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1. INTRODUCTION

In these notes we describe Bayesian calculations with models that supply Bayesian
counterparts to frequentist period searching with the Rayleigh and Z?2 statistics, and we
outline how to analyze event arrival time data that includes a location for each event on a
detector with a known point spread function. Many of these results are from my notebook
of a few years ago, but I suppose nothing is true nowadays until it’s in TEX! The reader
is presumed to be familiar with the material in §§ 2 and 3 of Gregory & Loredo (1992;
hereafter GL). In particular, our starting point is the arrival time likelihood function given
by equation (3.5) of that paper. For the record, this likelihood function is not our invention;
it is widely known in frequentist studies of inhomogeneous Poisson processes.

Before we start, let’s summarize what is different about the Bayesian approach to arrival
time series analysis. There are two key differences between Bayesian methods and their
frequentist counterparts. First, Bayesian methods must assume a particular functional
form (usually with several free parameters) for the possible periodic signal. Frequentist
methods instead try to reject a constant model for the signal, without explicit reference to
a specific family of periodic models. This would seem to be a serious drawback to Bayesian
methods, since we usually don’t know the shape of the periodic lightcurve we are trying
to detect. However, from the Bayesian point of view the choice of statistic to be used
in a frequentist test implicitly corresponds to a model choice. This is because different
statistics correspond to different ideas about what departures from uniformity one wants to
be most sensitive to, which is simply another way of thinking of a periodic model. This is
recognized informally in frequentist literature in the acknowledgment that different choices
of statistic are most sensitive to underlying signals of different shapes (e.g., the x? statistic
can detect signals with one or more narrow peaks well, while the Rayleigh statistic can
detect smooth, sinusoidal signals well). It is recognized more formally in considerations of
the power of a particular frequentist test: its ability to accurately detect a periodic signal
of specified shape when such a signal is present. We have made something of an “industry”
identifying particular models for which a Bayesian calculation leads to consideration of a
function of the data directly related to a common frequentist statistic. This makes the
implicit assumptions of a frequentist procedure explicit, so that its appropriateness can be
more easily judged, and modifications pursued. These notes offer an example of this.

The second key distinction between Bayesian and frequentist methods is how a statistic
is used to determine whether a periodic signal is present or not. In the frequentist approach,
we evaluate the statistic at many frequencies, and note the largest observed value. We then
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calculate the chance probability for the statistic being as large as the maximum value or
larger, assuming that the signal is constant; if this probability is small, the constant signal
model is rejected. This calculation is significantly complicated by the need to examine
many periods (and possibly many values of other parameters, such as the phase assigned to
t =0), and the number and location of the periods must be specified without consideration
of the data. These aspects of a frequentist analysis introduce a troubling subjectivity in
the results. In contrast, the Bayesian approach requires that one integrate, rather than
maximize, a nonlinear function of the test statistic over the period range being searched
(and over any other parameters in the model). As with the frequentist test, the range
to search must be subjectively specified. However, the number and location of periods
searched is irrelevant; as many periods should be used as is necessary to accurately compute
the required integrals. The result is penalized for the unknown parameters automatically
and objectively by the averaging performed by the integration process. Also, the result is
conditional on the one observed data set; the frequentist probability is the probability, not
only of the observed data, but of all worse data sets as well.

Another distinction worth mentioning is that the Bayesian approach forces us to clearly
distinguish the tasks of signal detection and parameter estimation. In particular, the
Bayesian approach identifies a nonlinear function of the test statistic whose integrals give
straightforward probability statements about the allowed ranges (“credible regions”) of
unknown parameters, such as the frequency.

Okay, now that all (well, most) of the propaganda is out of the way, let’s move on to
the calculations!

2. THE LIKELIHOOD FUNCTION AND MODEL CRITERIA

We presume we have a parameterized model rate function, r(t), which we will use to
model data consisting of N arrival times, t;, over some observing interval of total duration
T. We use T to designate both the total “live-time” duration of the observations, and the set
of intervals (possibly separated by gaps) that comprise the observations, so that [, stands
for an integral over all observing intervals (they need not be contiguous). For periodic
models, the parameters for r(¢) will typically include an amplitude, A; a frequency, w (or
equivalently a period, P = 27 /w); a phase, ¢; and possibly some other parameters, S, that
parameterize the lightcurve shape. These ingredients, together with Poisson assumptions,
give the arrival time likelihood function in equation (3.5) of GL. We reproduce it here,
ignoring the irrelevant At factors (they do not depend on the parameters, and cancel out
in Bayes’s theorem):

N

L(A,w,6,8) = exp {—/Tdtr(t)} Tt (2.1)

=1

Bayesian calculations require integrals over parameter space. Such integrals arise when
we normalize distributions, find marginal distributions for interesting subsets of parameters,
or compare rival models. Calculating these integrals can be difficult. In the context of
searching for periodicities in arrival time data, any model will have at least four parameters:
A, w, ¢, and at least one shape parameter. The likelihood function usually varies wildly
with w, so any integrals require evaluation of equation (2.1) at many frequencies. At each
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of these frequencies we have to integrate over the other parameters. This gets out of control
pretty quickly! So the game we have to play in Bayesian modeling of arrival time data is
to try to find physically useful models that allow at least some of the required integrations
to be done analytically. In the next section, we show that the amplitude can always be
integrated analytically. So our model choice should be guided by focussing on the other
parameters. The GL model is cute in that it is a model with many S parameters—and thus
capable of describing a diverse set of shapes—for which integrals over all of the S parameters
can be done analytically. Only the w and ¢ integrals need to be done numerically. Here we
will take a complementary approach, identifying models for which ¢ integrals can be done
analytically.

We note in passing that cases where the period is known or is well-constrained a priori
(e.g. in searching for X-ray pulsations at a known radio pulsar period) can be significantly
more tractable than cases where we must search for an unknown period. In the former
case, it may be possible and interesting to consider more complicated models than one
could otherwise consider because the w dimension is eliminated, or at least small. But even
in such cases it is useful to have computationally efficient models, such as those discussed
here and in GL.

3. THE AMPLITUDE PARAMETER

3.1. Normalized Models

One parameter—the amplitude—is common to all models, and it turns out that we can
take care of it once and for all, as we show in this section. We can always write a periodic
model rate in the form,

r(t) = Ap(wt — ¢), (3.1)

where p(6) is a periodic function with period 27. Without loss of generality, we can also
require that the amplitude parameter be the average rate,

A= %/Pdtr(t). (3.2)

Together, these two equations impose a normalization constraint on p. To see this, change
variables in equation (3.2) to § = wt — ¢, and use the fact that w = 27/P. Then equation

(3.2) becomes,
2m

; dd p(0) = 2m, (3.3)

or, equivalently,
/ dt p(t) = 1. (3.4)
P

That is, p must be normalized as if p/27 were a probability distribution in phase. We’ll
see in a minute why this is a convenient parameterization; roughly, it lets A control the
expected number of events, and p describe the shape of the lightcurve. (Actually, our main
conclusions will hold for any normalizing constant for p, as long as it does not depend on
the model parameters.)
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Now plug this form into the likelihood function. For a contiguous interval, T', the
integral in the exponent of equation (2.1) is,

T wT'—¢
/ dt Ap(wt — ) — ’g—P d6 p(6)
0 T Jo
~ AT. (3.5)

To get the last line, we used the fact that the integral divided by the 27 factor up front
is just equal to the number of periods covered by T'; multiplying by P thus gives 7T'. It is
approximate because T may not be an integral number of periods long, so the last part of
the integral will include only part of one period. The integral of p/27 over a fraction, f, of
a period is not generally equal to f, hence the approximate result. But so long as T > P,
the error we make in this final fractional period will be small compared to the total integral,
because the total integral will contain many periods. So from now on we’ll assume we are
interested in periods such that many periods are contained in the data. This regime is very
nice because the exponential factor in the likelihood function then depends only on A, and
not on any other parameters.

For simplicity we’ve shown this for a contiguous interval; but it also holds for noncon-
tiguous intervals of total duration 7" > P, so long as the “holes” in the observing time do
not line up in phase (such alignment could happen for a strong periodic signal observed by
a detector with bad dead time; but we probably don’t need statistics to detect pulsations
in such datal).

The likelihood function in the many-period regime is then,

L(A,w,$,8) = [ANe=AT] [Towti - 6). (3.6)

Now we can see what this parameterization buys us: the likelihood factors into a part that
depends only on A and a part that depends on all the other parameters (if p were not
normalized, the right hand side of equation (3.5) would be a function of w, ¢, and S that
would appear in the exponent in the likelihood). This means that so long as our prior
similarly factors (that is, knowledge of A tells us nothing about the other parameters a
priori, and vice versa), inferences about A will be independent of those about w, ¢, and
whatever other parameters we have, and vice versa. Since this is true, let’s take care of the
amplitude inferences now, once and for all, so that in the rest of these notes we can focus
on the other parameters.

3.2. Inferring the Amplitude
Let’s presume the prior for the parameters factors in the way just stated, so that

p(A,w,d),S|M):p(A]M)p(w,¢,S[M), (37)

where M is the background information specifying the model, its relation to the data (i.e.
the Poisson assumptions we used to derive the likelihood function), and anything else we
might know about the model (e.g. constraints on the period from other observations). To
infer all of the parameters of a model, we use Bayes’s theorem to calculate the full joint
posterior for the parameters,

p(A [ M)pw,¢,S| M)
p(D | M)

p(A,w, 0,8 | D, M) = L(Aw,d,S). (3.8)
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Here p(D | M) is the global likelihood for the model, given by,
pD | M) = [da [do [do [as p(A 06,51 M) £(4,,6,9)
_ / dAp(A | M)AN AT / dw / d / 48 p(w, 6,8 | M) [] plwti — 6)(3.9)

It is merely a normalization constant for purposes of inferring parameters; but it plays a
much more important role in comparing alternative models (e.g. comparing a model with a
periodic signal to one without). It is the hardest integral we’ll eventually need to calculate.

Equation (3.8) gives the implications of the data for all of the model parameters. A
summary of the implications for the amplitude alone is given by the marginal distribution
for A, obtained by integrating the joint posterior over all the other parameters. Thanks to
the factorization of the likelihood function in equation (3.6), we can calculate the marginal
for A analytically for any model in normalized form as follows:

p(A | D, M) :/dw/d¢/dsp(A,w,¢,s | D, M)

- p(D1|M)p(A | M)ANG*AT/dw/ng)/dSp(w,qb,S ) TL et~ 0)
p(A ‘ M)ANefAT

" JdAp(A| M)ANe—AT" (3.10)

The factorization of the likelihood and prior lets us obtain this result without even requiring
us to know how to integrate over (w, ¢, S), because the required integral cancels.

The marginal posterior for A depends on the prior, as it must. However, the depen-
dence is weak provided that the prior is nonzero near A = N/T' (where the likelihood peaks)
and does not vary rapidly (i.e., on a scale ~ VN /T) there. Moreover, since the A param-
eter is common to all models (including nonperiodic ones), the prior for A is completely
irrelevant for choosing among competing models (assuming it is the same for all models).
We demonstrated these facts in Loredo (1992) and in GL using a flat prior with a sharp
cutoff at some maximum rate, Ana.x. Here, we repeat some of the calculations with an ex-
ponential prior, both to further demonstrate the insenstivity to the form of the prior, and
because the algebra is particularly simple with this “conjugate” prior. Mike West (1992)
has suggested this prior for similar Poisson problems.

So we presume our prior information includes a nonzero expectation value for A, which
we denote Ag. Then the prior for A is

1
p(A| M) = A—Oe*A/AO. (3.11)

You can verify that this is normalized, and that (A) = Ag. It will be more convenient to
write this prior in terms of the timescale 19 = 1/Ay, so that

p(A | M) = mge= 470, (3.12)

Using this prior, the normalization constant in the denominator of equation (3.10) is,

00 NI
dA AN = AT+70) — L. ]
TO/O ¢ Tt oy (3.13)
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Thus the marginal posterior for A is,

N+1 N
p(A| D, M) = (1 + T—:ﬁ) % exp [—AT (1 + %)} . (3.14)
In the limit that A9 — oo (so 79 — 0), the prior flattens and becomes vanishingly small
everywhere. But the posterior remains finite and perfectly well behaved, because the 7q
factor in the prior also appears in the normalization constant, and thus cancels out. The
79 = 0 limit is,
TAT)N _ur

NT € .
This is just of the form of a Poisson distribution N, multiplied by T so that it is normalized
with respect to A rather than N. Considered as a function of A, it is a Gamma distribution.
This limiting form is the same as that found in our earlier papers with a limiting flat prior,
as it should be since as Ay — oo, the exponential prior becomes flat.

The mode of equation (3.14) is the value of A that makes the derivative with respect

to A vanish; it is,

p(A|D,M) = (3.15)

~ N 1

The posterior expectation value for A is found by multiplying equation (3.14) by A and

integrating; the result is,
- N+1 1
A= —— .
T 1+ 7

(3.17)

This differs only slightly from the mode provided that N > 1. A measure of the width of
the marginal posterior is provided by the posterior standard deviation, which is,

N+1 1
T 1+%

oA = (3.18)

All of these summaries of the marginal posterior differ from the infinite A limit by factors
of (14 79/T). Thus, so long as 7o < T (or Ag > 1/T), our posterior estimates of A are
insensitive to the precise prior information about A.

3.3. Eliminating the Amplitude

We have so far focused attention completely on A. But in practice, it is the other
parameters that are usually of greater interest, particularly the period or frequency. In the
remainder of these notes we will focus on the marginal posterior for all parameters other
than A, which we call the joint marginal distribution. The joint marginal distribution is,

pw,6.8 | D) = [ dAp(A,w,6,5| D, M)

3.19
=C ' p(w,d,S | M)HP(Wti_¢)v 19

where the normalization constant is given by,
C— /dw/d¢/d$p(w,¢,8 | M) I plwti — ¢). (3.20)
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To get equation (3.19), we cancelled the integral over A in the numerator with an identical
integral factor in the denominator. This is possible only because of the factored form of
the likelihood and prior, and it holds exactly for any independent prior for A.

Equation (3.19) will be the focus of attention in the remainder of these notes. We
need to integrate it over ¢ and S to infer the frequency. We also need to evaluate C both
to normalize interesting distributions, and to enable us to calculate the global likelihood,
which we need to compare models. To see the relevance of C' to the global likelihood, note
that we can use equation (3.13) to compute one of the factors in the global likelihood given
in equation (3.9), giving

WD M) = sy [ do [ do [[Spw.0.8 1 30) [T oteti— )

C1yN!
- T 21
(T + 7o) N+ (3.21)

Thus if we can compute C for any model, we can trivially compute the global likelihood
for that model.

In the following sections, we discuss models for which integrals over ¢ can be performed
analytically, significantly simplifying the resulting numerical calculations. These models
also bear close relationships with common frequentist statistics used for period detection
in arrival time series.

3.4. The Constant Model

But before we discuss periodic models, we note that we have all the ingredients we
need to completely treat the simplest nonperiodic model: a constant model. This model
has only one parameter, the unknown “DC” amplitude, so that

r(t) = A, (3.22)

corresponding to p(t) = 1. The likelihood function is simply £(A) = AN exp(—AT), and
estimates of A and its uncertainty are just as were given above. Finally, the global likelihood
for this model is the integral in the denominator of equation (3.10), which we evaluated in
equation (3.13), so that,

TN

p(D | Mo) = W,

(3.23)
where My denotes the information specifying the constant model. From equations (3.23)
and (3.21), we see that the Bayes factor in favor of a particular periodic model over the
constant model is simply,

_ p(D| M)

Mo = o = € (3.24)

Thus, up to the prior odds, the odds in favor of a periodic model is given by C. Note that
all dependence on the prior for A has dropped out, because this parameter is common to
both models.
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4. THE LOG-SINUSOID MODEL

To detect and characterize a periodic signal, one’s first impulse might be to consider a
sinusoidal model rate, or a Fourier series of harmonic sinusoids. Such models work well for
the analysis of time series consisting of samples of a signal contaminated with additive noise
to which we assign a Gaussian probability distribution. Bretthorst (1988) has studied such
models in depth with Bayesian methods, and shown how they are related to frequentist
methods that rely on the DFT of the data.

Two aspects of arrival time series modeling conspire to argue against this choice. First,
we must model an event rate, not a signal amplitude. An event rate must be nonnegative
everywhere. Thus a simple sinusoid is not a valid model; we must instead consider a
function like,

r(t) = A[l + f cos(wt — ¢)], (4.1)

where a DC offset component is added (the pulsed fraction, f, is bound between 0 and
1). Second, in the Gaussian case, the likelihood function is an exponential of a sum of the
signal model evaluated at the sample times. In our Poisson arrival time likelihood function,
we have instead a product of rates evaluated at event times. As a result, models which are
analytically tractable in the Gaussian case can be intractable in the Poisson case.

In fact, it is possible to use the model rate of equation (4.1), and analytically marginalize
with respect to ¢. However, the constant term necessary to make equation (4.1) everywhere
nonnegative leads to a very large number of terms in the product of event rates, growing
roughly like 3%. Thus, analytical marginalization does not help us with this model. In
fact, this model is more tractable if any required marginalizations over ¢ are performed
numerically rather than analytically.

Since r(t) must be everywhere nonnegative, and since we’d like products of r(¢) to have
a simple form, it makes more sense to model the logarithm of the rate as a Fourier series.
We begin in this section by considering a single sinusoid, taking

r(t) o e eoswt=e), (4.2)

Our first task is to cast this model into normalized form, introducing a p function that is
normalized according to equation (3.3). This task is simplified by noting that,

2w

dher <% = only(k), (4.3)
0

where I,,(k) denotes the modified Bessel function of order n. Thus the normalized rate
proportional to an exponentiated sinusoid is,

p(t) — m encos(wtfzz)). (4.4)

This rate model has a single smooth pulse whose peak is at phase ¢ and whose shape is
controlled by one shape parameter, «, that jointly governs the “duty cycle” and the peak-
to-background ratio. When x = 0, the shape is flat; as kK — oo, the shape becomes a
o-function at phase ¢. For large but finite &, the lightcurve has a Gaussian shape near its
peak with a standard deviation of 1//k. The peak-to-background ratio is e2%. We restrict
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K to be > 0 without loss of generality, since a change in sign of x can always be accounted
for by a change in ¢ of .

We sometimes call this model the von Mises model, because p/27 is a common distri-
bution in the statistics of directional data on a circle known as the von Mises distribution.
It is a circular generalization of the Gaussian distribution. But we will usually use a more
descriptive name, calling equation (4.4) the log-sinusoid model. We will denote the infor-
mation specifying this model by the symbol M;.

To complete the specification of this (or any) model, we must specify priors for the
model parameters. We will presume that the prior factors as the product of independent
priors for w, ¢, and k, so that

p(w, ¢,k | My) = p(w | My)p(¢ | M) p(k | Mh). (4.5)

We assign a uniform prior for ¢;

1

po | M) = 5. (4.6)

This intuitively appealing flat prior can be formally justified if we insist that our conclusions
be independent of the choice of the origin of time.
We use the same prior for w that we used in GL:

1
wlog(whi/wio)
The functional form of this prior comes from demanding independence of our conclusions
with choice of time scale, and also is form-invariant if we change variables from w to P (this
is more an issue of principle than of practice; results will not change drastically in most
cases if a flat prior is used). The prior range, however, is subjective. It will have little effect
on our inferences about w (provided any detected frequency lies in the prior range!) but it
will affect the results of signal detection calculations. This cannot be helped, and actually
is quite reasonable; even frequentist signal detection results depend on the search range.

Finally, we need to assign a prior for k. For lack of anything better, we’ll just use a
flat prior up to some cutoff, Kyax:

plw| M) = (4.7)

1

p(k | M) = (4.8)

Rmax

If there is a periodic signal present, the value of kpax Will have negligible affect on our
inferences about k or w. However, it will have an important effect on signal detection
results, just as does the frequency range. The problem is: how do we choose kpax? It
should come from our prior expectations for how small a duty cycle we would consider
reasonable. This is a subjective aspect of the analysis—as is the choice of frequency range
to search, and even the choice of model to consider. We’ll skirt the issue here, and simply
keep kmax as an unspecified constant in the equations. But in an actual signal detection
application, we’ll have to worry explicitly about Kmax. As a final note on this subject, we
point out that the traditional Rayleigh test has no counterpart to s, but that it is known
to be poor at detecting signals that are not roughly sinusoidal. We conjecture that we
could fix k = 1 (i.e. use a d-function prior) and duplicate this feature of the Rayleigh test;
allowing k to vary may improve the ability to detect “peakier” lightcurves than sinusoids.
We'll find further evidence in support of this conjecture in the following section.

With the rate model and all the priors specified, we can now finally do some calculations!
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4.1. The Joint Marginal Distribution

The marginal posterior for w, ¢, and k is given by substituting equation (4.4) into
equation (3.19):

p(w, ¢,k | D, My) = C7 ' p(w, ¢, | D, My) [Io(r)] ™" exp [KZCOS(Wti - ¢)] ;o (49)

where C is the normalization constant given by evaluating equation (3.20) for model Mj.
The sum in the exponent can be simplified by using two trigonometric identities,

Z cos(wt; — @) = cos(o Z cos(wt;) + sin( Z sin(wt;)
i

(4.10)
= S(w) cos(qb — '),
where
2 2
= [Z cos(wti)‘| + [Z Sin(wti)] , (4.11)
and S sin(wt;)
tan(¢') = m (4.12)

The joint marginal can thus be written,
pw, é, % | D, Mi) = Oy ' p(w, ¢, & | D, M) [Io(r)] N exp [kS(w) cos(¢ — ¢)] . (4.13)

The only parameter that S depends on is w, and its functional form may look familiar:
S/v/N is the Rayleigh statistic, and 252/N is sometimes called the Rayleigh power or
Fourier power of the time series. For future reference, we note two other ways of writing

S(w): )

wt

J (4.14)
=N+2 Z Z cos[w(t; — t;)].
i ji
It is clear from the first line that S? < N2, with equality only when all events are separated

from each other by exact integer multiples of a period. The second line shows that, roughly
speaking, S? counts the number of pairs of events separated by an integer number of periods.

4.2. Estimating and Eliminating the Phase

The ¢’ constant defined by equation (4.12) is the most probable value for ¢, conditional
on particular values of w and k. To see this, note that the derivative of equation (4.13)
with respect to ¢ is proportional to the product of sin(¢ — ¢') and the right hand side of
this equation. The derivative thus vanishes at ¢ = ¢’ and at ¢ = ¢/ = 7. Since ¢ appears in
the joint marginal only in the cosine in the exponential, multiplied by positive quantities,
it is clear that the former root is a maximum, and the latter a minimum, proving our
assertion. From equation (4.12), we see that ¢’ depends only on w, and not on k. Thus the
location of the mode is independent of x, although the width of the distribution about the
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mode depends on . Since cos(¢ — ¢') ~ 1 — (¢ — ¢')?/2 for ¢ near ¢/, equation (4.13) is
approximately Gaussian as a function of ¢ near the mode, with a standard deviation of,
1

Op = —F——.
¢ VES(w)
The Gaussian approximation will be good when xS > 1.
Our next task is to eliminate ¢ from the joint posterior. Using equation (4.3), we can
perform the necessary integral of equation (4.13) over ¢ analytically, giving us the marginal
distribution for w and k:

p(wv"{ | DaMl) :/d¢p(wv¢a’€ | DaMl)

(4.15)

Io[sS(w)] (4.16)

[Lo(m)IV

This is one of our main results. It shows that the Rayleigh statistic is a sufficient statistic
for estimating w and k in the context of the log-sinusoid model: the variation of S with
w tells us how to estimate the frequency; and the actual value of S at any given w tells
us how “clumped” the arrival times are, giving us an estimate of x. The former fact is
recognized in the Rayleigh test, but equation (4.16) tells us exactly how to “massage” the
Rayleigh statistic mathematically in order to make probability statements about w. There
is no counterpart to k in the formulation of the Rayleigh test, so the way that equation
(4.16) extracts information about the “clumpiness” of the arrival times is unique to the
Bayesian formulation.

— O plw | My)p(r | M)

4.3. Estimating and Eliminating x

Equation (4.16) is the joint marginal for both w and k. Here we study the x depen-
dence of this distribution. It is of interest, both for estimating s conditional on w, and for
integrating over k. We need to integrate x both to find the marginal for the most inter-
esting parameter—the frequency—and to calculate the value of C'1, needed to normalize
distributions and to compare the log-sinusoid model with competitors. We cannot go much
further analytically, but we will close this section by developing some of the analytical back-
ground needed to deal with x numerically. We discuss estimation of x and integration of
k together, because these are not really separate tasks in practice: we need to know about
the shape of the distribution in x in order to intelligently integrate it, and this knowledge
can be expressed as estimates of £ and its uncertainty.

We begin by examining the qualitative behavior of p(w, x | D, M) regarded as a func-
tion of k, with w fixed. The first thing to note is that the functional dependence on k is
completely determined by the magnitude of S, and does not depend on any other informa-
tion about the distribution of the events in time. This compression of information into S is
a computational advantage of this model. However, it may be a descriptive disadvantage,
since there is clearly other information about the lightcurve shape in the distribution of
arrival times. This is partly why we will consider generalizations of the log-sinusoid model
in the following section.

To get a qualitative sense of the variation of equation (4.16) with x, note that the
modified Bessel functions have the following asymptotic behavior:

(%)n[%+4(57i1)'}7 as © — 0;
\/% [1— 4"82;1}, as x — 00.
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In particular, Iy(z) ~ 1 for z < 1. For small £ (more precisely, for kN < 1),
12
plw,k | D, M)~ Cyt |1+ Z(Sz(w) - N)|. (4.18)

Thus p(w,s | D, M) is flat and nonzero at x = 0, increases with & if S(w) > v/N, and
decreases with & if S(w) < V/N. For large s (more precisely, for kS > 1),

M
p(w7/€ ’ D,Ml) ~ p(w | 1)

~ c*m—s*(w)@”)m_w exp [(S(w) — N)]. (4.19)

Since S < N, the exponent is negative, so p(w,x | D, M;) decreases exponentially for
large k (except for the pathological case where all event separations are integer numbers
of periods, which corresponds to k = oo anyway). These asymptotic behaviors imply that
the most probable value of k is K = 0 if S(w) < VN, corresponding to no periodicity; and
that there is a nonzero mode only if S(w) > v/N.

To locate the mode, we can calculate the partial derivative of equation (4.16) with
respect to k, using the fact that I = I;. It is a bit simpler to work with A = logp.
Denoting the partial derivative with respect to x by 0, we find,

_ 11(1%5) _ Il(/i)
aRA N SIQ(HS) NI()(H).

(4.20)

Since I;(0) = 0, this always vanishes at k = 0, as we anticipated from equation (4.18).
This will be the mode if S < v/N. But when S > /N, there will be another nonzero root,
which we denote by &, because A must eventually fall at large k. This root can be found
by setting equation (4.20) equal to 0 and solving for £ numerically. A reasonable first guess
for its location will help us find it. The asymptotic expressions are a place to start. For
small k, equation (4.17) gives,

Li(z) = x?
e 2 (1 - §> . (4.21)

Using this in equation (4.20), and setting the result equal to 0 gives,

52— N

-2

R — 4.22

This expression will probably not be useful very often, as it applies only when AN < 1,
which corresponds to very small values of x when N is large. More useful is the large k
limit. We can see from equation (4.19) that the x dependence of the w—x marginal is of the
form of a Gamma distribution, o< £(V=1/2exp[x(S — N)]. The mode of this function gives

an alternative estimate for &,
N-1
AN ——————. 4.23
2N — S]] (4:29)
In practice, we should probably compute both estimates and use the one that is self consis-
tent as our first guess. That is, we use equation (4.22) when that estimate satisfies RN < 1,

and equation (4.23) when that estimate satisfies £S5 > 1.
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Once # is known, a measure of the accuracy of the estimate can be found by fitting a
Gaussian to the peak. The mean of the Gaussian will be &, and its variance will be inversely
proportional to the second derivative of A evaluated at &:

1
2
0 = ————. 4.24
® O2A(R) ( )
Using the result that I7(z) = Iz2(z) + I1(z) /x, the second derivative can be calculated from
equation (4.20), giving,

S? 1 I?(kS)

2(k
PN = —— |I(kS) + Eh(ﬁs) - IO(KS)] B IOJE;) o

Io(k)

5] . (4.25)

[12(,@) + i n0 -
K

To summarize, given a choice for w, we can estimate & as follows. If S < /N, & =0 (i.e.
the data favor no pulsations at this w). Otherwise, we must find # numerically by setting
equation (4.20) equal to 0 and solving for &, say, using the Newton-Raphson method with
equation (4.22) or equation (4.23) as a starting guess. A measure of the uncertainty in x
can be found by evaluating equation (4.25) at & and using this to calculate o, with equation
(4.24).

More commonly, we will not have a particular w in mind, and will instead need to
integrate out x in order to identify probable choices for w (or whether any frequency is
indicated at all). Two procedures suggest themselves. First, since k > 0 and p(w, k | D, M)
falls exponentially at large x, Gauss-Laguerre quadrature will probably work efficiently,
particularly when S<v/N. If we have a code that gives abscissas, x;, and weights, w;, so
that,

/DDO def(@)e™ = Y wif(z), (4.26)

(e.g. the gauleg subroutine in Numerical Recipes), then a change of variables from & to
x = k(S — N) lets us write,

plw| D, M) =~ Zwiexip(w, k=uwx;/(S—N)| D, M). (4.27)

The change of variables matches the asymptotic behavior displayed in equation (4.19) to the
Gauss-Laguerre formula, hopefully allowing us to use a small number of points to accurately
estimate the integral.

If S > /N, there is likely to be a large peak at & that will make Gauss-Laguerre
quadrature inaccurate (unless we use an unreasonable number of abscissa values). Unfor-
tunately, this is the most interesting case, since it corresponds to strong evidence for a
periodic signal. One approach is to use Gauss-Hermite quadrature after a transformation
to x = (k — R)/o,. But I am suspect of this approach, since  is bounded on one side of &
and its probability eventually falls exponentially, and not “Gaussianly”, on the other side.
A related alternative is to write,

p(k) = f(r) + p(R)G(k — &) /0], (4.28)

where p(k) denotes p(w, k | D, M;) with w fixed, G(z) = exp(—2?%/2), and f(k) is thus the
difference between the function we want to integrate and a Gaussian fit to its peak. Then
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the desired integral of p is given by the integral of p(#)G and the integral of f = p—p(k)G.
The former integral is trivial; it is p(&)o.v/27. The f integral can be done in two parts. One
part is for k < 0, arising from the Gaussian being nonzero for negative x; this integral is
proportional to an error function. The other part is p—p(&)G for k > 0, which can probably
be evaluated accurately with Gauss-Laguerre quadrature, since the peak is subtracted off.
Only some test calculations can reveal whether this procedure will work in practice.
Finally, we note that there will only be significant evidence for a periodic signal, and
thus meaningful estimates for w and k, when S is large. Thus high accuracy in the s
integral is not required for values of w that give small values of .S , since either there is no
evidence for a periodic signal at any w, or there is strong evidence at some other w, and
integrals in that region of w will dominate the total integral over all parameter space.

4.4. Estimating the Frequency

As with k, we cannot do much analytically with regard to w. Plotted as a function of
w, Ip[kS(w)] is usually very complicated. Even the peaks can have a complicated shape.
However, we can get some idea of how a Bayesian frequency estimate will compare with a
naive estimate based on the width of the Rayleigh peak as follows.

Let @ denote the frequency that maximizes S(w); this will be very near the most
probable frequency value (it will not be precisely the mode because of the /w dependence
of the prior; it is the maximum likelihood value). Let S = S(&) be the value of S at @.
Near this peak, S will be approximately parabolic,

o (w—a)?
S(w)~ S [1 o5 ] : (4.29)
where § is the negative reciprocal of the second derivative of S with respect to w at the
peak; this is a simple measure of the width of the Rayleigh peak that would equal the
half-width if S were exactly parabolic.

Let’s consider the large #S limit, for which the marginal for w and & is given by equation
(4.19), and for which & is given by equation (4.23). In this limit, the w dependence of the
marginal is approximately Gaussian, with

N2
plw,k =k | D, M) o exp [—RS%} . (4.30)
The standard deviation of this Gaussian is,
)
Ow = =
kS
AN = 5) (4.31)
S(N 1)

Since in this limit 45 > 1, from equation (4.23) we see that the factor multiplying & is
<& 1. Thus the width of the posterior in w can be drastically smaller than the width of the
Rayleigh peak, because of the nonlinear “processing” done by the Bessel function to convert
S into a probability density. Very similar conclusions were found by Bretthorst in his study
of Gaussian spectrum analysis, where he often estimated frequencies with uncertainties
orders of magnitude smaller than the width of the DFT peak (Bretthorst 1988).
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4.5. Signal Detection

The final quantity we need to calculate is the global likelihood for My, p(D | My). As
shown in equation (3.21), if we can calculate C1, we can calculate the global likelihood
and any interesting odds ratios. The Cj integral is given by equation (3.20), but for the
log-sinusoid model we can perform the ¢ integral analytically, as in equation (4.16). Thus
we have,

= ! W ;@M
“= Kmax 108 (whi/wio) / ¢ / d wllo (k)N (4.32)

The integrand is the same function (up to the constant C7) whose numerical quadrature
over k we discussed in the previous subsection; all those comments apply here. In fact, we
have to do the integrals in equation (4.32) first, because they determine C;. So all we need
to discuss is the quadrature over w.

There is no particularly cute or intelligent way to code the w integral. If you plot the
result of the x integral as a function of w, you will see a function that varies wildly with
w. Only a brute force approach guarantees accurate estimation of the integral of such a
complicated function. The one saving grace is that, if there is evidence for a signal, the
value of the integral is typically much larger than it would be in the absence of a signal,
and is completely dominated by the area under one or a few very narrow peaks. A good
integration strategy is to do the integral with the trapezoid rule over the entire search
range, with a step size chosen, not to guarantee accuracy of the integral over every bump
and wiggle, but only to make sure each bump is sampled about twice. That is, make the
step size about half the scale of variation of the function with w. Along the way, note the
location of the M largest peaks (with M =~ 10). Then go back, subtract off the contributions
of the peaks to the original integral from the initial, crude grid, and redo the peaks with a
much larger number of points per peak than was in the original grid.

Provided we can do this integral in a reasonable amount of time, we have everything
we need in order to draw conclusions about the evidence for a log-sinusoid signal in the
data. The Bayes factor in favor of M; over the constant model is simply B g = Cj.

5. LOG-FOURIER MODELS

Without doing any numerical calculations with real (or simulated!) data, we can an-
ticipate some weaknesses of the log-sinusoid model. Some of them were alluded to in the
previous section. The basic problem is that we have only one shape parameter. Even if
we suspect that the signal we are trying to detect has a single peak per period (as does
the log-sinusoid lightcurve), a single parameter simply cannot describe the possible shapes
we might expect. In particular, x determines both the duty cycle and the peak-to-trough
ratio of the lightcurve. But in general, there is no reason to suspect these characteristics
to be linked. In particular, a source emitting all of its signal in a single peak (i.e., with a
100% duty cycle) could have almost any observed peak-to-trough ratio, depending on the
background rate in the detector. Thus as a minimum we would like to have separate control
of the background level and the pulse width.

We emphasize that these problems are not unique to the Bayesian treatment. The
previous calculation elucidates the model assumptions implicit in frequentist use of the
Rayleigh statistic, and weaknesses of the log-sinusoid model should also be present in fre-
quentist analyses using the Rayleigh statistic. Indeed, it is widely known that the Rayleigh
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statistic is poor for detecting narrow pulses, although I am not aware of published studies
elucidating how its sensitivity depends on background level as well as pulse width.

These problems encourage us to consider models with two or more shape parameters.
One way to go is to add an explicit background term to the rate, writing

A
r(t) = B + encos(wt—qﬁ), 5.1
0=+ 6.

where B is a parameter that partly determines the background rate. Unfortunately, adding
a term outside of the exponent destroys the analytical simplicity of the log-sinusoid model.
For example, integrals over ¢ no longer have a simple analytical form.

This leads us to consider adding terms inside the exponent. Here we will add addi-
tional sinusoidal terms, each with their own x and ¢, and with harmonic frequencies. This
corresponds to modeling log(r) with a Fourier series. This is reasonable because log(r),
unlike r itself, is not constrained to be positive.

In the rest of this section we work out some of the details arising in analysis with this
model, which we call the log-Fourier model. We will find in the course of the analysis that,
just as the Rayleigh statistic arose naturally as the sufficient statistic for the log-sinusoid
model, so something like the Z2 family of statistics (a harmonic sum of S values) will
arise as approximate sufficient statistics for a subclass of log-Fourier models. The Bayesian
calculation will thus elucidate the model assumptions implicit in the use of harmonic sums,
and tell us how to convert them into probability statements about the existence of a signal
and its frequency and shape. It will also suggest some generalizations to Z2, although these
may not be computationally feasible for many datasets.

But before going on, we might anticipate some drawbacks to this model. First, although
adding additional k coefficients greatly enlarges the accessible range of lightcurve shapes,
there is no simple relationship between the coefficients and simple lightcurve characteristics
(such as background level or pulse width). We have gained more control over the lightcurve
shape, but it is complicated control. Second, as in the log-sinusoid case, integrations over
the k coefficients must be done numerically. Thus adding only one or two more terms can
drastically increase the computational burden. A possible fix to this is to simply fix all &
values (say, at £ = 1), and let only the phases vary. Such a model is numerically tractable
and describes a wide array of shapes, but may not describe the physically relevant array
of shapes, particularly if the detector happens to have a significant background rate. We
show below, however, that this constraint is implicitly assumed in tests that use simple
harmonic sums, like the Z2 statistic. So although we won’t be able to go too far with this
model analytically, we can at least treat a constrained version of it that may be useful as
a Bayesian counterpart to Z2.

These discouraging remarks are offered as motivation to the reader to come up with
alternative models that combine numerical tractibility with physical relevance. There is a
lot of potential for progress here, if only someone can come up with a clever enough model.

5.1. The Normalized Log-Fourier Model

The log-Fourier normalized rate with H harmonics is,

H
p(t) = I(fﬁl, Py exp azzjl Kq cos(awt — ¢q) | (5.2)
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where K denotes the set of k, coefficients; ¢ denotes the set of phases, ¢,; and I(k, @) is a
normalization constant given by,

2 H
I(k,¢) = ; df exp lz Ko cos(al — ¢q) | - (5.3)

a=1

Two serious weaknesses of this model are the lack of an analytical expression for I(k, @),
and the explicit dependence of this integral on the phases. This forces us to do an ex-
tra numerical integral for every value of K considered, and prevents rigorous analytical
marginalization of the phases. We’d love to learn of any cute tricks that let us quickly
(analytically?!) evaluate the necessary integrals!

For priors, we will use the same priors that were used in for the log-sinusoid model:
flat priors for phases, a Jeffreys prior for w (i.e., & 1/w), and independent flat priors for
each of the k,. The complexity of the model makes the physical significance of the prior
for Kk unclear; we choose this prior simply for definiteness and simplicity.

We denote the information specifying a log-Fourier model with H harmonics by M.
When H = 1, we recover the log-sinusoid model discussed previously.

5.2. The Joint Marginal Distribution

Plugging this model into equation (3.19), we find the joint marginal distribution for w,
all phases, and all k,:

p(w,qb,ls ‘ DvMH) = CHp(quS?K ’ MH) [I(K'>¢)]_N exp [Z Ko ZCOS(aWti - ¢a)‘| )

(e )

(5.4)
where Cpr is the normalization constant found by integrating the other factors over all
2H + 1 parameters. For each « term in the exponent, we can make the same trigonometric
substitutions that were made in equations (4.10) through (4.12), so that the joint marginal
can be cast into the form,

p(w, ¢,k | D, Mpy) = Cup(w, ¢,k | Mp) [I(k,¢)]"" exp [Z koS (aw) cos(Pa — ¢},)

(5.5)
Here S is exactly the same function as in equation (4.11), only here it is evaluated at
several harmonic frequencies. Also, the values of ¢/, are given by H independent versions
of equation (4.12), one for each harmonic.

5.3. An Approzimate Treatment of a Constrained Model

If I(k,¢) did not depend explicitly on ¢, we could straightforwardly find the most
probable phases and the marginal for w and &, using the same methods as in the previous
section. The most probable phases would be the ¢/ values, and the marginal for K and w
would be proportional to [], Io[kaS(aw)].

We will proceed by making a poorly justified assumption (acknowledging that there may
be a yet-to-be-found reasonable justification). We will simply set ¢, = ¢, and study the
joint marginal conditional on this assumption, which we call the phase-conditioned marginal.
To the extent that I(k,¢) varies weakly with ¢, this corresponds to conditioning on the
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best-fit value of ¢. I haven’t been able to prove that I(k, ¢) has weak enough dependence
on ¢ to justify this (I suspect it doesn’t), but even if it does, this alone does not justify
the approximation. We have to worry about possible correlations of other parameters with
¢. In particular, it is clear that the width of the joint marginal in w, and the location
and the width in k, depend on ¢. So we expect this “approximation” not to affect our
best-fit frequency estimates, but to lead us to underestimate our uncertainty for w. The
approximation corrupts our kK estimates to an unknown degree. Finally, the approximation
also corrupts our signal detection results by an unquantified amount.

Despite these drawbacks, we pursue this approximation for two reasons. First, in the
Gaussian spectrum analysis case, we know that a similar assumption underlies use of the
Lomb-Scargle periodogram. This is clear from the “least-squares” derivations in Lomb
(1976) and Scargle (1982), where an unknown phase is simple set equal to its least squares
value, with no account taken of the uncertainty of this phase. In fact, the equations are
essentially the same as ours, so we are conditioning on least-squares phase estimates, which
are often okay in the Gaussian case, but may not be okay in the Poisson case. (By the
way, Bretthorst (1988) provides a Bayesian counterpart to the Lomb-Scargle work that
explicitly and analytically accounts for the phase uncertainty.) Second, we will find that
this approximation, combined with a constraint on &, leads to a conditioned marginal whose
sufficient statistic is a harmonic sum similar to Z2. Thus this approximation will give us
insight into what is being implicitly assumed when we use Z2.

The phase-conditioned marginal is,

p(wa¢ = ¢/7K' | DaMH) = CHp(wv¢aK' ‘ MH) [I(K" ¢,)]_N €xp [Z /{aS(aw)] . (56)

If we further constrain the model by setting x, = 1, then the conditioned marginal for w
is given by,
plw,¢=¢,k=1]D, Mp) x e, (5.7)

where,

2y = ZS(aw). (5.8)

This statistic is similar to Z2 with n = H, which in our notation is given by,
73 = 2 > 5 (ow). (5.9)
N (0%
We can clarify the relationship between the two of these statistics by noting that,

2% = %Z?{ + Z Z S(aw)S(Bw). (5.10)
o G7a

That is, z%{ has the quadratic S terms considered in Z%I, plus additional bilinear S terms.
Recall that S? is a sum of squared cosines and sines of the data points, as shown in equation
(4.11). Thus if we take our data set, cut it in half in time, and calculate Z%I for each half,
the value of Z% for the entire data set is given simply by summing the two values (up
to a constant factor). On the other hand, the bilinear term in equation (5.10) indicates
that z%{ for the whole data set is not proportional to the sum of 2%1 over parts of the data
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set. Essentially, ZIQJ computes an incoherent sum of Fourier power at harmonic frequencies,
while z instead sums amplitudes rather than powers, and thus contains phase information
not used by Z%.

We might summarize what we have learned about Z2 as follows. First, it is conditioned
on particular values for the phases that are good estimates for the phases in the Gaussian
(least squares) case, but that may not be good estimates in the Poisson case. This con-
ditioning ignores the effects that phase uncertainty has on other parameters. Second, Z2
may tacitly assume fixed harmonic ratios (but we have not found Bayesian estimates for xq,
and these may lead to a similarly weighted sum). Finally, Z2 does not use all of the phase
information that is used in a Bayesian analysis with a log-Fourier model. We thus suspect
that the Bayesian analysis will more easily detect real signals of various shapes than does
Z2; but further calculations are required to justify this suspicion. This motivates us to
more fully treat the log-Fourier model, relaxing some of the assumptions made here. But
this will have to wait for a later memo (and for some inspiration regarding the integrals!).

6. INCLUDING POSITION INFORMATION

We have presumed all along that the data consist only of the arrival times of the events.
However, many instruments also provide positional information for each event, so that the
data consist of triples, (z;,¥;,t;). If there is a background rate, the position information
can help us distinguish possible source events from background events. Currently, this
information is only crudely incorporated, by throwing out all data outside of a specified
radius from a known or best-fit position. Something more sophisticated, which weights the
points according to the point spread function, is likely to be better. We outline in broad-
brush the Bayesian approach here. Similar (but not explicitly Bayesian) considerations are
being pursued by Dieter Hartmann and Larry Brown at Clemson University. We don’t go
into too much detail regarding specific models, because a full analysis of such data gets
computationally burdensome pretty quickly. It thus may not be practical for searching for
possible signals of unknown frequency. However, if we are searching for a signal of known
frequency (such as a radio pulsar counterpart), or if we have detected a signal and obtained
a frequency estimate from a simpler method, the likelihood function described here may be
quite usable.

With position information available, the relevant model rate must be a function of
position as well as time; we denote it by r(z,y,t). As already noted, the position information
is important because it helps us distinguish a possible signal from background. Thus from
the outset we will explicitly decompose r into background and signal parts. We will presume
the background rate is constant in time (it is easy, at least in principle, to generalize to time-
dependent cases) and that it is known as a function of position; we denote the background
rate per unit time per unit z—y area by b(z,y). It may have unknown parameters that we
must infer from separate background measurements or from a prior assumptions about the
signal+background data (e.g., that the background has a known spatial distribution, and
that some annulus contains only background and thus sets its scale). But for simplicity we
assume here that it is perfectly known.

We presume the point spread function for the instrument is known, so that that a
source with flux ®(¢) in direction n produces a count rate at detector position (x,y) equal
to k(x,y | n)®(¢). In this notation, then, k has units of physical area per z—y area. Thus

[MEMO! Not for circulation!] 19 [vonmises.tex: 9/4/2003 16:02]



the total event rate is,
r(z,y,t) = b(z,y) + k(z,y [ n)(1). (6.1)

We will presume here that the source direction is known, though of course it could be a
free parameter, or it could have a nontrivial prior from other imprecise observations.

Our task is to make inferences about models for the time-dependent flux, ®(¢). We
might use a log-sinusoid or log-Fourier model for ®(t); however, we will find that the pres-
ence of the b(x,y) term in equation (6.1) largely ameliorates the benefits of these models.
We point out that it may be relevant to explicitly introduce “background” (i.e., constant)
terms in ®(t), but that we must necessarily distinguish these from the instrumental back-
ground rate, b(x,y).

Denote the information specifying a model for ®(¢) with parameters P by the symbol
M. To make inferences, we need the likelihood function. We can calculate it from the
Poisson distribution using a three-dimensional generalization of the derivation in § 3 of GL.
We discretize (x,y,t) space into small cells of size dzdydt such that each cell contains either
no event or one event. The data can then be described as a list of event detections, d;,
denoting the cells containing one event, and a list of nondetections, ch, denoting empty
cells. The probability for the data conditioned on M and P is,

N
£(P) =TI ot | P.20) T [ w(d; | P, M) (62)

=1 i

From the Poisson distribution, the detection and nondetection probabilities are,

plds | Poany=exp |~ [ at [ o [ dyr(eyn). (6.3)
ot; ox; 0Y;

and,

p(Jj | P, M) = [/ dt/ dw/ dyr(m,y,t)] exp l—/ dt/ dx dyr(w,y,t)] ,
5tj ij éyj §tj 5:E]' 5yj

(6.4)
where dx; ... denote the intervals associated with each detection and nondetection datum.
When we insert these into equation (6.2), the arguments of the exponents add to give the
integral of r(x,y,t) over all (x,y,t) in the observations. If we denote the total background
rate by,

B = /da:/dyb(x,y), (6.5)
and the total detector area for flux from direction n by,
As() = [ do [ dyk(e.y ) (6.6)
then the total predicted event rate is,
/dm/dy/dt r(w,y,t) = BT+Adet(n)/dt o(t), (6.7)
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where T is the total “live time” duration of the observations. Using this, and taking the
discretized intervals to be small compared to the scale of variation of r, equation (6.2) takes
the form,

L(P) = e BT~ Auct(n) [ di() [T (i, vi) + k@i, yi | n)@(t)] 523y (6.8)

(]

This is the likelihood function for arrival time series with position data. If we consider n to
be unknown, it is unchanged. We can see how this likelihood function weights events with
position: an event is counted as part of the signal, ®, according to the ratio of k(z;,y; | n)
to b(xzi, y;).

We'll leave it as an exercise for the future to look for ®(¢) models that let us do a
significant part of our calculations analytically. We only note here that ®(¢) appears in a
weighted sum with b(z,y), so that log-Fourier models for ®(¢) do not lead to analytically
tractable likelihood functions. We also note that we could have reformulated this likelihood
so that the background arose as an integral of k times a background rate on the sky; but
this formulation does not change the basic fact that sums of background and signal terms
appear in the product. There may be no useful analytically tractable models. However, if
the parameter space is not too large (in particular, if a signal has already been detected
with a simpler approach, so that its frequency is known), a completely numerical treatment
using equation (6.8) may be reasonable.

Finally, some detectors may have binned location information, so that only the pixel
number for each event is recorded, rather than the precise event location. For such data,
we replace k(z,y | n)dzdy with a direction-dependent response function for pixel (z,y),
denoted by kzy(n) (z and y are now integer valued), and simularly replace b(x, y)dzdy with
the background rate in a pixel, b;,. The event rate for pixel (z,y) is then,

Tay () = bay + kay(n)P(2). (6.9)

To calculate the likelihood function, we again discretize t so that each time interval contains
zero or one event. Nothing changes from the previous calculation except that k and b are
discretized, and the dz and dy factors are absorbed into the definitions of k;, and by,. If
the time dimension is also binned, such that some bins contain more than one event, the
likelihood function does take a different form, but it still follows simply from the Poisson
distribution, leading to a likelihood that is the location generalization of that discussed in
Gregory and Loredo (1993).
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