.11). Some time after tw, θsp is excited to

large values (top left panel of Fig. 3.11). After t & tw + few × tv, ω̃pd falls well

below ωps (bottom left panel of Fig. 3.11), causing l̂p to couple strongly with ŝ,

explaining why θsp ∼ constant soon after its excitation at t ≈ tw.

These two examples show that although the planet-star-disk-binary system’s

dynamics following tw is complex, the key criterion for exciting stellar obliqui-

ties is ωsp . ω̃db at t ≈ tw. This is similar to the criterion discussed in Section 3.5.1

[see Eqs. (3.70)-(3.71)].
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3.6 Discussion

3.6.1 Observational Implications

Due to the prevalence of circumstellar disks in binary systems misaligned with

the binary’s orbital plane (e.g. Stapelfeldt et al. 1998, Jensen & Akeson 2014),

star-disk-binary interactions have been suggested to generate primordial spin-

orbit misalignments in exoplanetary systems [Batygin, 2012, Batygin & Adams,

2013, Lai, 2014, Spalding & Batygin, 2014]. For a wide range of disk/binary

parameters, the star-disk-binary system naturally passes through a secular res-

onance during the disk’s evolution, in which the precession rate of the stellar

spin driven by the disk (ω̃sd) matches the precession rate of the disk driven by

the binary companion (ω̃db). When the system passes through this secular reso-

nance, a significant misalignment between the stellar spin and disk axis is gen-

erated, even for systems with low disk-binary inclinations (see Fig. 3.1). Because

this mechanism is so robust, the effects of accretion and magnetic interactions

have been invoked to damp the spin-disk misalignment [Lai, 2014, Spalding &

Batygin, 2015], and to explain the observed correlation between stellar effective

temperatures and obliquities [Winn et al., 2010, Albrecht et al., 2012, Mazeh et

al., 2015, Li & Winn, 2016, Winn et al., 2017].

We have shown that when a giant planet forms or migrates to a semi-major

axis ap where the precession rate of the spinning star around the planet exceeds

the precession rate of the disk around the binary companion [ωsp & ω̃db, see

Eqs. (3.49) and (3.10)], stellar obliquity excitation may be reduced or completely

suppressed. The excitation is reduced when the planet-star-disk-binary system

undergoes secular resonance before the planet migrates near the inner edge of
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the protoplanetary disk (Fig. 3.9). The obliquity excitation is completely sup-

pressed when the planet forms or migrates to a semi-major axis too close to

its host star before the system has a chance to experience secular resonance

(Figs. 3.5 and 3.8). The obliquity excitation may be maintained if the planet ac-

cretes a significant amount of mass non-locally over sufficiently short timescales

(Fig. 3.6). We find in order for star-disk-binary interactions to generate signif-

icant misalignment between a planet and its host star (θsp & 30◦), the planet

must lie on an orbit where the disk-binary precession frequency exceeds the

star-planet precession frequency (ω̃db & ωsp), or the system’s second secular res-

onance (when ωsp ∼ ω̃db) must be crossed quickly. Rapidly clearing the proto-

planetary disk’s inner region via photoionization does not modify this criterion

(Sec. 3.5.4). Assuming the gas-giant’s growth is sufficiently slow, a lower bound

may be placed on the semi-major axis ap of a planet [see Eqs. (3.70)-(3.71)] which

may have primordial spin-orbit misalignment generated via star-disk-binary in-

teractions (assuming p = 1):

ap & 0.24
(
2kq

k?

)1/3 (
Mp

1 MJ

)1/3 (
Ω̄?

0.1

)1/3 R̄1/2
? āb

M̄1/3
b r̄1/2

out

au. (3.80)

Eq. (3.80) depends very weakly on the surface density power-law index p

[Eq. (3.70)].

Misalignments of Hot Jupiter Systems

Equation (3.80) [see also Eqs. (3.70)-(3.71)] shows that while “cold” Jupiters

(planets with mass Mp ∼ 1 MJ and semi-major axis ap & 1 au) and close-in

earth-mass planets can experience primordial misalignment excitations from

binary companions, hot Jupiters (HJ) may have this primordial misalignment

reduced or completely suppressed. Most systems with significant stellar obliq-
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uities detected via the Rossiter-McLaughlin effect are HJs with semi-major axis

ap . 0.1 au [Winn & Fabrycky, 2015, Triaud, 2017]. Thus our work shows that

HJs with star-planet inclinations θsp & 30◦ are unlikely to have developed these

misalignments through planet-star-disk-binary interactions.

Other ways to primordially misalign the stellar spin axis with the planet’s

orbital angular momentum include molecular cloud turbulence during the for-

mation of circumstellar disks [Bate et al., 2000, 2010, Fielding et al., 2015] and

magnetic star-disk interactions [Lai et al., 2011, Foucart & Lai, 2011]. For molec-

ular cloud turbulence to generate spin-orbit misalignment primordially, the in-

falling cloud material must cause the disk’s orbital angular momentum vector

to vary on timescales less than the precession period of the stellar spin around

the disk [Spalding, Batygin & Adams, 2014]. Our work shows that the loca-

tion and time of massive planet formation is also relevant for how efficiently

molecular cloud turbulence may generate primordial spin-orbit misalignments.

Kepler Multi-planet Systems

Observational evidence suggesting multi-planet systems discovered by Kepler

have low stellar obliquities is beginning to mount [Albrecht et al., 2013, Winn

et al., 2017]. Equation (3.80) shows that such systems may experience primor-

dial obliquity excitation by inclined binary companions, depending on the mass

of the planet and the semi-major axis of the companion. If HJs form in multi-

planetary systems, but are subsequently disrupted or engulfed by the host star

(e.g. by stellar tides), the hot Jupiter’s presence before the protoplanetary disk

dissipates may “protect” multi-planet systems from primordial spin-orbit mis-

alignment excitation in the presence of an inclined binary companion. The oc-
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currence rate of HJs is . 1% (e.g. Marcy et al. 2005, Gould et al. 2006, Cum-

ming et al. 2008, Howard et al. 2010, 2012, Bayliss & Sackett 2011, Wright et al.

2012), the occurrence rates of Jovian-mass planets orbiting interior to ∼ few au

is ∼ 5 − 10% (e.g. Cumming et al. 2008, Clanton & Gaudi 2016), and potentially

as high as ∼ 50% for long-period (semi-major axis ∼ few − 100 au) giant planets

(e.g. Clanton & Gaudi 2016, Foreman-Mackey et al. 2016, Vigan et al. 2017). If

the population of “destroyed” HJs is comparable to the fraction of long-period

massive planets, a significant fraction of low-obliquity (θsp ≈ 0◦) exoplanetary

systems may be explained through this mechanism. The multi-planet system

WASP-47, containing a HJ with two low-mass planet “neighbors” [Becker et al.,

2015] and a stellar obliquity θsp = 0 ± 24◦ consistent with 0 [Sanchis-Ojeda et al.,

2015], may be an example of a multi-planet system with a HJ “protector” which

has survived to the present day.

3.6.2 Theoretical Uncertainties

In Section 3.3, we considered a simple model for non-homologous surface

density evolution, parameterizing the UV-switch model of photoevaporation

[Clarke et al., 2001]. Our model assumes the critical radius rc (where the

disk’s photo-ionization rate is comparable to the disk’s viscous depletion rate)

is fixed in time. In reality, photoevaporation forces rc to expand in time shortly

(. 105 years) after the inner disk is viscously depleted onto the central star, and

expands outward over a timescale of ∼ 105 years [Alexander, Clarke & Pringle,

2006, Owen et al., 2010]. There is not a simple way to relate this timescale to

tw (when the inner disk begins to clear) and tv,in (the timescale over which the

inner disk is depleted). In addition, the expansion of rc may accelerate due to
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a dynamical instability termed “thermal sweeping” [Owen, Clarke & Ercolano,

2012, Haworth, Clarke & Owen, 2016]. Including the expansion of rc will work

to reduce the magnitudes of the precession rate of the stellar spin around the

outer disk [ω̃sd>, Eq. (3.25)] and the precession rate of the planet about the outer

disk [ω̃pd>, Eq. (3.42)], which already become insignificant shortly after the inner

disk is viscously drained (t & tw + few × tv, see Figs. 3.10-3.11). Since the exci-

tation of stellar obliquities with a planet inside the disk’s inner cavity depends

mainly on the planet-star-disk-binary properties when the inner disk is drained

(t ≈ tw), inclusion of an expanding rc will not change the main results of this

paper.

Other models exist which cause the disk surface density to evolve non-

homologously. For instance, Russo & Thompson [2015a,b] considered the evo-

lution of protoplanetary disks through magnetorotational instability [Balbus &

Hawley, 1991] driven turbulence, seeded by magnetized stellar winds. Because

the magnetic field from the star is larger near the inner truncation radius, the

inner region of the disk is more turbulent than the outer region. This model for

turbulence in disks around T-Tauri stars results in the inner (r . few au) disk ac-

creting in less than a few Myr. Investigating the effect of such non-homologous

disk evolution models is outside the scope of this paper.

In this work, we have assumed that the disk is flat (i.e. l̂d is independent of

radius). Disk warping may change the mutual inclinations of planets formed

in star-disk-binary systems, and align the stellar spin, disk, and binary orbital

angular momentum axis over viscous timescales. These issues are addressed in

a companion work [Zanazzi & Lai, 2017b]. Disk warping may also affect the

planet-disk interaction of massive planets, explored in Lubow & Ogilvie [2001].
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3.7 Conclusions

In this work, we have studied how the formation of a massive planet orbiting

close to its host star affects the generation of primordial misalignment between

the stellar spin and the orbital angular momentum axes of the planet and disk

in the presence of an inclined external binary companion. We find that when

a protoplanetary disk’s inner cavity is rapidly cleared by photoevaporation be-

fore secular resonance occurs, the star-disk misalignment is reduced (Sec. 3.3,

Fig. 3.3). More importantly, when a giant planet (hot Jupiter) forms or migrates

early to the near vicinity of the host star, it becomes strongly coupled to the star,

preventing any significant excitation of spin-orbit misalignment. Specifically,

we find (Sec. 3.5):

1. If a hot Jupiter forms early in-situ, spin-orbit misalignment is completely

suppressed since the star-planet precession frequencyωsp [Eq. (3.49)] always

exceeds the disk-binary precession frequency ω̃db [Eq. (3.10)].

2. If a hot Jupiter forms late in-situ and accretes most of its mass from vis-

cously advected disk gas, spin-orbit misalignment is significantly reduced

when the planet’s mass grows over a timescale sufficiently longer than

the disk-binary precession period (Fig. 3.6). Spin-orbit misalignment can

be maintained if the planet’s mass growth timescale [Eq. (3.73)] is shorter

than the disk-binary precession period (Fig. 3.6).

3. If a giant planet forms in the outer region of the protoplanetary disk, and

migrates in via Type-II migration, the excitation of spin-orbit misalign-

ments depends on the migration history of the planet relative to the time

of the secular resonance. If the planet migrates to a semi-major axis ap such
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that the star-planet precession frequency exceeds the disk-binary preces-

sion frequency (ωsp & ω̃db) before secular resonance, spin-orbit misalign-

ment is completely suppressed (Fig. 3.8, top left panel). If the planet migra-

tion occurs after secular resonance, the stellar obliquity is significantly re-

duced when the planet migrates to a close-in orbit which satisfiesωsp & ω̃db

(Fig. 3.9).

4. If the giant planet is left in the photoevaporated inner disk cavity before

secular resonance occurs in the star-disk-binary system, spin-orbit mis-

alignment is completely suppressed, unless the star-planet precession fre-

quency is less than the disk-binary precession frequency (ωsp . ω̃db) when

the inner disk is cleared (Figs. 3.10-3.11).

Overall, our work shows that regardless of the complication of disk evolu-

tion, significant stellar obliquities can be generated only when the planet forms

at an orbital separation where the star-planet precession frequency exceeds the

disk-binary precession frequency (ωsp . ω̃db), or the planet forms quickly after

the system undergoes secular resonance. This places a lower bound on a slowly

forming planet’s semi-major axis such that primordial spin-orbit misalignment

can be generated via star-disk-binary interactions [Eqs. (3.70),(3.71) or (3.80)].

Hot Jupiters do not satisfy this bound, and thus may not acquire significant

spin-orbit misalignment through this mechanism, depending on how the planet

accreted its mass (Sec. 3.6.1). On the other hand, “cold Jupiters” and close-in

earth-mass planets may experience excitation of spin-orbit misalignments un-

der appropriate conditions. If hot Jupiters form in multi-planet systems, they

may protect the system from suffering primordial spin-orbit misalignments in

the presence of an inclined binary companion (Sec. 3.6.1).
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CHAPTER 4

LIDOV-KOZAI MECHANISM IN HYDRODYNAMICAL DISKS: LINEAR

STABILITY ANALYSIS

4.1 Introduction

When a test particle orbiting a central mass has a distant binary companion, it

can undergo eccentricity and inclination oscillations if the initial inclination I be-

tween the orbital planes of the test mass and the binary is sufficiently large. This

is termed Lidov-Kozai (LK) oscillation, and was originally invoked to explain

the dynamics of artificial satellites [Lidov, 1962] and asteroids [Kozai, 1962].

Since then, the LK effect has found a plethora of applications in astrophysics

(e.g. Tremaine & Yavetz 2014, Naoz 2016), such as the formation of the Jovian

irregular satellites [Carruba et al., 2002, Nesvorný et al., 2003], mergers of mas-

sive black hole binaries [Blaes et al., 2002], formation of short-period stellar bi-

naries [Eggleton & Kiseleva-Eggleton, 2001] and hot Jupiters [Wu & Murray,

2003, Fabrycky & Tremaine, 2007, Petrovich, 2015, Anderson et al., 2016], and

Type Ia supernovae from white dwarf binary mergers [Katz & Dong, 2012].

The simplest LK oscillation involves only the quadrupole potential from the

companion. It has been recognized that the high-order perturbation (e.g., Ford

et al. 2000, Naoz et al. 2011, Katz et al. 2011) and short-range forces (e.g., Hol-

man et al. 1997, Wu & Murray 2003, Liu, Muñoz, & Lai 2015) can significantly

influence the LK oscillation dynamics. Thus, one may expect that any eccentric-

ity/inclination oscillations of a gaseous disk inside a stellar binary, if occur at

all, may be modified or suppressed by hydrodynamic forces.
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Recently Martin et al. [2014] used SPH simulations to show that LK oscilla-

tions may be excited in circumstellar disks with distant, inclined binary com-

panions (see also Fu et al. 2015a). Fu et al. [2015b] showed that these disk

oscillations can be suppressed by the disk self-gravity when the disk mass is

sufficiently large (Batygin et al. 2011; see discussion in Sec. 4). If real, this may

have interesting astrophysical implications due to the ubiquity of misaligned

circumstellar accretion disks in binary systems.

In this paper we use linear theory of eccentric disks[Goodchild & Ogilvie,

2006, Ogilvie, 2008, Teyssandier & Ogilvie, 2016] to study the possibility of co-

herent LK oscillations of circumstellar disks in binaries. Section 4.2 gives the

set-up and formalism of this work. Section 4.3 contains our results. Section 4.4

presents the summary and discussion of our work.

4.2 Setup and Formalism

Consider a circumstellar disk around a host star of mass M. The disk has an

inner radius r = rin, outer radius r = rout, and surface density Σ = Σ(r). The

disk warp and eccentricity are specified by the unit angular momentum vector

l̂ = l̂(r, t) and eccentricity vector e = e(r, t). We take the disk to be nearly circular,

so e � 1 everywhere. We adopt a locally isothermal equation of state, so that

the height-integrated pressure at any location in the disk is given by P = c2
s Σ,

where cs = cs(r) is the sound speed. For a thin disk with mass much less than M,

the orbital frequency of the disk is given by n(r) '
√

GM/r3. The host star has

a distant external binary companion with semimajor axis ab & 3rout
1, mass Mb,

1The upper bound on the outer disk radius is set by tidal truncation [Artymowicz & Lubow,
1994, Miranda & Lai, 2015]
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and orbital angular momentum unit vector l̂b. We take the binary’s orbit to be

circular. Because the angular momentum of the binary is much larger than that

of the circumstellar disk, we take l̂b to be fixed in time.

The gravitational force of the binary companion drives the eccentricity and

angular momentum unit vectors of disk annuli according to [Tremaine et al.,

2009, Tremaine & Yavetz, 2014]∂ l̂
∂t


bin

= ωb( l̂· l̂b) l̂× l̂b + O(e2) (4.1)(
∂e
∂t

)
bin

= ωb

[
( l̂· l̂b)e× l̂b − 5(e· l̂b) l̂× l̂b + 2 l̂×e

]
+ O(e3), (4.2)

where

ωb(r) =
3GMb

4a3
bn

(4.3)

characterizes the precession frequency of a disk annulus around the external

binary. Equations (4.1) and (4.2) include the effect of the quadrupole potential

from the binary and are averaged over the binary period.

Internal hydrodynamical forces work to resist the differential nodal preces-

sion of the disk annuli, either in the form of bending waves [Papaloizou & Lin,

1995, Lubow & Ogilvie, 2000] or viscosity [Papaloizou & Pringle, 1983, Ogilvie,

1999], and enforce both coplanarity (|∂ l̂/∂ ln r| � 1) and rigid body precession

[Larwood et al., 1996, Xiang-Gruess & Papaloizou, 2014]. Under their influence,

the time evolution of the disk’s unit angular momentum vector is given by(
∂ l̂
∂t

)
int

+

(
∂ l̂
∂t

)
bin

= ω̃db( l̂· l̂b) l̂× l̂b + O(e2) (4.4)

⇒

(
∂ l̂
∂t

)
int

= (ω̃b − ωb)( l̂· l̂b) l̂× l̂b + O(e2), (4.5)

where l̂ is (nearly) independent of r, and

ω̃b =

∫ rout

rin
Σr3nωbdr∫ rout

rin
Σr3ndr

(4.6)
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characterizes the precession frequency of the rigid disk around the binary. The

internal force that enforces rigid disk nodal precession must also act on e, so

that e remains perpendicular to l̂, i.e.,∂(e· l̂)
∂t


int

= 0. (4.7)

This requirement, together with the assumption that the internal force respon-

sible for Eq. (4.5) is perpendicular to the disk, imply that the time evolution of

the disk’s eccentricity vector is(
∂e
∂t

)
int

= (ω̃b − ωb)( l̂· l̂b)
[
l̂·(e× l̂b)

]
l̂ + O(e3). (4.8)

We justify Eq. (4.8) in the appendix.

Before we proceed, we comment on the validity of the assumption of copla-

narity and rigid-body precession. When the dimensionless Shakura-Sunyaev

viscosity parameter α satisfies α . H/r (H is the disk scaleheight), bending

waves keep the disk coherent [Papaloizou & Lin, 1995, Lubow & Ogilvie, 2000].

The amount of disk warp in this bending wave regime has been calculated in

Foucart & Lai [2014], and assuming p = 1 and q = 1/2 [see Eqs. (4.19)-(4.20) in

next section], is

l̂(rout, t) − l̂(rin, t) ≈

0.01
(
α

0.01

) (H(rout)
0.1 rout

)−2 (Mb

M

) (3rout

ab

)3 l̂b× l̂(rout, t)
sin I

− 0.01
(

H(rout)
0.1 rout

)−2 (Mb

M

)2 (
3rout

ab

)6 [ l̂b× l̂(rout, t)]× l̂b

sin I
. (4.9)

Numerical simulations give a similar result (e.g. Larwood et al. 1996, Xiang-

Gruess & Papaloizou 2014, Picogna & Marzari 2015). On the other hand, when

α & H/r, viscous torques keep the disk coherent [Papaloizou & Pringle, 1983,

Ogilvie, 1999], and the disk diffusively damps to it’s steady-state equilibrium
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warp profile over the timescale tvisc ∼ 2αr2/(H2n) [Lodato & Pringle, 2007,

Lodato & Price, 2010, Foucart & Lai, 2011]. Large warping and sometimes disk

breaking is observed when the disk’s viscous torque is comparable to or less

than the torque exerted on the disk by the distant binary (e.g. Larwood et al.

1996, Doğan et al. 2015). Thus, the following derivation of the LK disk instability

will be restricted to the α . H/r regime, which is applicable to protoplanetary

disks.

For a flat disk, the effect of pressure on the time evolution of the disk’s ec-

centricity is described by [Teyssandier & Ogilvie, 2016](
∂e
∂t

)
press

= l̂×
[

1
Σr3n

∂

∂r

(
Σc2

s r3

2
∂e
∂r

)]
+

1
2Σrn

d(Σc2
s )

dr
l̂×e − l̂×

[
1

2Σr3n
∂

∂r

(
Σ

dc2
s

dr
r3e

)]
+

3
2r3n

d(c2
s r2)

dr
l̂×e + O(e2). (4.10)

The last term in Eq. (4.10) arises from the disk’s “breathing mode,” where the

fluid displacements are proportional to z2, where z is the vertical coordinate of

the disk [Ogilvie, 2008]. Earlier theories of eccentric disks do not include this

term [Goodchild & Ogilvie, 2006].

Following Teyssandier & Ogilvie [2016], we also include the effect of bulk

viscosity on the disk eccentricity evolution:(
∂e
∂t

)
visc

=
1

2Σr3n
∂

∂r

(
αbΣc2

s r3∂e
∂r

)
+ O(e2), (4.11)

small kinematic viscosity leads to over-stability, and a small bulk viscosity is

needed to stabilize the eccentric disturbance [Ogilvie, 2001, Latter & Ogilvie,

2006].

From Equation (5.22), we see that the disk’s unit angular momentum vector
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l̂(t) precesses uniformly around l̂b with frequency ωprec = −ω̃b cos I, where I is

the inclination angle (cos I = l̂· l̂b). Indeed, in the linear theory of LK oscillation

of a test mass, the inclination stays constant while the eccentricity grows in time

[Tremaine & Yavetz, 2014]. To determine the stability of e(r, t), it is necessary to

consider the evolution equation of e in the frame co-rotating with l̂(t) [Tremaine

& Yavetz, 2014]. Including the gravitational perturbations and hydrodynamical

effects, the time evolution of the disk’s eccentricity vector e is given by(
∂e
∂t

)
rot

=

(
∂e
∂t

)
bin

+

(
∂e
∂t

)
int

+

(
∂e
∂t

)
press

+

(
∂e
∂t

)
visc

+ (ω̃b cos I) l̂b×e. (4.12)

We will work in this frame for the rest of the paper, and drop the subscript “rot.”

Define the complex eccentricity E(r, t) ≡ e(r, t)·(x̂ + iŷ), where ŷ = l̂× l̂b/ sin I

and x̂ = ŷ× l̂ are unit vectors, constant in the rotating frame. Then Equa-

tion (4.12) becomes

∂E
∂t

= iωb

[
2E −

5 sin2 I
2

(E + E∗)
]

+ i(ω̃b − ωb) cos2 IE +
i

Σr3n
∂

∂r

(
Σc2

s r3

2
∂E
∂r

)
+

i
2Σrn

d(Σc2
s )

dr
E −

i
2Σr3n

∂

∂r

(
Σ

dc2
s

dr
r3E

)
+

3i
2r3n

d(c2
s r2)

dr
E +

1
2Σr3n

∂

∂r

(
αbΣc2

s r3∂E
∂r

)
, (4.13)

where E∗ denotes the complex conjugate to E. To find the eigenmodes of

Eq. (4.13), we separate E into two “polarizations”:

E(r, t) = E+(r) exp(λt) + E∗−(r) exp(λ∗t). (4.14)

Here, E+ and E− are two complex functions, while λ is a complex eigenvalue.

Substituting Eq. (4.14) into Eq. (4.13), we obtain the coupled eigenvalue equa-
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tions

λE+ = iωb

[
2E+ −

5 sin2 I
2

(E+ + E−)
]

+ i(ω̃b − ωb) cos2 IE+ +
i

Σr3n
d
dr

(
Σc2

s r3

2
dE+

dr

)
+

i
2Σrn

d(Σc2
s )

dr
E+ −

i
2Σr3n

d
dr

(
Σ

dc2
s

dr
r3E+

)
+

3i
2r3n

d(c2
s r2)

dr
E+ +

1
2Σr3n

d
dr

(
αbΣc2

s r3 dE+

dr

)
, (4.15)

λE− = −iωb

[
2E− −

5 sin2 I
2

(E+ + E−)
]

− i(ω̃b − ωb) cos2 IE− −
i

Σr3n
d
dr

(
Σc2

s r3

2
dE−
dr

)
−

i
2Σrn

d(Σc2
s )

dr
E− +

i
2Σr3n

d
dr

(
Σ

dc2
s

dr
r3E−

)
−

3i
2r3n

d(c2
s r2)

dr
E− +

1
2Σr3n

d
dr

(
αbΣc2

s r3 dE−
dr

)
. (4.16)

When αb = 0, the eigenvalue λ is either real or imaginary. Imaginary eigenvalues

imply the eccentricity vector e is precessing or librating around l̂, while real

eignenvalues imply an exponentially growing or damping eccentricity.

For a thin ring (rin ' rout) of pressure-less particles (cs = 0), Eqs. (4.15)-(4.16)

can be easily solved, giving

λ2 = −2ω2
b(2 − 5 sin2 I). (4.17)

This recovers the standard results: eccentricity grows when ILK < I < 180◦ − ILK

[Tremaine & Yavetz, 2014], where

ILK ≡ sin−1
√

2/5 ' 39◦. (4.18)
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4.3 Results

To analyze the solutions of Eqs. (4.15) and (4.16), we assume the disk surface

density and sound-speed profiles of

Σ(r) = Σ(rout)
(rout

r

)p
(4.19)

and

cs(r) = cs(rout)
(rout

r

)q
. (4.20)

A key dimensionless parameter in our analysis is the ratio

S ≡
c2

s (rout)
r2

outn(rout)ωb(rout)

' 0.36
(

ab

3 rout

)3 (
M
Mb

) (
H(rout)
0.1 rout

)2

, (4.21)

where we have approximated cs ' Hn (where H is the disk scale-height), and ωb

is defined in Eq. (4.3). Physically, S −1 measures the strength of the tidal torque

(per unit mass) acting on the outer disc from the external companion (r2nωb)

relative to the torque associated with gas pressure (c2
s ).

Define the dimensionless radial coordinate x ≡ r/rout, inner radius parameter

xin ≡ rin/rout, and dimensionless eigenvalue

λ̄ ≡ λ/ωb(rout). (4.22)

We assume that αb = constant. In terms of these parameters, Equations (4.15)

and (4.16) become

λ̄E+ = ix3/2
[
2E+ −

5 sin2 I
2

(E+ + E−)
]

+ i

5/2 − p
4 − p

 1 − x4−p
in

1 − x5/2−p
in

 − x3/2

 cos2 IE+

98



+ i
S x3/2−2q

2

[
d2

dx2 +

(
3 − p

x

)
d
dx

+
A(p, q)

x2

]
E+

+ αb
S x3/2−2q

2

[
d2

dx2 +

(
3 − p − 2q

x

)
d
dx

]
E+, (4.23)

λ̄E− = −ix3/2
[
2E− −

5 sin2 I
2

(E+ + E−)
]

− i

5/2 − p
4 − p

 1 − x4−p
in

1 − x5/2−p
in

 − x3/2

 cos2 IE−

− i
S x3/2−2q

2

[
d2

dx2 +

(
3 − p

x

)
d
dx

+
A(p, q)

x2

]
E−

+ αb
S x3/2−2q

2

[
d2

dx2 +

(
3 − p − 2q

x

)
d
dx

]
E−, (4.24)

where2

A(p, q) = 6 − 4q − p − 2pq − 4q2. (4.25)

We adopt a free boundary condition, where the eccentricity gradient van-

ishes on the disk’s boundaries:

dE±
dr

∣∣∣∣∣
r=rin

=
dE±
dr

∣∣∣∣∣
r=rout

= 0. (4.26)

In the following subsections, we calculate the eigenvalues and eigenmodes

to Eqs. (4.23) and (4.24). In Section 4.3.1, we investigate the limit |rout − rin| �

rout, where λ, E+(r), and E−(r) may be found analytically. In Section 4.3.2, we

calculate numerically λ, E+(r), and E−(r) for an inviscid (αb = 0) extended (|rout −

rin| ∼ rout) disk. In Section 4.3.3, we investigate the effect of a non-zero bulk

viscosity αb on the eigenvalues λ.

2If the breathing mode term is not included [last term in Eq. (4.10)], A(p, q) = 2q−p−2pq−4q2.
Equations (4.23)-(4.24) otherwise remain unchanged.
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Figure 4.1: Real (solid) and imaginary (dotted) components of eigenvalue λ for a
thin annulus [see Eqs. (4.29) and (4.14)] as functions of inclination I = cos−1( l̂· l̂b),
for values of S [Eq. (4.21)] and q [Eq. (4.20)] as indicated. We take p = 1
[Eq. (4.19)].
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Figure 4.2: Real (solid) and imaginary (dotted) components of the eigenvalue λ
[see Eqs. (4.29) and (4.14)] as functions of S [Eq. (4.21)], for values of inclination
I = cos−1( l̂· l̂b) and q [Eq. (4.20)] as indicated. We take p = 1 [Eq. (4.19)].
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4.3.1 Analytic Result for Thin Annulus

When rout−rin � rout, we may expand all quantities in Equations (4.15) and (4.16)

in terms of the small parameter (rout − r)/rout = 1 − x. The boundary condi-

tion (4.26) and normalization condition E+(rout) = 1 imply

E+(r) = 1 + O
[
(1 − x)3

]
(4.27)

and

E−(r) = E−(rout) + O
[
(1 − x)3

]
. (4.28)

Using the form of solutions (4.27) and (4.28), we may solve for the eigenvalue λ̄

[Eq. (4.22)] to lowest order in (rout − rin)/rout = 1 − xin:

λ̄2 = −
[
2 + S A(p, q)/2

][
(2 − 5 sin2 I) + S A(p, q)/2

]
. (4.29)

The polynomial A(p, q) is defined in Eq. (4.25), and S in Eq. (4.21).

Plotted in Figure 4.1 are the real (solid) and imaginary (dashed) components

of the eigenvalue λ given by Equation (4.29), as functions of inclination I with

values of S as indicated. We always show the solutions with Re(λ) > 0 and

Im(λ) > 0. When S � 1, we recover the classic LK result for a test particle, with

λ2 > 0 when I exceeds the critical inclination angle ILK [Eq. (4.18)]. When S � 1,

the Lidov-Kozai effect is suppressed by pressure gradients even when I > ILK.

In general, the critical inclination angle for eccentricity growth increases with

increasing S . However, we see from Fig. 4.1 that for S = 1.5 and q = 3/4, the

instability sets in when I & 22◦.

Figure 4.2 further illustrates the difference in behavior between q = 1/4 (top

panel) and q = 3/4 (bottom panel). For q = 1/4, the real growth rate for incli-

nations I > ILK [Eq. (4.18)] monotonically decreases with increasing S , until λ
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becomes imaginary. But for q = 3/4, a “window of instability” opens for incli-

nations I < ILK when S ∼ 1.

To understand the difference between these two models, consider the test

particle limit (cs = 0) and some additional pericenter precession ωext from a

source other than the binary companion. In the frame co-rotating with the test

particle’s orbit normal, the time evolution of the eccentricity vector is given by

de
dt

= ωb
[
2 l̂×e − 5(e· l̂b) l̂× l̂b

]
+ ωext l̂×e. (4.30)

Assuming e ∝ exp(λt), we find the eigenvalue

λ2 = −(2ωb + ωext)(2ωb + ωext − 5ωb sin2 I). (4.31)

When ωext ≥ 0, the extra pericenter precession works to suppress the LK insta-

bility, decreasing the range of I values for eccentricity growth (λ2 > 0). When

ωext ≤ −2ωb or ωext ≥ 3ωb, no value of I is capable of exciting eccentricity growth.

But when −2ωb < ωext < 0, the extra precession works to cancel the pericenter

precession induced on the test particle by the distant binary (2ωb), thus increases

the range of I values for eccentricity growth.

Comparing Eq. (4.31) to Eq. (4.29) shows the pressure force in a disk annulus

induces precession ωext = ωbS A(p, q)/2. Since A(1, 1/4) > 0, the pressure force in

the p = 1 and q = 1/4 disk tends to suppress eccentricity growth (Figs. 4.1-4.2,

top). But because A(1, 3/4) < 0, the pressure force in the p = 1 and q = 3/4 disk

can lead to eccentricity growth even when I < ILK (Figs. 4.1-4.2, bottom).
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Figure 4.3: Real (solid lines) and imaginary (dashed lines) components of the
eigenvalue λ for extended disks as a function of I. We take αb = 0, p = 1
[Eq. (4.19)], q = 1/4 [Eq. (4.20)], with values of S [Eq. (4.21)] and rin/rout as
indicated. In the top panel, we also plot the real (dot-dashed lines) and imagi-
nary (dotted lines) components of the eigenvalue in the thin annulus limit [Eq.
(4.29)].
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Figure 4.4: Real (solid lines) and imaginary (dashed lines) components of the
eigenvalue for extended disks as a function of S . We take αb = 0, p = 1 [Eq.
(4.19)], rin/rout = 0.2, and values of q [Eq. (4.20)] and inclination I as indicated.

4.3.2 Inviscid Extended Disk

We solve eigenvalue equations (4.23) and (4.24) using the shooting method

[Press et al., 2002] for an inviscid (αb = 0) extended (|rout − rin| ∼ rout) disk. In Fig-

ure 4.3, we plot the real (solid) and imaginary (dashed) components of the eigen-

values λ = λ̄ωb as functions of inclination I. For rin/rout close to unity, our nu-

merical result agrees with the analytic expression for a thin annulus [Eq. (4.29)].

In general, when S � 1, the pressure force suppresses the eccentricity growth

for all values of I. When S ∼ 1, Fig. 4.3 displays the importance of the disk’s

105



radial extent on the eigenvalues λ. For example, when S = 0.6 and xin = 0.4,

eccentricity growth is achieved for I & 69◦, while for xin = 0.2 the LK instability

occurs for I & 27◦.

In Figure 4.4, we plot the eigenvalue λ = λ̄ωb(rout) as a function of S , for

rin/rout = 0.2, p = 1, and values of q and I as indicated. Both models (q = 1/4

and q = 3/4) exhibit the suppression of eccentricity growth for S & 1, and both

models have a window of instability open when S ∼ (few) × 0.1. This window

of instability is similar to that seen in Figure 4.2.

Figure 4.5 depicts some examples of the eigenfunctions E+(r) and E−(r) for

disk models with S = 0.03, 0.3, and 3. We see that for small S (top panel), the

amplitudes |E+| and |E−| are largest at r = rout and decreases rapidly as r → rin.

For larger S (middle and lower panels), the variations of |E+| and |E−| across

the disk become smaller as the larger sound speed “smooths out” the disk. The

bottom panel of Fig. 4.5 shows that when S = 3 (for which the disk is stable since

λ is imaginary), the eigenfunctions E+ and E− are both real and satisfy E− > E+,

implying retrograde precession of the disk’s eccentricity.

4.3.3 Effect of Viscosity

We solve the eigenvalue equations (4.15)-(4.16) including the viscosity term. In

Figure 4.6, we plot the real parts of the eigenvalues λ for αb = 0, 0.03, and 0.1.

When S . 1, we see for a range of inclinations, the growth rates are only slightly

modified by viscosity. When S & 1, the addition of a small viscosity begins to be

important. However, in this regime, the instability is already suppressed by the

disk’s pressure, so the additional damping from αb when S & 1 is not relevant
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Figure 4.5: Real (solid lines) and imaginary (dashed lines) components of the
eigenfunctions E+(r) and E−(r) for an extended disk. The normalization condi-
tion is E+(rout) = 1. The disk parameters are αb = 0, p = 1, q = 3/4, rin/rout = 0.2,
inclination I = 70◦, and values of S [Eq. (4.21)] as indicated. The corresponding
eigenvalues are λ̄ = 1.84 (top), λ̄ = 1.44 (middle), and λ̄ = 5.57i (bottom).
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Figure 4.6: Real parts of the eigenvalues λ for extended disks, plotted as a func-
tion of S , with αb = 0 (solid), αb = 0.03 (dashed), and αb = 0.1 (dotted). The
other disk parameters are p = 1, q = 3/4, rin/rout = 0.2, and the values of I are as
indicated.

for the LK effect. We conclude that a small bulk viscosity does little to quench

the LK instability.

4.4 Summary and Discussion

4.4.1 Summary of Key Results

Using linear theory of eccentric disturbances in hydrodynamical disks, we have

shown that circumstellar disks in binary systems may undergo coherent eccen-

tricity growth when the disk is significantly inclined with respect to binary or-

bital plane. We consider the regime where the disk remains approximately flat

and undergoes rigid-body nodal precession around the binary; this requires that

bending waves efficiently communicate warps in different regions of the disk
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within the precession period. We find that the disk’s eccentricity response to

the secular tidal forcing from the binary companion depends crucially on the

dimensionless ratio [see Eq. (4.21)],

S =

(
c2

s

3GMbr2/4a3
b

)
r=rout

, (4.32)

where c2
s (disk sound speed squared) measures the characteristic torque (per

unit mass) associated with gas pressure, 3GMbr2/4a3
b (with Mb and ab the com-

panion mass and semi-major axis) measures the tidal torque from the compan-

ion. The eccentricity response also depends on the disk’s radial extent (rout/rin)

and density and sound speed profiles [Eqs. (4.19) and (4.20)].

1. When S � 1, the “standard” Lidov-Kozai effect is reproduced for a thin

disk annulus (rout/rin → 1), with exponential eccentricity growth occuring

for disk inclination I (with respect to the binary orbital plane) between 39◦

and 141◦.

2. As S increases, the inclination window for disk eccentricity growth gener-

ally decreases. When S � 1, eccentricity growth is completely quenched

for all disk inclinations.

3. When S ∼ 1, a new “window of instability” opens up for certain disk

parameters, where coherent disk eccentricity growth is observed for incli-

nations I outside the standard (39◦, 141◦) window.

These conclusions are qualitatively robust, shown through both analytic cal-

culations when the disk’s radial extent is negligible (thin annulus; Sec. 4.3.1)

and numerical eigenmode analyses when the disk has a significant radial ex-

tent (Sec. 4.3.2). We find that viscosity does little to quench the Lidov-Kozai

instability of the disk (Sec. 4.3.3).
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The different disk eccentricity responses to the secular tidal forcing can be

understood in terms of the apsidal precession produced by gas pressure (i.e.

Papaloizou 2002, Goodchild & Ogilvie 2006, Teyssandier & Ogilvie 2016). This

precession depends on the S and the disk density/pressure profiles. Unlike the

other short-range forces, such as those due to General Relativity and tidal inter-

action in hierarchical triple systems (e.g. Liu et al. 2015), the pressure-induced

precession can be either prograde or retrograde, depending on the disk profiles

[see Eq. (4.29); see also Teyssandier & Ogilvie 2016]. This gives rise to the non-

trivial behavior of the disk’s eccentricity response for S ∼ 1.

4.4.2 Discussion

In this paper we have focused on the linear regime of the disk Lidov-Kozai in-

stability, which manifests as the coherent growth of disk eccentricity, with no

change in the disk inclination (which enters at the order e2). Numerical simu-

lations are necessary to fully understand the nonlinear development of the disk

eccentricity-inclination oscillations [Martin et al., 2014, Fu et al., 2015a,b]. Nev-

ertheless, our analytic results can be used to determine under what conditions

a hydrodynamical circumstellar disk is susceptible to Lidov-Kozai oscillations,

without resorting to full 3D numerical simulations.

We note that the dynamical behavior of eccentric disturbances in a hydro-

dynamical disk depends on the disk’s equation of state and vertical structure

[Goodchild & Ogilvie, 2006, Ogilvie, 2008, Teyssandier & Ogilvie, 2016]. We

have adopted the eccentric disk models with locally isothermal equation of

state, including the 3D breathing mode term from the disk’s vertical structure
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(see Ogilvie 2008 for discussion). Using different models can change the details

of our results, but not the general conclusions summarized in Section 4.4.1.

The disk eccentricity excitation mechanism studied in this paper is distinct

from the mechanism that relies on eccentric Lindblad resonance [Lubow, 1991].

The latter operates on the dynamical timescale and requires that the disk be

sufficiently extended relative to the binary separation (i.e., rout/a is sufficiently

larger) so that the resonance resides in the disk. By contrast, the disk Lidov-

Kozai mechanism for eccentricity excitation requires an inclined binary com-

panion, and operates on a secular timescale [Eq. (4.3)]

tLK ∼ ωb(rout)−1 = 5.7 × 103 years
(

M
Mb

) (
ab

3rout

)3

×

(
M

1M�

)−1/2 ( rout

100 AU

)3/2
. (4.33)

For protoplanetary disks, this timescale is much less than the disk lifetime (a

few Myrs). To avoid suppression of the instability by the gas pressure, we also

require

S = 0.36
(

ab

3 rout

)3 (
M
Mb

) (
H(rout)
0.1 rout

)2

. 1. (4.34)

Thus, a “weaker” companion (large ab and small Mb) would not excite eccen-

tricity in a thick (large H/R) disk. Condition (4.34) is consistent with the SPH

simulations of Martin et al. [2014] and Fu et al. [2015a], where S values in the

range 8.5 × 10−3 to 0.11 were used.

Finally, for a massive disk, the LK instability can be suppressed due to ap-

sidal precession generated by disk self-gravity [Batygin et al., 2011, Fu et al.,

2015b]. The apsidal precession rate from the disk’s self gravity is roughly

ωsg(r) ∼
πGΣ

rn
. (4.35)

111



Crudely, to avoid suppression of the LK instability, we require ωsg(rout) .

ωb(rout), or the disk mass

Md . Mb

(
rout

ab

)3

∼ 0.04 Mb

(
3rout

ab

)3

. (4.36)
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Appendix

This appendix is devoted to the derivation of Eqs. (4.5) and (4.8). Our key as-

sumption is that the internal force in the disk acts to enforce coplanarity and

rigid body precession of the disk.

Consider a disk particle (test mass) with the position vector r and velocity v

relative to the central star. It’s angular momentum is L = r×v, and its eccentric-

ity vector is

e =
1

GM
v×(r×v) −

r
r
. (4.37)

Under the action of a perturbing force f , the vectors L and e evolve according

to

∂L
∂t

= r× f , (4.38)
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∂e
∂t

=
1

GM
f×(r×v) +

1
GM

v×(r× f ). (4.39)

The perturbing force f = fb + fint consists of the tidal force from the binary

companion fb and the internal pressure force fint. To quadrapole order, the tidal

force is given by

fb =
GMb

|rb|
3

[
r − 3

rb(r·rb)
|rb|

2

]
, (4.40)

where Mb and rb are the mass and position vectors of the companion. Take

the binary to be on a circular orbit with semi-major axis ab and mean anomaly

φb, and let r̂, ϕ̂ = l̂×r̂, and l̂ be the radial, azimuthal, and angular momentum

unit vectors of the test mass, respectively. Averaging over the binary’s orbital

motion, we obtain the averaged tidal force

f̄b ≡
1

2π

∫ 2π

0
fbdφb (4.41)

=
2
3

rnωb
(
1 − 3 sin2 ϕ sin2 I

)
r̂

− 2rnωb
(

sinϕ cosϕ sin2 I
)
ϕ̂

− 2rnωb
(

sinϕ sin I cos I
)
l̂, (4.42)

where ωb is defined in Eq. (4.3), and ϕ = ω + f is the azimuthal angle of the

test mass measured from the ascending node (ω and f are the argument of peri-

center and true anomaly). The r̂ and ϕ̂ components of f̄b do not change L, and

the l̂ component induces precession at a rate −ωb cos I l̂b [see Eq. (4.1)]. To en-

sure coplanarity and rigid-body precession of test particles at different radii, we

assume that the internal force from disk pressure has the form

fint = −2rn(ω̃b − ωb)
(

sinϕ sin I cos I
)
l̂, (4.43)

where ω̃b is given in Eq. (5.28).

We now substitute Eq. (4.43) into Eqs. (4.38) and (4.39) to obtain the effect of

fint on l̂ and e. For a disk particle on an eccentric orbit e � 1, we can expand
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r and f in powers of e [Murray & Dermott, 1999]. Averaging over the mean

anomaly of the test particle, we obtain Eqs. (4.5) and (4.8).
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CHAPTER 5

INCLINATION EVOLUTION OF PROTOPLANETARY DISKS AROUND

ECCENTRIC BINARIES

5.1 Introduction

To date, 11 transiting circumbinary planets have been detected around 9 bi-

nary star systems [Doyle et al., 2011, Kostov et al., 2013, 2014, 2016, Orosz et

al., 2012a,b, Schwamb et al., 2013, Welsh et al., 2012, 2015]. All planets detected

have orbital planes very well aligned with their binary orbital planes, with mu-

tual binary-planet inclinations not exceeding 3◦. The circumbinary planet de-

tectability is a very sensitive function of the binary-planet inclination [Martin

& Triaud, 2015, Li, Holman, & Tao, 2016]. If the mutual inclination is always

small (. 5◦), then the occurance rate of circumbinary planets is comperable to

that of planets around single stars, but if modest inclinations (& 5◦) are com-

mon, the circumbinary planet occurance rate may be much larger [Armstrong

et al., 2014]. For these reasons, it is important to understand if and how a binary

aligns with its circumbinary disk from which these planets form.

Observations show that most circumbinary disks tend to be aligned with

their host binary orbital planes. The gas rich circumbinary disks HD 98800 B

[Andrews et al., 2010], AK Sco [Czekala et al., 2015], DQ Tau [Czekala et al.,

2016], and the debris circumbiniary disks αCrB and β Tri [Kennedy et al., 2012b]

all have mutual disk-binary inclinations not exceeding 3◦. However, there are

some notable exceptions. The circumbinary disk around KH 15D is mildly mis-

aligned with the binary orbital plane by ∼ 10◦-20◦[Winn et al., 2004, Chiang &

Murray-Clay, 2004, Capelo et al., 2012]. Shadows [Marino et al., 2015] and gas
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kinematics [Casassus et al., 2015] of the disks in HD 142527 are consistent with

a misalignment of ∼ 70◦ between the outer circumbinary disk and binary or-

bital plane [Lacour et al., 2016]. The disks (circumbinary and two circumstellar)

in the binary protostar IRS 43 are misaligned with each other and with the bi-

nary [Brinch et al., 2016]. Most intriguingly, the debris disk around the eccentric

(eb = 0.77) binary 99 Herculis may be highly inclined: By modeling the resolved

images from Hershel, Kennedy et al. [2012a] strongly favor a disk orientation

where the disk angular momentum vector is inclined to the binary orbital an-

gular momentum vector by 90◦ (polar alignment). Kennedy et al. [2012a] also

produced a model with a disk-binary inclination of 30◦ which fits the observa-

tions, but this configuration is unlikely, since differential precession of dust due

to the gravitational influence of the binary would rapidly destroy the disk.

Since star/binary formation takes place in turbulent molecular clouds [Mc-

Kee & Ostriker, 2007], the gas that falls onto the central protostellar core/binary

and assembles onto the disk at different times may rotate in different direc-

tions (e.g. Bate, Bonnell, & Bromm 2003, see also Bate et al. 2010, Fielding et al.

2015). In this scenario, it is reasonable to expect a newly formed binary to be

surrounded by a highly misaligned circumbinary disk which forms as a result

of continued gas accretion [Foucart & Lai, 2013]. The observed orientations of

circumbinary disks then depend on the long-term inclination evolution driven

by binary-disk interactions.

Foucart & Lai [2013, 2014] studied the warping and the dissipative torque

driving the inclination evolution of a circumbinary disk, assuming a circular bi-

nary. Foucart & Lai [2013] considered an infinite disk and included the effect

of accretion onto the binary, while Foucart & Lai [2014] considered a more re-
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alistic disk of finite size and angular momentum, which can precess coherently

around the binary. It was shown that under typical protoplanetary conditions,

both viscous torque associated with disk warping and accretion torque tend to

damp the mutual disk-binary inclination on timescale much shorter than the

disk lifetime (a few Myr). By contrast, a circumstellar disc inside a binary can

maintain large misalignment with respect to the binary orbital plane over its

entire lifetime [Lubow & Ogilvie, 2000, Foucart & Lai, 2014]. This is consistent

with the observations that most circumbinary disks are nearly coplanar with

their host binaries. On the other hand, the observed circumbinary disk mis-

alignment (such as in KH 15D and IRS 43) can provide useful constraints on the

uncertain aspects of the disc warp theory, such as non-linear effects [Ogilvie,

2006] and parametric instabilities due to disk warping [Gammie, Goodman, &

Ogilvie, 2000, Ogilvie & Latter, 2013]

However, several recent numerical studies using smoothed particle hydro-

dynamics (SPH) suggest that other outcomes may be possible for disks around

eccentric binaries. Aly et al. [2015] showed that disks around binary black holes

(which typically lie in the “viscous regime” of disk warps, with the viscosity

parameter α larger than the disk aspect ratio H/r; Papaloizou & Pringle 1983,

Ogilvie 1999; see Sec. 5.3) around eccentric binaries may be driven into polar

alignment. Martin & Lubow [2017] found numerically that a circumbinary

protoplanetary disk (typically in the bending wave regime, with α . H/r Pa-

paloizou & Lin 1995, Lubow & Ogilvie 2000), inclined to an eccentric (eb = 0.5)

binary by 60◦ will evolve to a polar configuration. They suggested that this dy-

namical outcome arises from the combined influence of the gravitational torque

on the disk from the binary and viscous torques from disk warping. They also

proposed that 99 Herculis (with eb = 0.77) followed such an evolution to end in
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the orbital configuration (polar alignment) observed today.

In this paper, we provide a theoretical anaysis to the above numerical re-

sults. In particular, we generalize the study of Foucart & Lai [2014] to apply to

circumbinary disks with arbitrary disk-binary inclinations and binary eccentric-

ities. We derive the critical condition and calculate the timescale for the disk to

evolve toward polar alignment with the binary. In Section 5.2, we review the

secular dynamics of a test particle around an eccentric binary. In Section 5.3,

we calculate the disk warp profile and dissipative disk torques acting on the

disk, and derive the requirements for the disk to evolve into polar alignment

with the binary. Section 5.4 considers the situation when the circumbinary disk

has a non-negligible angular momentum compared to the inner binary. In Sec-

tion 5.5, we examine the back-reaction torque from the disk on the binary and

the effect of gas accretion. We discuss our results in Section 5.6, and summarize

in Section 5.7.

5.2 Test Particle Dynamics

In preparation for later sections, we review the secular dynamics of a test parti-

cle surrounding an eccentric binary [Farago & Laskar, 2010, Li, Zhou, & Zhang,

2014, Naoz et al., 2017]. Consider a circular test mass with semimajor axis r and

orbital angular momentum unit vector l̂, surrounding an eccentric binary with

orbital angular momentum vector l̂b, eccentricity vector eb, semimajor axis ab,

total mass Mb = M1 + M2 (where M1,M2 are individual masses), and reduced

mass µb = M1M2/Mb. The orbit-averaged torque per unit mass on the test parti-
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Figure 5.1: Test particle dynamics. When Λ > 0, l̂ precesses around l̂b, with
I ∼ constant and Ω circulating. When Λ < 0, l̂ precesses around eb, with Ie ∼

constant and Ωe circulating. See Eq. (5.6) for definitions of Ie and Ωe.

cle is (e.g. Liu, Muñoz, & Lai 2015, Petrovich 2015)

Tdb = −r2nωb

[
(1 − e2

b)( l̂· l̂b) l̂b× l̂ − 5( l̂·eb)eb× l̂
]
, (5.1)

where n '
√

GMb/r3 is the test particle orbital frequency (mean-motion), and

ωb =
3Gµba2

b

4r5n
(5.2)

characterizes the precession frequency of the test particle around the binary. The

torque Tdb in Eq. (5.1) is evaluated to the lowest order in ab/r.

The time evolution of the test particle’s orbital angular momentum vector is

given by
d l̂
dt

= −ωb

[
(1 − e2

b)( l̂· l̂b) l̂b× l̂ − 5( l̂·eb)eb× l̂
]
. (5.3)

Equation (5.3) can be solved analytically [Landau & Lifshitz, 1969, Farago &

Laskar, 2010, Li, Zhou, & Zhang, 2014], but the dynamics may be easily under-

stood by analyzing the energy curves. Equation (5.3) has an integral of motion

Λ = (1 − e2
b)( l̂· l̂b)2 − 5( l̂·eb)2, (5.4)
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Figure 5.2: Test particle trajectories in the I −Ω and Ie −Ωe planes [see Eq. (5.6)],
with binary eccentricity eb = 0.3. When Λ > 0, l̂ precesses around l̂b, with
I ∼ constant and Ω circulating its full range of values (0◦-360◦), while Ωe li-
brates around 0◦. When Λ < 0, l̂ precesses around eb, with Ie ∼ constant and
Ωe circulating its full range of values (−180◦-180◦), while Ω librating around 90◦

(see Fig. 5.1). Black lines denote the Λ = 0 separatrix. The other curves have
Λ = 0.751 (blue), Λ = 0.348 (green), Λ = −0.110 (magenta), Λ = −0.409 (red).
Only Ω and Ωe in the range [0◦, 180◦] and [−90◦, 90◦] are shown. The energy
curves for Ω in [180◦, 360◦] duplicate those of [0◦, 180◦], and the energy curves
for Ωe in [90◦, 270◦] duplicate those of [−90◦, 90◦].

which is simply related to the quadrupole interaction energy (double-averaged

over the two orbits) by (e.g. Tremaine et al. 2009, Tremaine & Yavetz 2014, Liu,

Muñoz, & Lai 2015)

Φquad =
Gµba2

b

8r3 (1 − 6e2
b − 3Λ). (5.5)

To plot the energy curves, we set up the Cartesian coordinate system (x, y, z),

where l̂b = ẑ and eb = eb x̂. We may write

l̂ = (sin I sin Ω,− sin I cos Ω, cos I)

= (cos Ie, sin Ie sin Ωe, sin Ie cos Ωe), (5.6)
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where I is the angle between l̂ and l̂b, Ω is the test particle’s longitude of the

ascending node (measured in the xy plane from the x-axis); similarly Ie is the

angle between l̂ and eb, and Ωe measures the longitude of the node in the yz

plane (see Fig. 5.1). In terms of I and Ω, we have

Λ = (1 − e2
b) cos2 I − 5e2

b sin2 I sin2 Ω. (5.7)

In Figure 5.2, we plot the test particle trajectories in the I − Ω (left panel)

and Ie − Ωe (right panel) planes for the binary eccentricity eb = 0.3. The critical

separatrix Λ = 0 is displayed in black in both plots. When Λ > 0, l̂ precesses

around l̂b with I ∼ constant and Ω circulating the full range (0 − 360◦), while Ωe

librates around 0◦. When Λ < 0, l̂ precesses around eb with Ie ∼ constant and Ωe

circulating the full range (0 − 360◦), while Ω librates around 90◦ (see Fig. 5.1).

Thus, the test particle angular momentum axis l̂ transitions from precession

around l̂b for Λ > 0 to precession around eb for Λ < 0. Because the Λ = 0

separatrix has Ω ∈ [0◦, 360◦] (Fig. 5.2), a necessary condition for l̂ to precess

around eb is Icrit < I < 180◦ − Icrit, where

Icrit = cos−1

√
5e2

b

1 + 4e2
b

= tan−1

√
1 − e2

b

5e2
b

. (5.8)

Figure 5.2 clearly reveals the stable fixed points of the system. In terms of

the variables (Ω, I), the stable fixed points (where dI/dt = dΩ/dt = 0) are I = π/2

and Ω = π/2, 3π/2, corresponding to l̂ = ±eb/eb. In terms of the variables (Ωe, Ie),

the fixed points are Ie = π/2 and Ωe = 0, π, corresponding to l̂ = ± l̂b. We will see

in Section 3 that in the presence of dissipation, the disk may be driven toward

one of these fixed points.
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Figure 5.3: Circumbinary disk setup. The binary has individual masses M1 and
M2, with total mass Mb = M1 + M2 and reduced mass µb = M1M2/Mb, with or-
bital angular momentum vector l̂b and eccentricity vector eb. The binary is sur-
rounded by a circular circumbinary disk with unit orbital angular momentum
l̂ = l̂(r, t), surface density Σ = Σ(r) [Eq. (6.12)], and inner (outer) truncation radii
rin (rout).

5.3 Circumbinary Disk Dynamics

We now consider a binary (with the same parameters as in Section 5.2, see

also Fig. 5.3) surrounded by a circular circumbinary disk with inner trunca-

tion radius rin, outer truncation radius rout, with unit angular momentum vector

l̂ = l̂(r, t), and surface density Σ = Σ(r). For concreteness, we adopt the surface

density profile

Σ(r) = Σin

(rin

r

)
. (5.9)

We assume rin � rout throughout this work. We could assume a more general

surface density profile Σ ∝ r−p, with p observationally constrained to lie in the

range 0.5 − 1.5 (e.g. Weidenschilling 1977, Williams & Cieza 2011, Chiang &
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Laughlin 2013). A more general p will effect the disk mass [Eq. (5.11)] and an-

gular momentum [Eq. (5.12)], as well as the precession [Eq. (5.28)] and viscous

[Eq. (5.47)] rates, by factors of order unity.

The binary has orbital angular momentum

Lb = µb

√
(1 − e2

b)GMbab, (5.10)

while the disk has mass

Md = 2π
∫ rout

rin

Σrdr ' 2πΣinrinrout (5.11)

and angular momentum (assuming a small disk warp; see below)

Ld = 2π
∫ rout

rin

Σr3ndr '
2
3

Md

√
GMbrout, (5.12)

where n(r) '
√

GMb/r3. Comparing Lb to Ld, we have

Ld

Lb
' 0.067 (1 − e2

b)−1/2
(

Md

0.01 µb

) (
rout

100 ab

)1/2

. (5.13)

Because Lb � Ld for typical circumbinary disk parameters, in this section we

assume l̂b and eb are fixed in time, neglecting the back-reaction torque on the bi-

nary from the disk. We discuss the system’s dynamics when Ld is non-negligible

compared to Lb in Section 5.4, and the effects of the back-reaction torque on the

binary from the disk in Section 5.5.

5.3.1 Qualitative Discussion

Assuming the disk to be nearly flat, the time evolution of the disk unit angular

momentum vector is given by

d l̂d

dt
=

〈
Tdb

r2n

〉
, (5.14)
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where Tdb is given in Eq. (5.1), l̂d(t) is a suitably averaged unit angular momen-

tum of the disk [see Eq. (5.24)], and 〈. . . 〉 implies a proper average over r [see

Eq. (5.27)]. When the disk is flat, the time evolution of l̂d is identical to that of a

test particle (see discussion at the end of Sec. 5.3.2).

When α . H/r (H is the disk scaleheight, α is the viscosity parameter),

the main internal torque enforcing disk rigidity and coherent precession comes

from bending wave propigation [Papaloizou & Lin, 1995, Lubow & Ogilvie,

2000]. As bending waves travel at 1/2 the sound speed, the wave crossing time

is of order tbw = 2r/cs. When tbw is longer than the characteristic precession time

ω−1
b [see Eq. (5.2)], strong disk warps can be induced. In the extreme nonlinear

regime, disk breaking may be possible in circumbinary disks [Larwood & Pa-

paloizou, 1997, Facchini, Lodato, & Price, 2013, Nixon, King, & Price, 2013]. To

compare tbw with ω−1
b , we adopt the disk sound speed profile

cs(r) = H(r)n(r) = h

√
GMb

rin

(rin

r

)1/2
, (5.15)

where h = H/r. We find

tbwωb = 0.94
(
0.1
h

) (
4µb

Mb

) (
2 ab

rin

)2 (rin

r

)2
(5.16)

Thus, we expect that the small warp approximation should be valid everywhere

in the disk except the inner-most region. Throughout this paper, we scale

our results to h = 0.1. Real protoplanetary disks can have aspect ratios in the

range h ∼ 0.03 − 0.2 (e.g. Lynden-Bell & Pringle 1974, Chiang & Goldreich 1997,

Williams & Cieza 2011). We normalize rin to 2ab, but note that the inner trun-

cation radius of the disk depends non-trivially on the binary’s eccentricity [Mi-

randa, Muñoz, & Lai, 2017].

Although the disk is flat to a good approximation, the interplay between

disk twist/warp and viscous dissipation may modify the disk’s dynamics over
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timescales much longer than ω−1
b . When the external torque Tdb is applied to the

disk in the bending wave regime, the disk’s viscosity causes the disk to develop

a small twist of order
∂ l̂d

∂ ln r

∣∣∣∣∣
twist
∼ −

4α
c2

s
Tdb, (5.17)

while the precession of bending waves from a non-Keplarian epicyclic fre-

quency κ causes the disk to develop a small warp, of order

∂ l̂d

∂ ln r

∣∣∣∣∣
warp
∼ −

4
c2

s

(
κ2 − n2

2n2

)
l̂d×Tdb. (5.18)

The viscous twist [Eq. (5.17)] interacts with the external torque, effecting the

evolution of l̂ over the viscous timescale. To an order of magnitude, we have∣∣∣∣∣d l̂d

dt

∣∣∣∣∣
visc
∼

〈
Tdb

r2n
·
∂ l̂
∂ ln r

∣∣∣∣∣
twist

〉
∼

〈
4α
c2

s
(r2n)ω2

b

〉
. (5.19)

In the above estimate, we have assumed the relevant misalignment angles (be-

tween l̂d and l̂b, or between l̂d and eb) is of order unity.

5.3.2 Formalism

The torque per unit mass on the disk from the inner binary is given by Eq. (5.1),

with Tdb = Tdb(r, t). In addition, the gravitational potential from the binary in-

duces a non-Keplarian angular frequency [Miranda & Lai, 2015], with

κ2 − n2 = −2ωbn fb, (5.20)

where

fb =
1
2

{[
3( l̂· l̂b)2 − 1

] (
1 +

3
2

e2
b

)
− 15e2

b( l̂× l̂b)2
}
. (5.21)

When the Shakura-Sunaev α-viscosity parameter satisfies α . H/r, the disk

lies in the bending wave regime [Papaloizou & Lin, 1995, Lubow & Ogilvie,
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2000]. Any warp induced by an external torque is smoothed by bending waves

passing through the disk. Protoplanetary disks typically lie in the bending wave

regime. The time evolution of l̂(r, t) is governed by the equations (Lubow &

Ogilvie 2000; see also Lubow, Ogilvie, & Pringle 2002)

Σr2n
∂ l̂
∂t

=
1
r
∂G
∂r

+ ΣTdb, (5.22)

∂G
∂t
− ωb fb l̂×G + αΩG =

Σc2
s r3n
4

∂ l̂
∂r
, (5.23)

where G is the internal torque.

From equation (5.16), we see that tbw < ω−1
b for standard circumbinary disk

parameters, so the disk should be only mildly warped. We may therefore ex-

pand

l̂(r, t) = l̂d(t) + l1(r, t) + . . . , (5.24)

G(r, t) = G0(r, t) + G1(r, t) + . . . (5.25)

where l̂d is the unit vector along the total angular momentum of the disk, |l1| �

| l̂d| = 1 [see Eqs. (5.31)-(5.32) below]. As we will see, the internal torque G0(r, t)

maintains the rigid body dynamical evolution of l̂d, while G1(r, t) maintains the

warp profile l1. Perturbative expansions to study warped disk structure and

time evolution have been taken by Lubow & Ogilvie [2000, 2001] and Foucart

& Lai [2014]. Inserting (5.24) into Eq. (5.22), integrating over rdr, and using the

zero torque boundary condition

G0(rin, t) = G0(rout, t) = 0, (5.26)

we find the leading order time evolution of l̂ is given by

d l̂d

dt
= −ω̃b

[
(1 − e2

b)( l̂d· l̂b) l̂b× l̂d − 5( l̂d·eb)eb× l̂d

]
. (5.27)
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Figure 5.4: Rescaled warp functions τ̃b = τb/[τb(rin) − τb(rout)] [Eq. (5.36)], Ṽb =

Vb/[Vb(rin) − Vb(rout)] [Eq. (5.37)], and W̃bb = Wbb/[Wbb(rin) − Wbb(rout)] [Eq. (5.38)]
as a function of radius. We take rin = 2 AU and rout = 100 AU.

Here,

ω̃b =
2π
Ld

∫ rout

rin

Σr3Ωωbdr '
9Gµba2

b

16r2
inrout

√
GMbrout

= 4.97 × 10−5
(
2ab

rin

)2 (
4µb

Mb

)
×

(
Mb

2 M�

)1/2 ( rout

100 AU

)−3/2
(
2π
yr

)
(5.28)

is the characteristic precession frequency of the rigid disk. Equation (5.27) is

equivalent to Equation (5.3) if one replaces ω̃b with ωb, and the disk dynamics

reduce to those of a test particle with l̂ = l̂d when cs → ∞.

5.3.3 Disk Warp Profile

With l̂d determined with boundary condition (5.26), we may solve for G0(r, t):

G0(r, t) = gb

[
(1 − e2

b)( l̂d· l̂b) l̂b× l̂d − 5( l̂d·eb)eb× l̂d

]
, (5.29)
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where

gb(r) =

∫ r

rin

Σr′3n(ωb − ω̃b)dr′. (5.30)

With the leading order terms for l̂ and G, we may solve for l1. We impose the

normalization condition ∫ rout

rin

Σr3Ωl1(r, t)dr = 0, (5.31)

so that l̂d is the unit vector along the total angular momentum of the disk, or

l̂d(t) =
2π
Ld

∫ rout

rin

Σr3Ω l̂(r, t)dr. (5.32)

Inserting Eq. (5.29) into Eq. (5.23) and integrating, we obtain

l1(r, t) = (l1)twist + (l1)warp

+ 5ω̃bgb(1 − e2
b) l̂d·( l̂b×eb)

[
( l̂d·eb) l̂b× l̂d − ( l̂d· l̂b)eb× l̂d

]
, (5.33)

where

(l1)twist = Vb

[
(1 − e2

b)( l̂d· l̂b) l̂b× l̂d − 5( l̂d·eb)eb× l̂d

]
, (5.34)

and

(l1)warp =

− ω̃bτb(1 − e2
b)( l̂d· l̂b)

×
[
(1 − e2

b)( l̂d· l̂b) l̂b×( l̂b× l̂d) − 5(eb· l̂d) l̂b×(eb× l̂d)
]

+ 5ω̃bτb( l̂d·eb)

×
[
(1 − e2

b)( l̂d· l̂b)eb×( l̂b× l̂d) − 5(eb· l̂d)eb×(eb× l̂d)
]

−Wbb fb

×
[
(1 − e2

b)( l̂d· l̂b) l̂d×( l̂b× l̂d) − 5(eb· l̂d) l̂d×(eb× l̂d)
]
. (5.35)

Here,

τb(r) =

∫ r

rin

gb

Σc2
s r′3n

dr′ − τb0, (5.36)
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Vb(r) =

∫ r

rin

αgb

Σc2
s r′3

dr′ − Vb0, (5.37)

Wbb(r) =

∫ r

rin

ωbgb

Σc2
s r′3n

dr′ −Wbb0, (5.38)

and

τb0 =
2π
Ld

∫ rout

rin

Σr3n
(∫ r

rin

gb

Σc2
s r′3n

dr′
)

dr, (5.39)

Vb0 =
2π
Ld

∫ rout

rin

Σr3n
(∫ r

rin

αgb

Σc2
s r′3

dr′
)

dr, (5.40)

Wbb0 =
2π
Ld

∫ rout

rin

Σr3n
(∫ r

rin

ωbgb

Σc2
s r′3n

dr′
)

dr. (5.41)

The third term in Eq. (5.33) arises from the fact that l̂d·eb and l̂d· l̂b are not con-

stant in time, and is dynamically unimportant. Although it is strait-forward to

compute the integrals in Eqs. (5.36)-(5.38), this calculation is tedious and unil-

luminating. Instead, we notice that over most of the region in the integrals, the

internal torque radial function gb(r) is of order

gb(r) ∼ Σr4nωb. (5.42)

Evaluating the warp functions and using the fact that rin � rout, we obtain the

approximate expressions

ω̃b
[
τb(rin) − τb(rout)

]
≈ −0.108

×

(
0.1
h

)2 (
4µb

Mb

)2 (
2ab

rin

)4 (
50 rin

rout

)3/2

, (5.43)

Vb(rin) − Vb(rout) ≈ −0.258

×

(
α

0.01

) (0.1
h

)2 (
4µb

Mb

) (
2ab

rin

)2

, (5.44)

Wbb(rin) −Wbb(rout) ≈ −0.108

×

(
0.1
h

)2 (
4µb

Mb

)2 (
2ab

rin

)4

. (5.45)

In Figure 5.4, we plot the rescaled warp functions τ̃b = τb/[τb(rin) − τb(rout)], Ṽb =

Vb/[Vb(rin) − Vb(rout)], and W̃bb = Wbb/[Wbb(rin) −Wbb(rout)].
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5.3.4 Viscous Torques

The disk twisting due to viscosity (l1)twist [Eq. (5.34)] interacts with Tdb [Eq. (5.1)],

effecting the evolution of l̂d over viscous timescales. Inserting l̂ = l̂d + (l1)twist into

Equation (5.22), integrating over 2πrdr, and using the boundary condition (5.26),

we obtain (
dLd

dt

)
visc

= Ldγb

[
(1 − e2

b)( l̂d· l̂b)2 l̂b×( l̂b× l̂d)

+ 25( l̂d·eb)2eb×(eb× l̂d)

− 5(1 − e2
b)( l̂d·eb)( l̂d· l̂b) l̂b×(eb× l̂d)

− 5(1 − e2
b)( l̂d·eb)( l̂d· l̂b)eb×( l̂b× l̂d)

]
. (5.46)

Here,

γb =
2π
Ld

∫ rout

rin

4αg2
b

Σc2
s r3 dr. (5.47)

Using the approximate expression of gb [Eq. (5.42)], one may easily reproduce

Eq. (5.19). The same argument used in the calculation of Eqs. (5.43)-(5.45) may

be used to calculate the approximate expression of the viscous rate γb:

γb ≈ 1.02 × 10−5
(
α

0.01

) (0.1
h

)2 (
2ab

rin

)4

×

(
4µb

Mb

)2 (
Mb

2 M�

)1/2 (
100 AU

rout

)3/2 (
2π
yr

)
. (5.48)

We choose to normalize γb by α = 0.01; real protoplanetary disks may have α in

the range 10−1 − 10−5 [Rafikov, 2017]. Since

d l̂d

dt
=

1
Ld

(
dLd

dt
−

dLd

dt
l̂d

)
, (5.49)

the viscous dissipation from disk twisting effects the evolution of l̂d according

to (d l̂d

dt

)
visc

= γbΛ
[
(1 − e2

b)( l̂d· l̂b) l̂d×( l̂b× l̂d)
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Figure 5.5: Time evolution of the disk orientation for two binary eccentricities
eb as indicated. Left Panels: Disk inclination I (the angle between l̂d and l̂b) as
a function of time. The black dashed lines mark Icrit (55◦ for eb = 0.3 and 31◦ for
eb = 0.6) and 180◦− Icrit. Right Panels: Disk trajectories on the I−Ω plane (where
Ω is the longitude of the ascending node of the disk). The black solid curves
mark the Λ = 0 separatrix. Initial values are I(0) = 20◦ (blue), I(0) = 40◦ (green),
I(0) = 60◦ (magenta), I(0) = 80◦ (red), and I(0) = 160◦ (cyan), with Ω(0) = 90◦

for all trajectories. The other parameters are Mb = 2 M�, µb = 0.5 M�, ab = 1 AU,
rin = 2 AU, rout = 100 AU, α = 0.01, and h = 0.1.
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− 5( l̂d·eb) l̂d×(eb× l̂d)
]
, (5.50)

where Λ is given by Eq. (5.4), except we replace l̂ by l̂d:

Λ = (1 − e2
b)( l̂d· l̂b)2 − 5( l̂d·eb)2. (5.51)

Equation (5.50) is the main result of our technical calculation. We see

d
dt

( l̂b· l̂d)
∣∣∣∣∣
visc

= γbΛ( l̂d· l̂b)
[
(1 − e2

b) − Λ
]
, (5.52)

d
dt

(eb· l̂d)
∣∣∣∣∣
visc

= −γbΛ( l̂d·eb)
[
Λ + 5e2

b
]
, (5.53)

Because −5e2
b < Λ < (1 − e2

b) [Eq. (5.51)], Equations (5.52)-(5.53) show the system

has two different end-states depending on the initial value for Λ:

1. Λ > 0: The viscous torque (5.50) pushes l̂d towards l̂b. The final state of

l̂d is alignment (if l̂b· l̂d > 0 initially) or anti-alignment (if l̂b· l̂d < 0 initially)

with l̂b.

2. Λ < 0: The viscous torque (5.50) pushes l̂d towards eb. The final state of l̂d

is alignment (or anti-alignment) with eb.

Figure 5.5 shows several examples of the results for the evolution of disk

orientation, obtained by integrating the time evolution of l̂d, including gravita-

tional [Eq. (5.27)] and viscous [Eq. (5.50)] torques. On the left panels, we plot the

disk inclination I with time, for the binary eccentricities indicated. We choose

the initial Ω(0) = 90◦ for all cases, so that I < Icrit (I > Icrit) corresponds exactly

to Λ > 0 (Λ < 0) (see Eqs. (5.4) and (5.8)). Thus we expect I → 0◦ when I < Icrit,

I → 90◦ when Icrit < I < 180◦− Icrit, and I → 180◦ when I > 180◦− Icrit. On the right

panels of Figure 5.5, we plot the disk trajectories on the I−Ω plane [Eq. (5.6) with

l̂ → l̂d]. Again, we see when I < Icrit (Λ > 0), l̂d aligns with l̂b, while when I > Icrit

(Λ < 0), l̂d aligns with eb, as expected.
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Figure 5.6: Trajectories in the I−Ω (top panels) and eb−Ω (bottom panels) planes
for the J values indicated, with fixed points (I,Ω) = (Ifp, 90◦) computed with
Eq. (5.64) marked with black x’s. Initial values for the trajectories are I(0) = 20◦

(blue), I(0) = 40◦ (green), I(0) = 60◦ (magenta), I(0) = 80◦ (red), I(0) = 100◦

(brown), I(0) = 120◦ (cyan), I(0) = 140◦ (orange), and I(0) = 160◦ (yellow), with
Ω(0) = 90◦ and eb(0) = 0.3 for all trajectories.

5.4 Secular Dynamics with Massive Inclined Outer Body

Sections 5.2-5.3 neglected the circumbinary disk’s angular momentum, a valid

assumption as long as Ld � Lb [Eq. (5.13)]. When Ld & Lb, the non-zero disk

angular momentum will change the locations of the fixed points of the system,

and hence may effect its dynamical evolution over viscous timescales.

Consider the setup of Section 5.2, except we now include the outer body’s

mass m and angular momentum L = m
√

GMbr l̂. The evolution equations for l̂,

jb =

√
1 − e2

b l̂b, and eb are [Liu, Muñoz, & Lai 2015; Eqs. (17)-(19)]

d l̂
dt

= −ωb

[
( jb· l̂) jb× l̂ − 5(eb· l̂)eb× l̂

]
, (5.54)

d jb

dt
= Jωb

[
( jb· l̂) jb× l̂ − 5(eb· l̂)eb× l̂

]
, (5.55)

deb

dt
= Jωb

[
( jb· l̂)eb× l̂ + 2 jb×eb − 5(eb· l̂) jb× l̂

]
, (5.56)
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Figure 5.7: Inclination Ifp as a function of J−1, computed with Eq. (5.64) with
Ω = π/2. The binary eccentricity eb = eb(0) takes values as indicated.

where

J =
L

Lb/
√

1 − e2
b

=
µ

µb

(
Mb + m

Mb

)1/2 (
r
ab

)1/2

, (5.57)

ωb =
3
4

(
m
µ

) (
µb

Mb

) (
Mb

Mb + m

)1/2 (ab

r

)7/2
√

GMb

a3
b

, (5.58)

and µ = mMb/(m + Mb). Equation (5.58) reduces to Eq. (5.2) when m → 0.

The conservations of total quadrupole potential energy [see Eq. (5.5)] and total

angular momentum yield two constants of motion (e.g. Liu, Muñoz, & Lai 2015,

Anderson, Lai, & Storch 2017)

Ψ = 1 − 6e2
b − 3(1 − e2

b) cos2 I + 15e2
b sin2 I sin2 Ω, (5.59)

K =

√
1 − e2

b cos I −
e2

b

2J
. (5.60)

For a given K, one may solve Eq. (5.60) to get e2
b = e2

b(I). Assuming 0 ≤ I ≤ π/2
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and requiring 0 ≤ eb < 1, we obtain

e2
b = 2J2

cos I

√(
2K
J

+
1
J2

)
+ cos2 I −

(K
J

+ cos2 I
) . (5.61)

Equation (5.59) then gives Ψ = Ψ(I,Ω). When J ∼ K−1 � 1, Eq. (5.61) reduces

to

e2
b ' −2KJ = constant, (5.62)

while when J � 1, Eq. (5.61) becomes

e2
b ' 1 −

K2

cos2 I
. (5.63)

The fixed points of the system in the I −Ω plane are determined by

∂Ψ

∂I
=
∂Ψ

∂Ω
= 0. (5.64)

The condition ∂Ψ/∂Ω = 0 gives Ω = π/2 and Ω = 3π/2, as before (see Sec. 5.2).

For arbitrary J, one must numerically solve ∂Ψ/∂I|Ω=π/2,3π/2 = 0 to calculate the

fixed points I = Ifp > 0 (I = 0 is always a fixed point of the system). However,

when J � 1, one may show analytically that (as found in Sec. 5.2)

Ifp ' π/2, (5.65)

while when J � 1,

Ifp ' cos−1

√
3(1 − e2

b)
5

, (5.66)

where e2
b = e2

b(0). Notice Ifp is the Lidov-Kozai critical inclination when J � 1

and eb(0) = 0 [Lidov, 1962, Kozai, 1962].

Figure 5.6 plots trajectories of the system in the I − Ω and eb − Ω planes.

When J � 1, the system’s dynamics reduce to that discussed in Section 5.2, with

Ifp ' 90◦ (black x’s), eb ' eb(0), and trajectories above and below I = 90◦ are sym-

metric. As J increases in magnitude, Ifp decreases, eb begins to oscillate, and the
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inclination symmetry above and below I = 90◦ is lost. Although different trajec-

tories may cross in the I − Ω plane, each still has a unique Ψ value [Eq. (5.59)],

since the binary’s eb value differs from Eq. (5.61) when I > π/2. When J � 1,

the system’s dynamics approaches the classic Lidov-Kozai regime [Lidov, 1962,

Kozai, 1962]. The fixed point Ifp of the system approaches Eq. (5.66), with eb

reaching large values when I(0) > Ifp, and with trajectories symmetric above

and below I = 90◦.

Figure 5.7 plots Ifp as a function of J−1, computed for Ω = π/2 with the

eb = eb(0) values as indicated. The two limiting cases given by Eqs. (5.65)

and (5.66) are achieved when J � 1 and J � 1, respectively, and Ifp gener-

ally varies non-monitonically with increasing J. Since eb should evolve in time

under the influence of viscous dissipation from disk warping, one cannot deter-

mine the final value of Ifp the system may evolve into starting from initial I(0)

and eb(0) values without a detailed calculation similar to Section 5.3. Neverthe-

less, Figures 5.6 and 5.7 show there exist highly inclined fixed points for any

value of J. For J . 0.1, the system may evolve into near polar alignment, with

Ifp somewhat less than 90◦.

5.5 Torque on Binary and Effect of Accretion

In the previous sections, we have studied the evolution of the disk around a bi-

nary with fixed l̂b and eb. Here we study the back-reaction torque on the binary

from the disk. First consider a circular binary. The viscous back reaction torque

on the binary from the disk is [Eq. (5.46)](
dLb

dt

)
visc

= −

(
dLd

dt

)
visc
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= −Ldγb( l̂d· l̂b)2 l̂b×( l̂b× l̂d). (5.67)

In addition, accretion onto the binary from the disk adds angular momentum to

the binary’s orbit: (
dLb

dt

)
acc
' λṀ

√
GMbrin l̂d. (5.68)

Here, Ṁ is the mass accretion rate onto the binary, λ ∼ 1 (e.g. Miranda, Muñoz,

& Lai 2017), and we have assumed l̂(rin, t) ' l̂d(t) (see below). The torques (5.67)

and (5.68) are equivalent to those considered in Foucart & Lai [2013], except we

give different power-law prescriptions for Σ = Σ(r) and H = H(r). For disks in

steady state, we have

Ṁ ' 3παh2Σinr2
inn(rin), (5.69)

Using Eqs. (5.46) (with eb = 0), (5.67) and (5.68), we obtain the net disk-binary

alignment timescale for small angle between l̂d and l̂b:

talign = γ−1
b

[
1 + (1 + η)

Ld

Lb

]−1

, (5.70)

where

η ≡
λṀ
√

GMbrin

Ldγb

≈ 0.031 λ
(

h
0.1

)4 (
rin

2ab

)4 (
Mb

4µb

)2

(5.71)

measures the strength of the accretion torque to the viscous torque on the binary

(η/λ = f −1, λ = g in the notation of Foucart & Lai 2013).

Since l̂(rin, t) , l̂(rout, t), the disk angular momentum loss through accretion

causes l̂d to change with time:(d l̂d

dt

)
acc
∼ −

λṀ
√

GMbrin

Ld

{
l̂(rin, t) − l̂d

[
l̂d· l̂(rin, t)

]}
. (5.72)

Because the magnitude of the tilt of l̂(rin, t) from l̂d is of order

[
l̂(rin, t) − l̂d

]
∼ −

∂ l̂
∂ ln r

∣∣∣∣∣
warp

, (5.73)
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we find (d l̂d

dt

)
acc
∼ −

4λṀ
√

GMbrin

c2
s Ld

(
κ2 − n2

2n2

)
l̂d×Tdb. (5.74)

Detailed calculation shows that the accretion torque (5.74) is always much less

than the viscous torque (5.19) on the disk. We relegate the calculation and dis-

cussion of the accretion torque (5.74) to the Appendix.

For eccentric binaries, the back-reaction toque from the disk is dLb/dt =

−dLd/dt [Eq. (5.46)]. But this is not sufficient for determining the evolution of

eb and l̂b. In addition, how accretion affects the binary eccentricity is also un-

certain (e.g. Rafikov 2016, Miranda, Muñoz, & Lai 2017). Nevertheless, as long

as Lb & Ld, the timescale for the disk-binary inclination evolution should be of

order γ−1
b , with an estimate given by Eq. (5.48).

5.6 Discussion

5.6.1 Theoretical Uncertainties

Our theoretical analysis of disks around binaries assumes a linear disk warp.

However, we find that at the inner disk region, |∂ l̂/∂ ln r| reaches ∼ 0.1 for a wide

range of binary and disk parameters. Inclusion of weakly non-linear warps

in Equations (5.22)-(5.23) may introduce new features in the disk warp profile

[Ogilvie, 2006]. In addition, disk warps of this magnitude may interact reso-

nantly with inertial waves in the disk, leading to a parametric instability which

may excite turbulence in the disk [Gammie, Goodman, & Ogilvie, 2000, Ogilvie

& Latter, 2013]. An investigation of these effects is outside the scope of this

138



Figure 5.8: Contour plot of the probability of polar alignment Ppolar [Eq. (5.76)] as
a function of disk inclination I and binary eccentricity eb. Contours of constant
Ppolar are labeled as indicated. The Ppolar = 0 line (black) traces out Icrit [Eq. (5.8)],
while the Ppolar = 0.5 line (red) traces out Ipolar [Eq. (5.78)].

paper, but their inclusion is unlikely to change the direction of disk-binary in-

clination evolution (alignment vs polar alignment).

5.6.2 Observational Implications

In Section 5.3.4, we showed that the viscous torque associated with disk

twist/warp tends to drive the circumbinary disk axis l̂d toward ± l̂b (alignment

or anti-alignment) when Λ > 0, and toward ±eb (polar alignment) when Λ < 0.

Note that Icrit < I < 180◦ − Icrit is a necissary, but not sufficient condition for polar

alignment of the disk [Eq. (5.8)]. An extreme example is when Ω = 0◦, since

Λ ≥ 0 for all inclinations I. Because the circumbinary disk probably formed in

a turbulent molecular cloud, the disk is unlikely to have a preferred Ω when it
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forms. The condition for polar alignment (Λ < 0) requires Ω to satisfy

sin2 Ω >

(
1 − e2

b

5e2
b

)
1

tan2 I
=

tan2 Icrit

tan2 I
. (5.75)

Assuming a uniform distribution of Ω-values from 0 to 2π, the probability of the

disk to polar align is (for given I, eb)

Ppolar(I, eb) = 1 − 2Ωmin/π. (5.76)

where

Ωmin(I, eb) =



π/2 | sin I| ≤ | sin Icrit|

sin−1
(

tan Icrit
| tan I|

)
otherwise

(5.77)

We define the inclination Ipolar through Ppolar(Ipolar, eb) = 0.5. Solving for Ipolar, we

obtain

Ipolar = tan−1
√

2(1 − e2
b)/5e2

b (5.78)

In Figure 5.8, we plot contours of constant Ppolar in the I − eb space. The Ppolar = 0

curve (black) traces out Icrit [Eq. (5.8)], while the Ppolar = 0.5 curve (red) traces

out Ipolar [Eq. (5.78)]. When I < Icrit, alignment of l̂ with l̂b is inevitable. When

I > Ipolar, alignment of l̂ with eb is probable.

Table 5.1 lists a number of circumbinary systems with highly eccentric bina-

ries. With the exception of 99 Herculis, all the binaries listed have disks coplanar

with the binary orbital plane within a few degrees. We also list Icrit [Eq. (5.8)] and

Ipolar [Eq. (5.78)] for these systems. We do not list the binaries KH 15D [Winn

et al., 2004, Chiang & Murray-Clay, 2004, Capelo et al., 2012] and HD 142527B

[Marino et al., 2015, Casassus et al., 2015, Lacour et al., 2016] since the orbital

elements of these binaries are not well constrained. However, both binaries ap-
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Binary eb Icrit Ipolar

99 Herculis 0.77 20◦ 28◦

α CrB 0.37 48◦ 58◦

β Tri 0.43 43◦ 53◦

DQ Tau 0.57 33◦ 42◦

AK Sco 0.47 40◦ 50◦

HD 98800 B 0.78 20◦ 27◦

Table 5.1: Binary eccentricities eb, with their inclinations Icrit [Eq. (5.8)] and Ipolar

[Eq. (5.78)], for the selected eccentric binaries with circumbinary disks. With the
exception of the debris disk around 99 Herculis, all binaries have circumbinary
disks aligned with the binary orbital plane within a few degrees. Binary eccen-
tricities are from Kennedy et al. [2012a] (99 Herculis), Tomkin & Popper [1986]
(α CrB), Pourbaix [2000] (β Tri), Czekala et al. [2016] (DQ Tau), Alencar et al.
[2003] (AK Sco), and Boden et al. [2005] (HD 98800 B)

pear to have significant eccentricities [Chiang & Murray-Clay, 2004, Lacour et

al., 2016].

Since planets form in gaseous circumbinary disks, planets may form with or-

bital planes perpendicular to the binary orbital plane if the binary is sufficiently

eccentric. Such planets may be detectable in transit surveys of eclipsing binaries

due to nodal precession of the planet’s orbit.

The twist and warp calculated in Section 5.3.3 is non-negligible. Further

observations of (gaseous) circumbinary disks may be able to detect such warps

[Juhász & Facchini, 2017], further constraining the orientation and dynamics of

circumbinary disk systems.

5.7 Summary

Using semi-analytic theory, we have studied the warp and long-term evolution

of circumbinary disks around eccentric binaries. Our main results and conclu-

141



sions are listed below.

1. For protoplanetary disks with dimensionless thickness H/r larger than the

viscosity parameter α, bending wave propagation effectively couples dif-

ferent regions of the disk, making it precess as a quasi-rigid body. Without

viscous dissipation from disk warping, the dynamics of such a disk is sim-

ilar to that of a test particle around an eccentric binary (Secs. 5.2 and 5.3.2).

2. When the binary is eccentric and the disk is significantly inclined, the disk

warp profile exhibits new features not seen in previous works. The disk

twist [Eq. (5.34)] and warp [Eq. (5.35)] have additional contributions due

to additional torques on the disk when the binary is eccentric.

3. Including the dissipative torque from warping, the disk may evolve to

one of two states, depending on the initial sign of Λ [Eq. (5.4)] (Sec. 5.3.4).

When Λ is initially positive, the disk angular momentum vector aligns (or

anti-aligns) with the binary orbital angular momentum vector. When Λ is

initially negative, the disk angular momentum vector aligns with the bi-

nary eccentricity vector (polar alignment). Note that Λ depends on both I

(the disk-binary inclination) and Ω (the longitude of ascending node of the

disk). Thus for a given eb, the direction of inclination evolution depends

not only on the initial I(0), but also on the initial Ω(0).

4. When the disk has a non-negligible angular momentum compared to the

binary, the systems fixed points are modified (Sec. 5.4). The disk may then

evolve to a state of near polar alignment, with the inclination somewhat

less than 90◦.

5. The timescale of evolution of the disk-binary inclination angle [see

Eqs. (5.52)-(5.53)] depends on various disk parameters [see Eq. (5.48)], but
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is in general less than a few Myrs. This suggests that highly inclined disks

and planets may exist around eccentric binaries.

Acknowledgments

JZ thanks Stephen Lubow, Rebbeca Martin, and Gongjie Li for useful conversa-

tions. We thank the anonymous referee for their comments which improved

the quality of this paper. This work has been supported in part by NASA grants

NNX14AG94G and NNX14AP31G, and a Simons Fellowship from the Simons

Foundation. JZ is supported by a NASA Earth and Space Sciences Fellowship

in Astrophysics.

Appendix: Accretion Torques

If the inner disk is not coplanar with the outer disk, accretion will change

the disk angular momentum vector over time. We parameterize this accretion

torque according to (
dLd

dt

)
acc

= −λṀ
√

GMbrin l̂(rin, t), (5.79)

where Ṁ is the accretion rate onto the binary, and λ ∼ 1 parameterizes the angu-

lar momentum loss from the disk to the binary. The time evolution of G, as well

as the pericenter precession induced by the non-Keplarian angular frequency,

warps the inner edge of the disk in the direction of the binary orbital plane

[(l1)warp; Eq. (5.35)]. Inserting l̂(r, t) = l̂d + (l1)warp in equation (5.79), we obtain(d l̂d

dt

)
acc

= γaω̃bτb(rin)Λ
[
(1 − e2

b)( l̂d· l̂b) l̂d×( l̂b× l̂d)
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Figure 5.9: Same as Fig. 5.5, except we neglect the disk’s viscous torque
[Eq. (5.50)], and include the disk’s accretion torque [Eq. (5.80)]. All parameter
values are the same, except α = 0.2, h = 0.3, and λ = 1.
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− 5( l̂d·eb) l̂d×(eb× l̂d)
]

+γaWbb(rin) fb

[
(1 − e2

b)( l̂d· l̂b) l̂d×( l̂b× l̂d)

− 5( l̂d·eb) l̂d×(eb× l̂d)
]
, (5.80)

where

γa =
λṀ
√

GMbrin

Ld
'

9
4
λαh2n(rout)

= 3.18 × 10−7λ
(
α

0.01

) ( h
0.1

)2

×

(
Mb

2 M�

)1/2 (
100 AU

rout

)3/2 (
2π
yr

)
, (5.81)

We have assumed the disk to be in a steady state, so

Ṁ ' 3παh2Σin

√
GMbrin. (5.82)

Equation (5.80) agrees with the rough magnitude and direction of the accretion

torque estimated in Equation (5.74).

Since

d
dt

( l̂d· l̂b)
∣∣∣∣∣
acc

= γaω̃bτb(rin)Λ
[
(1 − e2

b) − Λ
]

+ γaWbb(rin) fb
[
(1 − e2

b) − Λ
]

(5.83)

d
dt

( l̂d·eb)
∣∣∣∣∣
acc

= − γaω̃bτb(rin)Λ
[
Λ + 5e2

b
]

− γaWbb(rin) fb
[
Λ + 5e2

b
]
, (5.84)

the radial functions τb(rin),Wbb(rin) < 0, and fb ∼ Λ, Eqs. (5.83)-(5.84) drives the

disk one of two ways depending on the rough value of Λ:

1. Λ & 0: The accretion torque (5.80) pushes l̂d away from l̂b.

2. Λ . 0: The accretion torque (5.80) pushes l̂d away from eb.
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From Eq. (5.27), it may be shown that there are no fixed points near the Λ = 0

separatrix. Therefore, the accretion torque drives the disk to a trajectory near

the Λ = 0 separatrix.

Figure 5.9 plots the examples considered in Figure 5.2 with accretion torques

[Eq. (5.80)]. We take h and α to be significantly higher than our cannonical val-

ues of α = 0.01 and h = 0.1 so that accretion torques effect the dynamical evo-

lution of the circumbinary disk [Eq. (5.81)]. In the left panels of Figure 5.9, we

plot the disk inclination with time, for the binary eccentricities indicated. The

trajectories which start at I(0) = 20◦, 40◦, and 80◦ all evolve toward the prograde

seperatrix, which nutates around I ∼ 50◦ when eb = 0.3, and I ∼ 40◦ when

eb = 0.6. The trajectories which start at I(0) = 60◦ both evolve to the retrograde

seperatrix, which nutates around I ∼ 130◦ when eb = 0.3, and I ∼ 140◦ when

eb = 0.6. On the right panels, we plot the disk trajectories on the I −Ω plane, for

the binary eccentricities indicated. All disk trajectories evolve toward the Λ ≈ 0

seperatrix.

The relative strength of the viscous to the accretion torques from disk warp-

ing is given by the ratio

|γb|

|γaWbb(rin)|
≈ 300λ−1

(
0.1
h

)2

. (5.85)

As long as |γb| � |γaWbb(rin)|, the viscous torque dominates, and l̂d aligns with

either l̂b or eb, depending on the sign of Λ (Sec. 5.3.4). When |γb| . |γaWbb(rin)|, the

accretion torques may dominate, and l̂d may be driven to the seperatrix Λ ≈ 0.

Figure 5.10 is identical to Figure 5.5, except we include viscous [Eq. (5.50)]

and accretion [Eq. (5.80)] torques with α = 0.01, h = 0.1, and λ = 1. Because

|γb| � |Wbb(rin)γa|, the viscous torque dominates the disk’s dynamics. As a result,

Figure 5.10 is almost indistinguishable from Figure 5.5. Only for unrealistically
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Figure 5.10: Same as Figure 5.5, except we include the disk’s accretion torque
[Eq. (5.80)]. All parameter values are the same, with λ = 1.

hot protoplanetary disks with h & 0.5 may accretion torques significantly effect

the disk evolution over viscous timescales.
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CHAPTER 6

EXTENDED TRANSITING DISKS AND RINGS AROUND PLANETS

AND BROWN DWARFS: THEORETICAL CONSTRAINTS

The age is nearing when direct observations of circumplanetary disks and

rings become a reality through photometry. A number of studies have in-

vestigated the detectability and observational signatures of circumplanetary

disks/rings [Barnes & Fortney, 2004, Ohta et al., 2009, Schlichting & Chang,

2011, Tusnski & Valio, 2011, Zuluaga et al., 2015]. Although observational

searches for exo-rings have been carried out, most are inconclusive [Brown et

al., 2001, Heising et al., 2015, Santos et al., 2015]. These searches focused on

hot Jupiters, which have Hill radii rH ≡ a(Mp/3M?)1/3 (where a is the planetary

semi-major axis, Mp is the planet mass, and M? is the mass of the host star) com-

parable to their planetary radii Rp. For this reason, these circumplanetary disks

could not have outer radii rout significantly larger than their respective planetary

radii.

Mamajek et al. [2012] discovered that the light curve of a young (∼ 16 Myr)

K5 star 1 SWASP J140747-354542 (hereafter J1407) exhibited a complex series of

eclipses that lasted 56 days around the month of April 2007. The central deep

(> 3 mag) eclipse was surrounded by two pairs of 1 mag eclipses occurring at

±12 and ±26 days. They proposed that these eclipses where caused by a large

ring system orbiting an unseen companion J1407b (see also van Werkhoven et

al. 2014). Other explanations were considered but deemed unlikely. Follow-

up observations by Kenworthy et al. [2015] constrain the companion mass to

< 80 MJ (where MJ is the mass of Jupiter) and semi-major axis (for circular or-

bits) to a ' 2.2 − 5.6 AU (3σ significance). Thus, J1407b is most likely a giant
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planet or brown dwarf in a 3.5-14 year orbit around the primary star. Model-

ing the eclipse light curve with a series of inclined, circular optically thick rings

gave a best fit outer disk radius of ∼ 0.6 AU, a significant fraction of the com-

panion’s Hill radius [van Werkhoven et al., 2014, Kenworthy & Mamajek, 2015].

The disk/ring system also contains gaps, which may be cleared by exomoons

orbiting around J1407b.

Currently, the ring/disk interpretation of the J1407 light curve remains un-

certain, although no serious alternatives have been explored in detail. The

ring/disk interpretation can be tested in the coming years if another eclipse

event is detected, while a non-detection would put the model under increas-

ing strain. In any case, the possible existence of such a ring system naturally

raises questions about the formation of inclined, extended disks/rings around

giant planets and brown dwarfs. In order to produce a transiting signature,

the disk/ring must be inclined with respect to the orbital plane. How are such

inclinations produced and maintained?

For giant planets, the inclination of the disk/ring may be tied to the obliq-

uity of the planet due to its rotation-induced quadrupole. The obliquity may be

excited through secular spin-orbit resonances, as in the case of Saturn [Hamil-

ton & Ward, 2004, Ward & Hamilton, 2004, Vokrouhlický & Nesvorný, 2015],

or through impacts with planetesimals of sufficiently large masses [Lissauer &

Safronov, 1991]. In the case of brown dwarfs, which are thought to form in-

dependently of the primary, the disk could be “primordially” misaligned with

respect to the binary orbit because of the turbulent motion of gas in the star

forming environment [Bate, 2009, Bate et al., 2010, Tokuda et al., 2014].

In this paper, we will address the following question: Under what condi-
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tions can an extended disk/ring around a planet or brown dwarf maintain its

inclination with respect to the planet’s orbit in order to exhibit a transit signa-

ture? As discussed in Section 2, even when the disk is safely confined within

the planet’s Hill sphere, the outer region of the disk can still suffer significant

tidal torque from the host star. This tidal torque tends to induce differential

precession of the disk. Without any internal forces, the disk will lose coherence

in shape and inclination. In the presence of dissipation, the disk may reach a

equilibrium warp profile (called “Laplace surface”) in which the outer region of

the disk [beyond the Laplace radius; see Eq. (6.3) below] becomes aligned with

the orbital plane.

In gaseous disks, hydrodynamic forces work to keep the disk coherent,

through bending waves [Ivanov & Illarionov, 1997, Papaloizou & Lin, 1995,

Lubow & Ogilvie, 2000] or viscosity [Papaloizou & Pringle, 1983, Ogilvie, 1999].

But the rapid variability in the photometric data for the inferred ring system

around J1407b implies that the disk/ring system is quite thin, with a ratio of

the scaleheight to radius of order H/r ∼ 10−3 [van Werkhoven et al., 2014], with

significant gaps in the disk [Mamajek et al., 2012, Kenworthy & Mamajek, 2015].

It is unlikely that hydrodynamical forces are sufficiently strong to maintain

the disk’s coherence (see Section 5.2).

Another plausible internal torque is self-gravity (e.g., Ward 1981; Touma et

al. 2009; Ulubay-Siddiki et al 2009). This is the possibility we will focus on in

this paper. Of particular relevance is the work by Ward (1981), who studied

the warping of a massive self-gravitating disk in an attempt to explain the in-

clination of Iapetus, Saturn’s moon, with respect to the local Laplace surface.

He found that self-gravity of the circumplanetary disk which formed Saturn’s
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satellites could significantly modify the equilibrium inclination/warp profile.

In this paper, we re-examine the warp dynamics of self-gravitating circum-

planetary disks in light of the possible detection extended transiting disks. We

consider general (possibly large) planetary obliquities, and study both equilib-

rium disk warp and its time evolution. Our goal is to derive the conditions (in

terms of disk mass and density profile) under which an extended circumplane-

tary disk/ring maintain its inclination with respect to the planet’s orbit. In Sec-

tion 6.2, we study the equilibrium inclination/warp profile of the disk, which

we will call the Generalized Laplace Surface, under the influences of torques from

the oblate planet, the distant host star, and disk self-gravity. We show that if the

disk is sufficiently massive, the outer region of the disk can maintain significant

inclination relative to the planet’s orbit. In Section 4, we study the time evo-

lution of disk warp, including the stability of the generalized Laplace surfaces,

and the condition required for the disk to be capable of precessing coherently.

We summarize our results and discuss their implications in Section 6.4

Although it is unknown if the object J1407b is a planet or brown dwarf, we

will refer to J1407b as a “planet” throughout the rest of the paper.

6.1 External Torques and the Laplace Surface

Consider a planet (mass Mp) in a circular orbit around a central star (mass M?)

with orbital semi-major axis a. We denote the unit orbital angular momentum

vector by l̂p. We take the circumplanetary disk to extend from radius r = rin to

r = rout, as measured from the center of the planet. We assume that the disk is

circular. In general, the angular momentum unit vector at each annulus of the
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disk is a function of radus and time, and is specified by l̂ = l̂(r, t).

The circumplanetary disk experiences two external torques, from the host

star and from the planet’s quadrupole. Averaging over the orbit of the planet,

to leading order in the ratio r/a, the tidal torque per unit mass from the star

exerted on a disk annulus with unit angular momentum l̂ is

T∗ =
3GM?r2

4a3

(
l̂· l̂p

)(
l̂× l̂p

)
. (6.1)

The quadrupole moment of the planet is related to its J2 parameter by I3 − I1 =

J2MpR2
p, where Rp is the radius of the planet, and J2 depends on the planet’s

rotation rate Ωp via J2 = (k2/3)(Ω2
pR3

p/GMp). The Love number k2 is of order 0.4

for giant planets. The torque from the spinning planet on the disk annulus is

Tsp =
3GMpR2

pJ2

2r3

(
l̂·ŝ

)(
l̂×ŝ

)
, (6.2)

where ŝ is the unit vector along the planet’s spin axis.

In general, when l̂, l̂p, and ŝ are not parallel to each other, |T∗| dominates at

large r while |Tsp| dominates at small r. The radius where |T∗| ∼ |Tsp| defines the

Laplace radius

rL ≡

(
2J2

Mp

M?

R2
pa3

)1/5

=
(
6J2R2

pr3
H

)1/5
, (6.3)

where rH ≡ a(Mp/3M?)1/3 is the Hill radius [Tremaine et al., 2009]. Tidal trun-

cation and dynamical stability require that the outer radius of the disk be less

than a fraction of rH, i.e. ξ ≡ rout/rH . 0.4 (e.g. Quillen & Trilling 1998, Ayliffe &

Bate 2009a, Martin & Lubow 2011, Lehébel & Tiscareno 2015). Thus the ratio of

rL to rout is given by

rL

rout
=

6J2R2
p

ξ3r2
out

1/5

=0.18
( J2

10−2

)1/5 (
rout

0.2rH

)−3/5
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×

(
Rp

RJup

)2/5 ( rout

0.1 AU

)−2/5
. (6.4)

where we have scaled J2 to the value appropriate to gas giants in our Solar

System, and rout appropriate to the claimed ring system in J1407 [van Werkhoven

et al., 2014].

In the presence of dissipation in the disk, we may expect l̂(r, t) to evolve

toward the equilibrium state, in which

T∗ + Tsp = 0. (6.5)

The equilibrium orientation of the disk l̂(r), which defines the Lapace surface

[Laplace , 1805, Tremaine et al., 2009], lies in the plane spanned by the vectors

ŝ and l̂p. Throughout this paper, we assume that the planet’s spin angular mo-

mentum is much larger than the disk angular momentum, so that ŝ is fixed in

time. Let βp be the planetary obliquity (the angle between ŝ and l̂p) and β(r) be

the warp angle of the disk [the angle between l̂(r) and l̂p]. Equation (6.5) may be

reduced to

0 =z2 cos β(z) sin β(z)

+
z5

L

z3 cos
[
β(z) − βp

]
sin

[
β(z) − βp

]
, (6.6)

where we have defined the dimensionless Laplace radius zL and radial coordi-

nate z by

zL ≡ rL/rout, z ≡ r/rout. (6.7)

Figure 6.1 depicts the solutions to Eq. (6.6) for βp = 30◦, 60◦ and zL = 0.2, 0.5.

Clearly, in the absence of any internal torque, the outer region of the disk (be-

yond ∼ 2rL) is highly aligned with the planetary orbit, with

β(r) '
(rL

r

)5
cos βp sin βp. (6.8)
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Figure 6.1: Equilibrium disk inclination profile (Laplace surface without self-
gravity). The quantity β is the angle between l̂ and l̂p. The different lines are
for rL/rout = 0.1 (blue), 0.3 (magenta) and 0.5 (red). The planetary obliquity βp is
assumed to be 60◦ (solid lines) and 30◦ (dotted lines).

Such an aligned outer disk would not produce the transit signal claimed in the

J1407 system. To maintain significant inclination in the outer disk, some internal

torques are needed. We consider the effect of self-gravity in the next section.

6.2 Generalized Laplace Surface: Equilibrium with Self-

Gravity

In this section, we consider the influence of self-gravity on the equilibrium warp

profile l̂(r) of the disk. Let the surface density of the disk be Σ = Σ(r). The torque

acting on the disk due to its own self-gravity is approximately given by

Tsg '
πG
2

∫ rout

rin

dr′
r′Σ(r′)

max(r, r′)
χb(1)

3/2(χ)

×
[
l̂(r)· l̂(r′)

][
l̂(r)× l̂(r′)

]
, (6.9)
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where χ = min(r, r′)/max(r, r′) and b(1)
3/2(χ) is the Laplace coefficient

b(1)
3/2(χ) =

2
π

∫ π

0

cos θdθ
(1 − 2χ cos θ + χ2)3/2 . (6.10)

Eq. (6.9) is an approximation which recovers two limits: When | l̂(r) × l̂(r′)| �

1, it reduces to Eq. (8) of Tremaine [1991] and Eq. (47) of Tremaine & Davis

[2014]; when χ � 1, b(1)
3/2(χ) ' 3χ [Murray & Dermott, 1999] and we recover the

quadrupole approximation:

Tsg '
3πG

2

∫ rout

rin

dr′
r′Σ(r′)

max(r, r′)
χ2

×
[
l̂(r)· l̂(r′)

][
l̂(r)× l̂(r′)

]
. (6.11)

The integrand of Eq. (6.9) becomes invalid when χ ∼ 1 and | l̂(r)× l̂(r′)| ∼ 1

(i.e., when two close-by annuli have a large mutual inclination), and a differ-

ent formalism is needed to calculate the torque acting on a disk from its own

self-gravity (e.g. Kuijken 1991, Arnaboldi & Sparke 1994, Ulubay-Siddiki et al.

2009). In the appendix, we review the exact equations for calculating internal

self-gravity torques for arbitrary χ and | l̂(r)× l̂(r′)|. Our numerical calculations

based on these exact (but much more complicated) equations show that they

provide only minor quantitative corrections to the disk warp profile and the in-

clination at the outer disk radius. For this reason, we will use the much simpler

approximation (6.9) for the remainder of this paper.

For concreteness, we consider a power-law surface density profile

Σ(r) = Σout

(rout

r

)p
. (6.12)

Then the disk mass is (assuming rin � rout)

Md '
2π

2 − p
Σoutr2

out, (6.13)
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and the total disk angular momentum is

Ld '
4π

5 − 2p
Σoutr2

out

√
GMprout. (6.14)

It is useful to compare the magnitude of |Tsg| to the external torques acting

on the disk (see Fig. 6.2). Ignoring geometrical factors relating to the angles

between l̂, l̂p and ŝ, we have to an order of magnitude [see Eqs. (6.9), (6.1), and

(6.2)]

|Tsg| ∼ πGΣ(r)r (6.15)

|T∗| ∼
3GM?r2

4a3 (6.16)

|Tsp| ∼
3GMpR2

pJ2

2r3 . (6.17)

Thus

|Tsg|

|T∗|
∼

2(2 − p)
3

σ
(rout

r

)1+p
≡

(r?
r

)1+p
, (6.18)

|Tsg|

|Tsp|
∼

2(2 − p)
3

σ

z5
L

(
r

rout

)4−p

≡

(
r

rsp

)4−p

, (6.19)

where we have defined the dimensionless parameter σ (which measures

|Tsg|/|T∗| at r = rout) as

σ ≡
Md

M?

(
a

rout

)3

= 0.38
(

rout

0.2 rH

)−3 (
Md

10−3Mp

)
. (6.20)

In Eqs. (6.18) and (6.19), r? and rsp are set by |Tsg|/|T∗| ∼ 1 and |Tsg|/|Tsp| ∼ 1

respectively. Recall the Laplace radius rL is set by |T∗| ∼ |Tsp|. For radii r . rsp,

Tsp dominates and the disk annuli tend to be aligned with the planetary spin

axis. For r & r?, T∗ dominates and the disk tends to be aligned with the planet’s

orbit. For rsp . r . r?, Tsg dominates and self-gravity strongly influences the

disk warp profile.
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Figure 6.2: Torques on the disk based on the estimates (6.15)-(6.17) and normal-
ized by |T∗(rout)|. The tidal torque from the star (T∗) is in blue, and the torque
from the spinning planet (Tsp) is in red. The torque from self-gravity (Tsg) is
in black, with three values of σ [see Eq. (6.20)] as indicated, all for p = 1 [see
Eq. (6.12)]. The three critical radii in the disk (rsp, rL, r?) are marked.

The equilibrium disk warp profile l̂(r) including the effect of self-gravity is

determined by the equation

T∗ + Tsp + Tsg = 0. (6.21)

With l̂(r) lying in the plane spanned by l̂p and ŝ, this reduces to

0 =z2 cos β(z) sin β(z)

+
z5

L

z3 cos
[
β(z) − βp

]
sin

[
β(z) − βp

]
+

2 − p
3

σ

∫ 1

rin/rout

dz′
(z′)1−p

max(z, z′)
χb(1)

3/2(χ)

× cos
[
β(z) − β(z′)

]
sin

[
β(z) − β(z′)

]
. (6.22)

Figure 6.3 depicts a sample of the equilibrium disk inclination profile β(r) for

rL/rout = 0.2, 0.5 and p = 1, 1.5, with various values of the disk mass parameter

σ. As expected, for sufficiently large σ, self-gravity can significantly increase

the outer disk’s inclination.
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Figure 6.3: Equilibrium disk inclination profile β(r) including the effect of self
gravity (the generalized Laplace surface), for different values of rL/rout and σ
[see Eq. (6.20)] as indicated. The planetary obliquity is assumed to be βp = 60◦.
The σ = 0 curves correspond to the standard Laplace surface (without self-
gravity). The solid lines are for the surface density power-law index p = 1, and
dashed lines for p = 1.5.

Figure 6.4 shows the outer disk inclination angle β(rout) as a function of σ.

Decreasing the parameter p or rL/rout results in a decrease of β(rout). This can be

understood as follows: The disk inside rL is roughly aligned with the planet’s

spin. This inner disk, together with the planet’s intrinsic quadrupole, act on the

outer disk to resist the tidal torque from the host star and generate β(rout). Re-

ducing p leads to a smaller effective quadrupole of the inner disk, and therefore

yielding a smaller β(rout).
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The qualitative behavior of Fig. 6.4 at low σ may be understood analytically.

For β(rout) � βp, we use the approximate solution β(r) ∼ βpΘ[(r/rout) − (rL/rout)]

in the integrand of Eq. (6.22) (Θ is the Heavyside step function). We find, to an

order of magnitude,

β(rout) ∼

( rL

rout

)5

+

(
2 − p
4 − p

)
σ

(
rL

rout

)4−p
× cos βp sin βp. (6.23)

Comparing to Eq. (6.8), the second term in Eq. (6.23) may be understood as the

correction to the planet’s effective quadrupole due to inner disk’s self-gravity.

We see that in order to achieve significant β(rout), both σ and rL/rout must be

sufficiently large. We note that while Eq. (6.23) captures the correct trend of how

β(rout) depends on σ, rL/rout and p, it is necessary to solve Eq. (6.22) to obtain the

quantitatively accurate result depicted in Fig. 6.4.

6.3 Time Evolution of Disk Warp

In this Section, we first use numerical integrations to examine the stability prop-

erty of the generalized Laplace Surfaces obtained in Section 3. We then consider

the possibility of coherent precession of warped self-gravitating disks.

6.3.1 Stability of Generalized Laplace Equilibria

In Tremaine et al. [2009], it was found that the solutions to Eq. (6.5) (without

disk self-gravity) were unstable when βp > 90◦. Although in this paper we only

consider disk warp profiles with βp < 90◦, it is not immediately obvious if the
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Figure 6.4: Equilibrium inclination of the disk at the outer radius [the angle
between l̂(rout) and l̂p], as a function of the disk mass parameter σ [see Eq.(6.20)].
The top panel is for the planetary obliquity βp = 30◦, and the lower panel for
βp = 60◦. Different colored curves correspond to different values of rL/rout as
indicated. The solid lines are for the surface density profile of p = 1, while the
dashed lines are for p = 1.5.

addition of self-gravity changes the stability of the generalized Laplace surfaces

obtained by solving Eq. (6.21). A complete analysis of the Laplace equilibria

[which we denote by l̂0(r)] would require one to find the full eigenvalue spec-

trum of the perturbed equation of motion for l̂(r, t). We do not carry out such an

analysis here. Instead, we use numerical integrations to examine how a small

deviation of l̂(r, t) from l̂0(r) evolves in time.
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The evolution equation for the disk warp profile l̂(r, t) is

r2Ω
∂ l̂
∂t

= T∗ + Tsp + Tsg, (6.24)

where Ω(r) =
√

GMp/r3. The small perturbation j ≡ l̂(r, t) − l̂0(r) satisfies

r2Ω
∂ j
∂t

= T∗ + Tsp + Tsg. (6.25)

We consider two indepedent initial perturbations:

j(r, t = 0) = 0.02 sin
[
π(r − rin)
rout − rin

]  ŝ× l̂p

|ŝ× l̂p|

 (6.26)

and

j(r, t = 0) = 0.02 sin
[
π(r − rin)
rout − rin

]  l̂0×(ŝ× l̂p)

| l̂0×(ŝ× l̂p)|

 . (6.27)

Equation (6.26) corresponds to a perturbation perpendicular to the plane

spanned by the Laplace surface, while Eq. (6.27) corresponds to a slight change

in the disk inclination profile β(r). We choose the r-dependence in Eqs. (6.26)

and (6.27) such that j = 0 at r = rin and r = rout.

Figure 6.5 shows some examples of our numerical integration results. We

define the quantity

jmax(t) ≡ max
r∈[rin,rout]

(| j(r, t)|), (6.28)

and plot jmax for the initial conditions (6.26) and (6.27), with parameters βp =

30◦, 60◦ and σ = 0.1, 10. We see that jmax is bounded in all cases. We have carried

out calculations for other initial conditions and found similar behaviors for jmax.

We conclude that the equilibrium profile l̂0(r) are stable (for βp < 90◦).

In addition to the inclination instability, it was shown in Tremaine et al.

[2009] that the Laplace surface (without self-gravity) is unstable to eccentric-

ity growth when βp & 69◦. This “eccentricity instability” cannot be probed by

our analysis, and is beyond the scope of this paper. All examples considered in

this paper have planetary obliquities less than this critical angle.
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Figure 6.5: Time evolution of the quantity jmax [Eq. (6.28)], with the initial con-
dition given by (6.26) (left panel) and (6.27) (right panel). Solid lines denote
σ = 10, dotted lines denote σ = 0.1. Values of βp are as indicated.

6.3.2 Coherent Disk Precession

The generalized Laplace surfaces studied in Section 3 correspond to the disk

warp equilibria that may be attained when the disk experiences sufficient inter-

nal dissipation. However, we could also imagine situations in which circum-

planetary disks are formed with a warp profile that is “out of equilibrium”. It

is of interest to consider the time evolution of such “out-of-equilibrium” disks.

In particular, we are interested in the following scenario/question: if a disk is

formed with a large inclination at rout with respect to the planet’s orbit, under

what condition can the disk maintain its coherence and large inclination at rout?

In general, the disk warp profile l̂(r, t) evolves according to Eq. (6.24). With-

out self-gravity, the disk will develop large incoherent warps and twists due

to strong differential torques, and may eventually break. With sufficient self-

gravity, coherent precession of the disk may be possible.

For concreteness, we consider an initially flat disk with l̂ aligned with the

planet’s spin axis ŝ. Both ŝ and l̂p are assumed to be fixed in time, since the
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planet’s spin and orbital angular momenta are much larger than the disk angu-

lar momentum. To determine the evolution of the disk warp profile, we divide

the disk into 30 rings spaced logarithmically in radius, with ri (i = 1, 2, . . . , 30)

ranging from 5 × 10−2rout to rout. We then integrate Eq. (6.24) to evolve the orien-

tation of the individual ring l̂(ri, t).

Figures 6.6 and 6.7 show a sample numerical result, for integration time up

to τ = tω∗(rout) = 30, where

ω∗(rout) =
3GM?

4a3Ω(rout)
(6.29)

is the (approximate) precession frequency of the outer disk annulus torqued by

the central star. The planetary obliquity is fixed at βp = 40◦, with p = 1 and

rL/rout = 0.2. We consider three values of σ: 10, 1 and 0.1. In addition to the disk

inclination angle β(r, t) [the angle between l̂(r, t) and l̂p], we also show the disk

twist angle φ(r, t) [the angle between l̂p× l̂(r, t) and l̂p× ŝ]. In all three cases, when

r . rsp the disk annuli remain mostly aligned with the planetary spin, with

β ≈ βp = 40◦. For the σ = 10 case, the region of the disk beyond rsp precesses

coherently, while for the low-mass case (σ = 0.1), the disk’s self-gravity is not

able to enforce coherence, since different disk annuli precess at different rates.

This transition of the coherent behavior occurs at r? ∼ rout, or equivalently σ ∼ 1.

From Eq. (6.18) we have

r?
rout

=

[
2(2 − p)

3
σ

]1/(1+p)

. (6.30)

Thus, coherent precession of the outer disk requires σ & 1, or in terms of disk

mass,

Md & 2.67 × 10−3Mp

(
rout

0.2 rH

)3

. (6.31)

When the disk mass is high (σ � 1), the dynamical behavior is relatively

simple. This may be understood with the model put forth in the next section.
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Figure 6.6: Evolution of the disk inclination β(r, t) (left panels) and twist angle
φ(r, t) (right panels) for three different disk mass parameters: σ = 10 (top), σ = 1
(middle), and σ = 0.1 (bottom). The dimensionless time is τ = tω∗(rout) [see
Eq. (6.29)]. The horizontal lines mark the locations of rsp (solid), r?/rout (dashed)
and rL (dot-dashed), to indicate where self-gravity and external torques domi-
nate (see Fig. 6.2). The planetary obliquity is βp = 40◦ and the Laplace radius is
rL/rout = 0.2.

6.3.3 Model for high σ disk

We assume that for radii r < rsp, the disk annuli stay aligned with the oblate

planet, while for r ≥ rsp the disk is a rigid plate being torqued externally by the

star and the oblate planet [see Eqs. (6.1) and (6.2)]. In other words, we model

the disk inclination profile as

l̂(r, t) =


ŝ r < rsp

n̂(t) r ≥ rsp

, (6.32)
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Figure 6.7: Snapshots of the disk inclination profile β(r, t) (left) and twist profile
φ(r, t) (right) at τ = 10 (red), τ = 20 (green) and τ = 30 (blue), for the evolution
depicted in Fig. 6.6. The vertical lines mark the locations rsp (solid), r? (dashed)
and rL (dot-dashed), indicating where self-gravity and external torques domi-
nate.

with n̂ evolving in time according to

dn̂
dt

= ω̄∗(n̂· l̂p)( l̂p×n̂) + (ω̄sp + ω̄d,in)(n̂·ŝ)(ŝ×n̂), (6.33)

where

ω̄∗ =
2π

Ld,out

∫ rout

rsp

Σ(r)r
(
3GM?r2

4a3

)
dr, (6.34)

ω̄sp =
2π

Ld,out

∫ rout

rsp

Σ(r)r

3GMpR2
pJ2

2r3

 dr, (6.35)

ω̄d,in =
2π

Ld,out

∫ rout

rsp

Σ(r)r
(∫ rsp

rin

3πGΣ(r′)(r′)3

2r3 dr′
)

dr, (6.36)

Ld,out = 2π
∫ rout

rsp

Σ(r)r3Ω(r)dr. (6.37)
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and ω∗(rout) is given by Eq. (6.29). Note that rsp depends on σ [see Eq. (6.19) and

Fig. 6.2]. Assuming rin � rsp � rout,

ω̄∗ ' ω∗(rout)
5 − 2p

2(4 − p)
, (6.38)

ω̄sp ' ω∗(rout)
5 − 2p

2(1 + p)

(
rL

rout

)5 (
rout

rsp

)1+p

, (6.39)

ω̄d,in ' ω∗(rout)
(5 − 2p)(2 − p)
2(4 − p)(1 + p)

σ

(
rsp

rout

)3−2p

. (6.40)

In Fig. 6.8, we show the outer disk inclination β and precession angle φ for n̂,

with rL/rout = 0.2 and p = 1. The qualitative behavior seen in Figs. 6.6 and 6.7 is

reproduced. In particular, for σ = 10, the outer disk undergoes full precession

in φ while the inclination β nutates; for σ = 30, the disk librates in φ around 0◦,

with β varying between 0◦ and 40◦.

In our model, the behavior of φ switches from precession to libration at σ ≈

23.

6.4 Summary and Discussion

6.4.1 Key Results

Motivated by the recent (tentative) observational evidence for the circumplane-

tary disk/ring system around the young K5 star 1 SWASP J140747-354542 [Ma-

majek et al., 2012, van Werkhoven et al., 2014, Kenworthy et al., 2015, Kenwor-

thy & Mamajek, 2015], we have presented a general theoretical study of the incli-

nation (warp) profile of extended disks around giant planets (or brown dwarfs).

Such a disk experiences torques from the host star and the oblate planet. In the
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Figure 6.8: Evolution of the (flat) outer disk inclination β and twist angle φ for
the simple model [see Eqs. (6.32)-(6.33)], with two values for the disk mass
parameter σ as indicated. For σ = 30, the disk normal vector n̂ precesses around
the planetary spin vector ŝ, with φ librating around φ = 0◦, while β varies from
0◦ to 40◦. For σ = 10, the outer disk precesses fully around the planetary orbital
angular momentum axis l̂p, indicated by φ spanning the full range of −180◦ to
180◦, while β remains more or less constant. The Laplace radius is rL/rout = 0.2,
with p = 1.
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absence of any internal torque, the disk may assume an equilibrium warp pro-

file (the Laplace surface; see Section 6.1), such that the outer disk beyond the

Laplace radius rL [see Eq. (6.3)] tends to be aligned with the planet’s orbit (see

Fig. 6.1). We have studied how self-gravity of the disk affects the steady-state

disk inclination profile (Fig. 6.3). In general, for a given planetary obliquity βp,

the outer disk inclination can be increased due to the “rigidity” provided by

the disk’s self-gravity. To produce a non-negligible outer disk misalignment re-

quires that the combination of the disk mass and rL/rout be sufficiently large [see

Fig. 6.4 and Eq. (6.23)]. The required disk mass is larger for smaller rL/rout. (Of

course, if the disk lies completely inside rL, i.e. rL/rout & 1, self-gravity is not

needed to achieve misalignment of the disk since β ' βp.)

We have shown that the generalized Laplace equilibria for disk warp pro-

files are stable against small inclination perturbations (Section 4.1). Because a

circumplanetary disk may not relax to a steady state in the absence of internal

dissipation, we have also studied the dynamical evolution of a disk initially

aligned with the planet’s spin (Section 6.3.2). Such a disk can attain misalign-

ment with respect to the orbital plane if it can precess coherently and if βp , 0.

We showed that to achieve coherent disk precession, the disk’s self-gravity must

dominate over the influence of the star’s tidal torque throughout the disk. This

coherence requirement leads to a lower bound on the disk mass [Eq. (6.31)]:

Md & 2.67 × 10−3Mp

(
rout

0.2 rH

)3

.

Of course, this mass constraint is needed only if rout > rL.
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6.4.2 Hydrodynamical Effects

In this paper we have focused on the effect of self-gravity in maintaining the

coherence and inclination of circumplanetary disks. Here we briefly comment

on hydrodynamical effects internal to the disk.

As noted in Section 1, hydrodynamic forces work to keep the disk coherent

through either bending waves or viscosity. If the disk viscosity parameter α sat-

isfies α . H/r, the warp disturbances propagate through the circumplanetary

disk in the form of bending waves. In order to enforce coherence, a bending

wave must propagate throughout the disk faster than a precession period from

the tidal torque of the host star [Larwood et al., 1996]. The tidal precession

period is of order t∗ ∼ 2πr2Ω/|T∗| ∼ (8π/Ω)(rH/r)3, while the bending-wave cross-

ing time is tbend ' 2r/cs ' (2/Ω)(r/H) (cs is the disk sound speed). Thus the small

value of H/r (∼ 10−3 for the inferred ring system around J1407b) makes t∗ smaller

than tbend when the disk extends to a significant fraction of the Hill radius.

If the disk viscosity parameter satisfies α & H/r, hydrodynamical forces

communicate through the disk in the form of viscosity. The the internal viscous

torque (per unit mass) is [Papaloizou & Pringle, 1983]

|Tvisc| =
r2Ω2

2

(H
r

) 3α +
1

2α

∣∣∣∣∣∣ ∂ l̂
∂ ln r

∣∣∣∣∣∣
 (6.41)

Comparing this with the tidal torque |T∗| shows that unless the disk warp

|∂ l̂/∂ ln r| is significant, the viscous torque will have difficulty balancing the tidal

torque from the host star; such a strongly warped disk could be subjected to

breaking [Doğan et al., 2015].

In addition to the above considerations, the “observed” gaps in the J1407b

disk may halt the propagation of bending waves and cut off viscous torques.
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Thus, hydrodynamical effects cannot be responsible for the disk’s coherence

and inclination.

6.4.3 Implications

The large disk mass [Eq. (6.31)] required to enforce coherent disk precession

or maintain misalignment of the outer disk may be difficult to achieve in the

context of circumplanetary disk formation (e.g. Canup & Ward 2006). Moreover,

a massive disk can suffer gravitational instability. Evaluating the Toomre Q

parameter at the outer radius of the disk, we find

Q(rout) =
cs(rout)κ(rout)
πGΣ(rout)

'
2

2 − p

(
H(rout)
10−3rout

) (
10−3Mp

Md

)
. (6.42)

where we have used cs ' HΩ, κ ' Ω '
√

GMp/r3 (H is the disk scale-height).

Requiring Q & 1 for stability puts an upper limit on Md, and thus the size of the

disk. Combining Eqs. (6.42) and (6.31), we find

rout

rH
. 0.35

(
H

10−3rout

)1/3

. (6.43)

This puts a strong constraint on the putative ring/disk system around J1407b.

Our work shows that in general, an extended circumplanetary disk is

warped when in a steady state or undergoing coherent precession. This warp

depends on the Laplace radius [see Eq. (6.3)] and the disk mass. Direct obser-

vations of such a warped circumplanetary disk would constrain the planet’s

oblateness (the J2 parameter), complementing photometric constraints [Carter

& Winn, 2010, Zhu et al., 2014].
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Although our work is motivated by the the putative J1407b ring system, our

results can be easily adapted to circumplanetary disk/ring systems in general.

We expect that the analysis developed in this paper can be a useful tool to eval-

uate the stability of circumplanetary disk/ring systems detected in the future.
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Appendix: Exact self-gravity torque for a circular disk

As noted in Section 6.2, Eq. (6.9) is valid only when | l̂(r′)× l̂(r)| � 1 or χ � 1.

When χ ∼ 1 and | l̂(r′)× l̂(r)| ∼ 1, a different formalism is needed to compute the

torque acting between two circular massive rings. In terms of the warp profile

l̂(r, t) and disk surface density Σ(r), the specific torque acting on a disk annulus

at radius r from the disk’s self-gravity is [Kuijken, 1991, Arnaboldi & Sparke,

1994, Ulubay-Siddiki et al., 2009]

Tsg =

∫ rout

rin

dr′
4πGΣ(r′)
max(r, r′)

χI(χ, sin2 α)
(1 + χ2)3/2

×
[
l̂(r, t)· l̂(r′, t)

][
l̂(r, t)× l̂(r′, t)

]
(6.44)
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where χ = min(r, r′)/max(r, r′), sin2 α = | l̂(r, t)× l̂(r′, t)|2,

I =
4
π2

∫ π/2

0
dψ

[
E(k)(1 − k2/2)

(1 − k2)
− K(k)

]
×

(1 − k2/2)3/2

k2

sin2 ψ√
1 − sin2 α sin2 ψ

(6.45)

k2 =k2(χ, sin2 ψ, sin2 α)

=
4χ

√
1 − sin2 α sin2 ψ

1 + χ2 + 2χ
√

1 − sin2 α sin2 ψ

(6.46)

while K(k) and E(k) are elliptic integrals of the first and second kind, respec-

tively. The only approximation used in the derivation of Eq. (6.44) is that the

disk is infinitesimally thin; this formula is exact for arbitrary χ and mutual in-

clination angles α.

In the top panel of Fig. 6.9, we plot the integrand in equation (6.44),

8I(χ, sin2 α)
(1 + χ2)3/2 , (6.47)

as a function of χ. We remove the dependence of sinα cosα, as they are already

present in our approximation (6.9). We see that when |α| > 0, the integrand

(6.47) becomes large but stays finite as χ→ 1. In the bottom panel of Fig. 6.9, we

plot the ratio of the integrands in Eqs. (6.44) and (6.9),

8I(χ, sin2 α)

(1 + χ2)3/2 b(1)
3/2(χ)

. (6.48)

Since the quantity (6.48) is approximately unity for most of the parameter range

of interest (Fig. 6.9), we do not expect significant corrections to the equilibrium

disk warp profiles obtained in Section 6.2.

We have repeated the calculation of the Laplace equilibria for disk warp pro-

files using the exact torque expression (6.44). Figure 6.10 shows a sample of our

172



Figure 6.9: The top panel shows the integrand in Eq. (6.44) as a function of χ,
with values of α as indicated. We remove the dependence on sinα cosα. The
bottom plot shows the ratio of the integrand in (6.44) and that in (6.9).

numerical results for the disk inclination profile β(r), with Σ ∝ r−3/2 and the

values of σ and rL/rout as indicated. The solutions for β(r) with the approximate

torque expression (6.9) are also shown for comparison. We see that using the ex-

act self-gravity torque (6.44) changes the solution of the equilibrium disk warp

β(r) by less than a few degrees in all cases.
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Figure 6.10: Equilibrium disk inclination profile β(r) including the effect of self-
gravity for different values of rL/rout and σ [see Eq. (6.20)] as indicated. The
results obtained using the approximate self-gravity torque [Eq. (6.9)] are shown
in dashed lines, while those obtained with the exact self-gravity torque [Eq.
(6.44)] are shown by solid lines. We take p = 1.5 [Eq. (6.12)] and βp = 60◦ for all
solutions.
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APPENDIX A

CHAPTER 1 OF APPENDIX

As mentioned in Chapter 1, an often-quoted criterion for a disk to lie in the

resonant, bending wave regime is the Shakura-Sunyaev viscosity parameter α,

orbital frequency Ω2 = r−1∂φ/∂r|z=0, epicyclic frequency κ2 = (2Ω/r)∂(r2Ω)/∂r,

and disc aspect ratio H/r satisfy

α .
H
r

and
∣∣∣∣∣∣Ω2 − κ2

2Ω2

∣∣∣∣∣∣ . H
r
. (A.1)

When condition (A.1) is met, bending waves are free to travel across the disk

at half the disk’s sound-speed, and the time evolution of bending disturbances

in the disk are described by a wave equation [Papaloizou & Lin, 1995, Lubow

& Ogilvie, 2000]. When condition (A.1) is violated, the propigation of bend-

ing waves becomes significantly affected by the disk’s viscosity and/or non-

Keplarian epicyclic frequency, and can no longer efficiently propagate across

the disk. Bending disturbances in the non-resonant regime are then described

by a diffusion equation [Papaloizou & Pringle, 1983, Ogilvie, 1999].

This appendix shows this transition may be understood from the dispersion

relation for bending waves in a viscous, non-Keplarian disk. Section A.1 derives

the dispersion relation of the disk in two different limiting cases. Section A.2

applies this result to bending waves, and shows bending waves travel across

the disk at half the sound-speed when condition (A.1) is met.
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A.1 Density Wave Dispersion Relation

We consider a viscous, non-Keplarian disk, satisfying the usual fluid equations

with a gravitational potential φ:

∂ρ

∂t
+ ∇·(vρ) = 0 (A.2)

∂v
∂t

+ (v·∇)v = −
1
ρ
∇p − ∇φ + fv (A.3)

Here, ρ, p, and v are the fluid density, pressure, and velocity, and

fv =
1
ρ
∇·

{
ρν

[
(∇v) + (∇v)T −

1
3

I(∇·v)
] }

(A.4)

is the viscous force, where ν = αc2
s/Ω is the kinematic viscosity of the disk, MT

denotes the transpose of the tensor M, and I is the identity tensor.

We adopt a cylindrical coordinate system (r, ϕ, z) centered on the central

body. The un-perturbed state is taken to be axis-symmetric with v = rΩϕ̂ and

ρ(r, z) = ρ(r) exp(z2/2H2), assuming the disk is thin (H = cs/Ω � r). Since the disk

is thin, background quantities satisfy ∂X/∂z � ∂X/∂r ∼ X/r.

We perturb the background quantities X(r, z) by perturbations δX � X, as-

sumed to be high wavelength disturbances (∂δX/∂r, ∂δX/∂z � δX/r). Taking the

perturbations to be of the form

δX(r, z, ϕ, t) = δX(r, z)ei(mϕ−ωt), (A.5)

the perturbation equations become [assuming m = O(1)]

− i$δρ + ρ
∂

∂r
δvr +

∂

∂z
(ρδvz) = 0, (A.6)

− i$δvr − 2Ωδvϕ = −
1
ρ

∂

∂r
δp + ( fv)r, (A.7)

− i$δvϕ +
κ2

2Ω
δvr = ( fv)ϕ, (A.8)
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− i$δvz = −
1
ρ

∂

∂z
δp +

1
ρ2

dp
dz
δρ + ( fv)z, (A.9)

where

( fv)r = ν

(
4
3
∂2

∂r2 +
∂ ln ρ
∂z

∂

∂z
+
∂2

∂z2

)
δvr (A.10)

+ ν

(
−

2
3
∂2

∂r∂z
+
∂ ln ρ
∂z

∂

∂r
+

∂2

∂r∂z

)
δvz, (A.11)

( fv)ϕ = ν

(
∂2

∂r2 +
∂ ln ρ
∂z

∂

∂z
+
∂2

∂z2

)
δvϕ, (A.12)

( fv)z = ν

(
−

2
3
∂ ln ρ
∂z

∂

∂r
+

1
3
∂2

∂r∂z

)
δvr (A.13)

+ ν

(
∂2

∂r2 +
4
3
∂ ln ρ
∂z

∂

∂z
+

4
3
∂2

∂z2

)
δvz, (A.14)

are the viscous force terms, and

$ = ω − mΩ. (A.15)

We will consider two different limits for the dispersion relation of a viscous,

non-Keplarian disk. First, we examine the high vertical wavenumber limit

(|∂δX/∂z| = kzδX � δX/H). This limit allows us to examine under what condi-

tions different viscous force terms are important. Next, we will examine the low

vertical wavenumber limit (kz ∼ H−1), neglecting specific viscous force terms. As

long as the disk’s α-viscosity parameter satisfies α � 1, the dispersion relation

derived in the following subsections applies for any density wave disturbance

in viscous non-Keplarian disks.

A.1.1 High kz limit

In this section, we assume all perturbations δX ∝ exp[i(krr +kzz)], and investigate

the limit where kr � r−1 and kz � H−1. In this high wavelength limt, the viscous
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force terms reduce to

( fv)r ' −ν(k2
rrδvr + k2

rzδvz), (A.16)

( fv)ϕ ' −νk2
ϕϕδvϕ, (A.17)

( fv)z ' −ν(k2
zrδvr + k2

zzδvz), (A.18)

where

k2
rr =

4
3

k2
r + k2

z , (A.19)

k2
ϕϕ = k2

r + k2
z , (A.20)

k2
zz = k2

r +
4
3

k2
z , (A.21)

k2
rz = −

2
3

krkz + kzkr =
1
3

krkz, (A.22)

k2
zr = −

2
3

kzkr + krkz =
1
3

krkz. (A.23)

The perturbation equations then reduce to

− i$δρ̄ + ikrrΩδv̄r + ikzrΩδv̄z = 0, (A.24)

− i$rrΩδv̄r − 2rΩ2δv̄ϕ = −ikrc2
sδρ̄ − αrc2

s k2
rzδv̄z, (A.25)

− i$ϕrΩδv̄ϕ +
rκ2

2
δv̄r = 0 (A.26)

− i$zrΩδv̄z = −ic2
s kzδρ̄ − αrc2

s k2
zrδv̄r (A.27)

where δρ̄ = δρ/ρ, δv̄ = δv/rΩ, and

$r = $ + iαrc2
s krr, (A.28)

$ϕ = $ + iαrc2
s k2
ϕϕ, (A.29)

$z = $ + iαrc2
s k2

zz. (A.30)

These equations give the dispersion relation

($r$ϕ − κ
2)(Ω2 − k2

z c2
s )Ω2 + αc4

s$ϕ

[
α$k2

rzk
2
zr + iΩkrkz(k2

rz + k2
zr)

]
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= k2
r c2

s$z$ϕΩ
2. (A.31)

From this, we see the cross terms (k2
rz, k

2
zr) only become relevant when

αk2
z c2

s & Ω2. (A.32)

For the “low” kz values characteristic of density waves with kz ∼ H−1, these cross

terms will be negligible when kzα � H−1. In the next section, we will derive

a dispersion relation for high-wavelength density waves (kr � r−1), assuming

kzα � H−1.

A.1.2 Low kz limit

This section derives the dispersion relation for density waves when nα � 1.

Because in this limit, all cross terms (∂2/∂r∂z) in the viscous force of the pertur-

bation equations have a negligible impact on the dispersion relation, the viscous

forces reduce to

( fv)r ' αH2Ω

(
4
3
∂2

∂r2 +
∂ ln ρ
∂z

∂

∂z
+
∂2

∂z2

)
δvr, (A.33)

( fv)ϕ ' αH2Ω

(
∂2

∂r2 +
∂ ln ρ
∂z

∂

∂z
+
∂2

∂z2

)
δvϕ, (A.34)

( fv)z ' αH2Ω

(
∂2

∂r2 +
4
3
∂ ln ρ
∂z

∂

∂z
+

4
3
∂2

∂z2

)
δvz. (A.35)

Since
∂ ln ρ
∂z

= −
z

H2 , (A.36)

it is natural to decompose the vertical dependence of the fluid perturbations in

terms of Hankel Functions Hn(Z):

Hn(Z) ≡ (−1)neZ2/2
(

d
dZ

)n

e−Z2/2. (A.37)
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Assuming then that

δρ = ρδρ̄Hn

( z
H

)
eikrr, (A.38)

δvr = rΩδv̄rHn

( z
H

)
eikrr, (A.39)

δvϕ = rΩδv̄ϕHn

( z
H

)
eikrr, (A.40)

δvz = rΩδv̄zH′n
( z
H

)
eikrr, (A.41)

where H′n(Z) = dHn/dZ, the perturbation equations reduce to

− irΩ$δρ̄ + ikrr2Ω2δv̄r − k2
z csr2Ωδvz = 0, (A.42)

− irΩ$rδv̄r − 2rΩ2δv̄ϕ + ic2
s krδρ̄ = 0, (A.43)

− irΩ$ϕδv̄ϕ +
rκ2

2
δv̄r = 0, (A.44)

− irΩ$zδv̄z + csΩδρ̄ = 0, (A.45)

where kz =
√

n/H and

$r = $ + iαH2Ω

(4
3

k2
r + k2

z

)
, (A.46)

$ϕ = $ + iαH2Ω

(
k2

r + k2
z

)
, (A.47)

$z = $ + iαH2Ω

(
k2

r +
4(n − 1)

3n
k2

z

)
. (A.48)

Solving, we obtain the dispersion relation

($$z − nΩ2)($r$ϕ − κ
2) = c2

s k2
r$r$ϕ. (A.49)

A.2 Long-Wavelength Bending Wave Dispersion Relation

In this section, we analyze the dispersion relation for low-frequency (ω � Ω)

bending wave disturbances (m = n = 1). Assuming α � 1 and long-wavelengths
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(kr � H−1), the dispersion relation reduces to

ω2 +

(
iα +

κ2 −Ω2

2Ω2

)
Ωω '

1
4

k2
r c2

s . (A.50)

When |iα+(κ2−Ω2)/2Ω2| . krH, the phase velocity of the bending wave vbw = ω/kr

becomes

vbw ≈ ±
cs

2
, (A.51)

while when |iα + (Ω2 − κ2)/2Ω2| & krH, the bending wave velocity is modified to

be

vbw ≈
krHcs

4

(∣∣∣∣∣∣κ2 −Ω2

2Ω2

∣∣∣∣∣∣ + iα
)−1

(A.52)

or

vbw ≈ −i
αΩ

kr
−

Ω

2kr

[(
κ2 −Ω2

2Ω2

)
+

∣∣∣∣∣∣κ2 −Ω2

2Ω2

∣∣∣∣∣∣
]
. (A.53)

This analysis shows when α & krH, the bending wave can no longer propigate

globally across the disk, but rather becomes diffusive and damps locally. When

|κ2 − Ω2/2Ω2| & krH, the wave can still propagate globally across the disk, but

outward propagating waves [Re(vbw) > 0] become slower than cs/2 by a factor

∼ krH/|κ2/Ω2 − 1|. For the long wavelength modes of a globally warped disk

(kr ∼ r−1), the approximate condition for bending waves propagating outward

to travel at velocities vbw & cs/2 is

α .
H
r

and
∣∣∣∣∣∣κ2 −Ω2

2Ω2

∣∣∣∣∣∣ . H
r
. (A.54)
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Miranda R., Muñoz D. J., Lai D., 2017, MNRAS, 466, 1170

Miranda R., Lai D., 2015, MNRAS, 452, 2396

Naoz S., Li G., Zanardi M., de Elı́a G. C., Di Sisto R. P., 2017, arXiv,

arXiv:1701.03795

Nixon C., King A., Price D., 2013, MNRAS, 434, 1946

Ogilvie G. I., Latter H. N., 2013, MNRAS, 433, 2420

Ogilvie G. I., 2006, MNRAS, 365, 977

Ogilvie G. I., 1999, MNRAS, 304, 557

Orosz J. A., et al., 2012, ApJ, 758, 87

Orosz J. A., et al., 2012, Sci, 337, 1511

Papaloizou J. C. B., Pringle J. E., 1983, MNRAS, 202, 1181

Papaloizou J. C. B., Lin D. N. C., 1995, ApJ, 438, 841

Petrovich C., 2015, ApJ, 799, 27

199



Pourbaix D., 2000, A&AS, 145, 215

Rafikov R. R., 2016, ApJ, 830, 8

Rafikov R. R., 2017, ApJ, 837, 163

Rosenfeld K. A., Andrews S. M., Wilner D. J., Stempels H. C., 2012, ApJ, 759, 119

Schwamb M. E., et al., 2013, ApJ, 768, 127

Tomkin J., Popper D. M., 1986, AJ, 91, 1428

Tremaine S., Touma J., Namouni F., 2009, AJ, 137, 3706

Tremaine S., Yavetz T. D., 2014, AmJPh, 82, 769

Weidenschilling S. J., 1977, Ap&SS, 51, 153

Welsh W. F., et al., 2012, Natur, 481, 475

Welsh W. F., et al., 2015, ApJ, 809, 26

Williams J. P., Cieza L. A., 2011, ARA&A, 49, 67

Winn J. N., Holman M. J., Johnson J. A., Stanek K. Z., Garnavich P. M., 2004,

ApJ, 603, L45

Chapter 6 references

Arnaboldi, M., & Sparke, L. S. 1994, AJ, 107, 958

Ayliffe, B. A., & Bate, M. R. 2009, MNRAS, 397, 657

Barnes, J. W., & Fortney, J. J. 2004, ApJ, 616, 1193

Bate, M. R. 2009, MNRAS, 392, 590

200



Bate, M. R., Lodato, G., & Pringle, J. E. 2010, MNRAS, 401, 1505

Brown, T. M., Charbonneau, D., Gilliland, R. L., Noyes, R. W., & Burrows, A.

2001, ApJ, 552, 699

Canup, R. M., & Ward, W. R. 2006, Nature, 441, 834

Carter, J. A., & Winn, J. N. 2010, ApJ, 709, 1219
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