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Abstract. One of the most important practical differences between the
Bayesian approach to statistical inference and the more traditional fre-
quentist approach is the nature of the sums and integrals required to
implement each approach. In both approaches, the sampling distribution
for the data (i.e., the likelihood function) plays a key role; but frequentist
calculations integrate the sampling distribution over the sample space,
whereas Bayesian calculations integrate it over hypothesis (parameter)
space. The numerous advantages to working in parameter space come at
a cost: the required integrals are difficult to calculate. I survey recent
developments in computational technology for performing such integrals.

1. Introduction

Statistical calculations consist largely of weighted sums or integrals of proba-
bilities. One of the key practical differences between Bayesian inference and
frequentist statistics is that drastically different types of integrals appear in cal-
culations taking these competing approaches to the same problem (Loredo 1992).
Consider, for example, estimating the parameters of some model, M , given some
observed data, D; denote the parameters jointly by θ. A key quantity appearing
in both Bayesian and frequentist integrals is the probability for the data assum-
ing the model to be true and presuming the parameters to be known, p(D|θ,M).
Considered as a function of the data, this is called the sampling distribution; con-
sidered as a function of the parameters, it is called the likelihood function, which
will will abbreviate as L(θ). A basic practical difference between the methods
is that frequentist calculations require integrals of this quantity over the data
dimensions (sample space), whereas Bayesian calculations require integrals over
the parameter space.

Basing inferences on probabilities calculated by summing or integrating over
parameter space brings with it a host of advantages over trying to make infer-
ences using probabilities calculated in sample spaces. In the brief space alotted
here, significant discussion of these advantages is not possible. But two positive
advantages that are of great practical utility must be mentioned. First, in the
vast majority of real applications the parameter space may be divided into two
parts, θ = (ψ, φ), where interest focuses on ψ, and φ consists of “nuisance”
parameters necessary for modeling the data but otherwise uninteresting (e.g.,
background intensities). In Bayesian inference one can straightforwardly elimi-
nate the nuisance parameters while accounting for their uncertainty simply by
integrating the joint distribution for (ψ, φ) over φ. There is no completely sat-
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isfactory method for dealing with nuisance parameters in frequentist statistics.
Second, comparison of competing models in Bayesian inference is accomplished
by comparing the average likelihoods of the parameters for the models, rather
than the maximum likelihoods used in frequentist statistics. The averaging of
the likelihood implements an automatic “Occam’s razor” that penalizes a model
for the size of its parameter space. There is no counterpart to this in frequentist
statistics. Interested readers can consult Loredo (1990, 1992) for more discussion
of these advantages, as well as discussion of some of the “negative advantages,”
that is, weaknesses and problems of frequentist procedures that are avoided by
calculating in hypothesis space rather than sample space.

These advantages come with a significant cost: parameter space integrals
are difficult to evaluate. This paper briefly introduces modern computational
technology that has made such calculations feasible in problems of realistic com-
plexity. I presume of the reader some basic familiarity with common statistical
terminology. Readers needing a basic introduction to Bayesian inference will
find brief, self-contained coverage in two review articles (Loredo 1990, 1992) or
in § 2 of Gregory and Loredo (1992), and a thorough pedagogical account in
Devinder Sivia’s introductory text (Sivia 1996). Those with access to the World
Wide Web can find links to some of these works, and to other Bayesian resources
of particular interest to physical scientists, at the BIPS1 (Bayesian Inference for
the Physical Sciences) web site. Evans and Swartz (1995) provide a longer survey
for a statistical audience covering topics in § 3 to 5 of this article.

2. Comparing Bayesian and Frequentist Integrals

Consider the common case of parameter estimation with data, D, consisting
of N statistically independent samples, di. Suppose the model, M , has m pa-
rameters (denoted collectively by θ), with m � N . Independence implies that
the likelihood can be written as a product of N terms, L(θ) =

∏
i p(di|θ,M).

The integrals (functionals) we would need to compute in a frequentist analysis
resemble the following:

I[f ; θ] ≡
∫
dNDf(D)p(d1|θ,M) · · · p(dN |θ,M). (1)

For example, we can calculate the sampling distribution for some statistic S(D)
by taking f(D) = δ[S − S(D)], or we could evaluate the bias of an estimator
θ̂(D) by taking f(D) = θ̂(D). A rigorous frequentist procedure usually requires
that the value of such an integral not depend on θ (since we do not know what
the true value of θ is to condition on). In contrast, the integrals required in a
Bayesian analysis resemble the following:

I[g] ≡
∫
dm′

θ g(θ)p(θ|M)L(θ), (2)

where p(θ|M) is a prior distribution for the parameters, and the integral of
interest may be over a subset of the parameter space, so m′ ≤ m. For example,

1http://astrosun.tn.cornell.edu/staff/loredo/bayes/
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I[1] gives us the normalization constant for Bayes’s theorem; I[θ]/I[1] gives us
the posterior mean estimate for θ, and taking g(θ) to be an appropriately located
“hat” function allows calculation of the probability in a credible region.

Consider first low-dimensional models, with m ∼< 3. For such models, evalu-
ation of the required integrals is usually much simpler for a Bayesian calculation
because the dimension of the integral is so much smaller. Analytical integra-
tion may be possible; at worst, the integral can be calculated to any required
precision with straightforward numerical quadrature. In contrast, even for the
simplest problems, the frequentist calculation is not trivial because of the large
dimension of the sample space; one must typically use characteristic functions
or integral transforms to reduce the dimensionality. As an instructive example,
the reader is invited to compare the Bayesian and frequentist treatments of es-
timating a Gaussian mean when the noise variance is not known a priori (the
solution uses Student’s t statistic; cf. Sivia 1996 and Meyer 1975 for Bayesian
and frequentist derivations). The final procedures are essentially the same, but
the calculations leading to them differ dramatically in complexity.

But now consider higher dimension models, with m ∼> 4. Rigorous frequen-
tist methods usually do not exist for such models, but approximate procedures
are easy to develop using Monte Carlo methods.2 Despite the large dimension of
the integrals, the independence of the di makes implementation of such methods
almost trivial: one simply samples each di value independently and evaluates
f(D); repeating this simple procedure a large number of times and averaging
the results evaluates the integral. In contrast, unless a lucky (or clever) model
choice allows some or all of the dimensions to succumb to analytical integration,
numerical calculation of a Bayesian integral can be extremely difficult, even
though it may have orders of magnitude fewer dimensions than the frequentist
one. The reason is that the likelihood is almost never a product of independent
factors for each parameter—inferences for the parameters are correlated, often
in complicated ways. This prevents simple Monte Carlo integration as described
above. Also, the probability factors comprising the likelihood are typically sim-
ple and unimodal as a function of the di, whereas their product may have a
complicated shape as a function of θ, perhaps with multiple modes. Straightfor-
ward numerical quadrature can solve the problem in principle, but in practice
the “curse of dimensionality” makes quadrature unfeasible if there are more than
3 or 4 dimensions. The developer of a Bayesian code is in the ironic position of
being able to write down the exact answer to a problem that cannot be treated
exactly in the frequentist approach, but not being able to actually calculate the
numerical value of the answer!

Fortunately, the last ten to fifteen years have seen remarkable developments
in practical algorithms for performing Bayesian calculations. We can usefully
group these algorithms into three families: asymptotic approximations; methods
for moderate dimensional models; and methods for high dimensional models.
We discuss these in turn. All of these methods can benefit significantly from

2One might legitimately complain that we are comparing approximate frequentist calculations
with exact Bayesian calculations, and are thus being unfair to the Bayesian approach. Unfortu-
nately, rigorous frequentist methods simply do not exist for many realistic problems (see, e.g.,
§ 20.35 of Kendall and Stuart 1977); we can only compare the complexities of the calculations
actually done in practice.
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reparameterization of a problem to simplify the structure of the posterior; several
of the references below discuss this issue.

3. Asymptotic Approximations

It is often the case that the posterior distribution has a single dominant interior
mode (i.e., the mode is not on the boundary of the allowed parameter space).
Call this mode θ̂. In the vicinity of the mode, the product of the prior and
likelihood can be approximated by a multivariate Gaussian, so we have,

p(θ|M)L(θ) ≈ p(θ̂|M)L(θ̂) exp
[
−1

2
(θ − θ̂) · Ĩ · (θ − θ̂)

]
, (3)

where Ĩ is the (observed) Fisher information matrix, a matrix of second deriva-
tives evaluated at the mode: Ĩ = ∂2 ln [p(θ|M)L(θ)] /∂2θ for θ = θ̂. We can
find approximate Bayes factors for model comparison by using this approxima-
tion to calculation average likelihoods (normalization constants for parameter
estimation): ∫

dθ p(θ|M)L(θ) ≈ p(θ̂|M)L(θ̂)(2π)m/2|Ĩ|−1/2. (4)

We can also use the approximation to do the integrals needed to eliminate nui-
sance parameters. If there are uninteresting parameters, φ, and parameters of
interest, ψ, first construct a “profile” function for ψ, found by maximizing the
prior × likelihood over φ (for each ψ): f(ψ) = maxφ p(ψ, φ|M)L(ψ, φ). We
can construct an approximate marginal distribution for ψ by normalizing the
product of f(ψ) and a factor that accounts for the volume of the φ space:

p(θ|D,M) ∝ f(ψ)|Ĩ(ψ)|−1/2, (5)

where Ĩ(ψ) is the information matrix for the nuisance parameters, with ψ held
fixed. This approximation improves on the profile likelihood, maxφ L(ψ, φ), the
frequentist attempt to handle nuisance parameters best-known to astronomers
(see, e.g., § 15.6 of Press, et al. 1992).

The use of this kind of approximation originates with Laplace, so these
approximations are called Laplace approximations. They can perform remark-
ably well in practice even for modest amounts of data, despite the fact that one
might expect the underlying Gaussian approximation to be good only to order
1/
√
N , the usual rate of asymptotic convergence to a Gaussian for frequentist

approximations. The reason is that the final quantities reported in a Bayesian
calculation are always ratios of integrals. The leading order errors in the nu-
merator and the denominator typically cancel, so Laplace approximations are
usually good asymptotically to order 1/N or even higher. Good entry points
to the literature on this approximation can be found in Tierney and Kadane
(1986), Kass, Tierney, and Kadane (1991), and O’Hagan (1994).

A particular appeal of the Laplace approximation to developers building
on existing frequentist codes is that all of the ingredients, apart from the prior
factor, are likely to be at hand. Many frequentist codes extremize a likelihood
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or log-likelihood (e.g., χ2), and provide an approximate covariance matrix that
is usually just the inverse of the information matrix required for the Laplace
approximation. The Laplace approximation thus provides a quick entry into
Bayesian computation.

Finally, similar reasoning underlies a somewhat cruder approximation that
provides a Bayesian counterpart to the familiar frequentist procedure of compar-
ing nested models using likelihood ratios (e.g., differences in minimum χ2) and
counting degrees of freedom. Asymptotically, the Type I error (“false alarm”)
probability associated with the test is given by the tail area of the χ2

ν distri-
bution, with χ2

ν equal to −2 times the log likelihood ratio, and ν equal to the
number of new parameters in the more complicated model. In a Bayesian set-
ting, one would perform such model comparison by calculating a Bayes factor.
Although the Bayes factor depends on the sizes of the parameter spaces of the
models via the priors for the models’ parameters, an approximate and automatic
Bayes factor has been found to be useful in practice, at least in the early stages of
an analysis. Known both as the Schwarz Criterion and as the Bayesian Informa-
tion Criterion (BIC), it uses a Gaussian approximation for calculating average
likelihoods much as was done above, but additionally uses an “automatic” prior
with a width roughly corresponding to the width of the individual data factors
in the likelihood. The result is that the log Bayes factor can be approximated
as

lnB ≈ ln
[
L2(θ̂, φ̂)/L1(θ̂)

]
− 1

2
mφ lnN, (6)

where model 2 is the more complicated model, with additional parameters φ, and
mφ is the dimension of φ. The log likelihood ratio is adjusted for the differing
number of parameters, but in a way that depends (weakly) on the number of
data, a dependence absent from the asymptotic frequentist likelihood ratio test
(fixing the inconsistency of that test). Kass and Wasserman (1995) discuss this
approximation and the interpretation of the resulting approximate Bayes factors.

4. Methods for Low Dimensional Models

The Laplace approximation is an asymptotic approximation. The remainder of
the Bayesian integration methods we will discuss are approximate only in the
sense of having accuracies limited by computational resources; they are “exact”
methods in the sense of not requiring any approximation of the integrand. We
first discuss methods for low dimensional models, where “low” in practice means
m ∼< 10 or 20. The successful methods are based on two familiar classes of nu-
merical integration techniques that by themselves are of rather limited utility in
Bayesian calculations. It is modification and combination of these basic methods
that has led to successful algorithms.

The most familiar approach to numerical integration is the use of quadrature
rules—approximating an integral as a weighted sum of values of the integrand.
The various rules differ in the choices of weights and abscissas. The impres-
sive thing about these rules in one dimension is that one can take advantage
of known “smoothness” properties of the integrand (such as membership in a
polynomial family, or approximate similarity to a polynomial times a known non-
linear function such as a Gaussian) in order to construct rules with fast rates of
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convergence. Errors falling as 1/n2 or 1/n4, with n the number of abscissas, are
easily achieved. Unfortunately, this desirable behavior is lost when one extends
such rules to many dimensions. The simplest approach is to use a product rule—
a combination of 1-d rules for each dimension. This suffers from the infamous
“curse of dimensionality;” the number of points needed grows exponentially with
dimension, so the errors now only fall like 1/n2/m or 1/n4/m. This makes these
rules impractical for all but the lowest dimensions (m ∼< 4). Rules exist that
extend the quadrature idea to higher dimensions in a more complicated way;
they appear under various names in the literature, including cubature, lattice,
and monomial rules. In these rules, the abscissas do not lie on a cartesian grid;
instead, they are spread over a more complicated multidimensional lattice. But
the curse of dimensionality persists for these methods, though it is weakened.

Another familiar approach to numerical integration is Monte Carlo integra-
tion—approximating an integral with an average of values of its integrand chosen
randomly according to some rule. The great virtue of this approach is that the
error falls like 1/

√
n, regardless of dimension (or possibly as quickly as 1/n if one

uses quasirandom sampling rules). This convergence rate is quite poor for one
or two dimensions; Monte Carlo integration takes no account of the smoothness
information built into quadrature rules and is thus no competition for them in
low dimensions. But as soon as m ∼> 3, the Monte Carlo convergence rate starts
to look attractive compared to that of quadrature. Unfortunately, although the
rate of convergence is attractive, the actual size of the errors can be so large as to
make implementation impractical. The size of the error depends on the variance
of the integrand. This can be reduced in some cases by reweighting the integrand
and adjusting the sampling rule to compensate (“importance sampling”). But
such reweighting is extremely hard to design in practice unless m ∼< 6.

Although neither of these approaches is useful for Bayesian integration in
more than a few dimensions, the successful methods in current use build directly
on them. Two families of methods are particularly useful.

First are randomized quadrature methods. These methods resemble quadra-
ture rules, but the abscissas are “dithered” randomly. They can combine the
virtues of both quadrature and Monte Carlo methods, while diminishing the
drawbacks of those methods. The most useful such methods resemble Gaussian
quadrature in that they are best used if you can consider the posterior to be rea-
sonably well approximated by, say, a multivariate Gaussian times multinomials
(see, e.g., Monahan and Genz 1997).

Second are subregion-adaptive quadrature methods. These methods typi-
cally use two low-order lattice rules (say, exact for multinomials of order 5 and
7) to estimate an integral and its error (via the difference between the estimates
from the two rules) in various subregions of the parameter space. The method
is applied recursively in regions with the largest error until the entire integral
is evaluated to the desired accuracy. These methods automatically put more
quadrature points where most of the posterior probability lies, settling for less
accuracy in the unimportant tails of the distribution (which often account for a
large amount of the parameter space volume).

Randomized and subregion-adaptive methods exist in the general compu-
tational literature, but in recent years there has been research effort devoted
to tailoring versions of them specifically for Bayesian integration (e.g., Genz
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and Kass 1997). The resulting algorithms are not trivial to code from scratch;
but fortunately, free and easy-to-use subroutines are readily available. Partic-
ularly noteworthy is the work of Alan Genz. The ADAPT subregion-adaptive
quadrature algorithm he developed with Malik is available on the World Wide
Web; I have used this subroutine in several Bayesian calculations (see, e.g.,
Loredo, Flanagan, and Wasserman 1997). In addition, his BAYESPACK sub-
routine package provides a well-documented unified interface to several FOR-
TRAN subroutines for performing Monte Carlo, randomized quadrature, and
subregion-adaptive quadrature for Bayesian problems of moderate dimension.
Links to this software are available at the BIPS web site previously mentioned.

5. Methods for High Dimensional Models

The majority of straightforward parametric models have a small enough number
of parameters that the methods above are likely to prove adequate for implemen-
tation of the Bayesian recipe. But sometimes large parametric models must be
analyzed (e.g., in analyses of the cosmic background radiation). Also, nonpara-
metric models, once coded, are for all intents and purposes “mega-parametric”
models, with each of the discrete sample points or pixels of the estimated func-
tion or image playing the role of a parameter. In such problems, the number
of parameters can easily reach 106 or more. Given the previous discussion, it
may seem that a truly Bayesian analysis in such a context, requiring integrals
in a highly correlated mega-dimensional space, is simply out of the question.
Surprisingly, such analyses have been done routinely for some years now. The
basic concept underlying the successful methods is posterior sampling, and the
most powerful algorithms for implementing them are Markov Chain Monte Carlo
(MCMC) algorithms.

The notion of posterior sampling should appeal to those used to coding
Monte Carlo algorithms in a frequentist context. To calculate a frequentist inte-
gral, one can simulate data, as described in § 2, evaluating the integrand for each
full data sample. Posterior sampling proceeds similarly, evaluating Bayesian in-
tegrals by “simulating hypotheses” rather than data; that is, by drawing samples
of θ from the posterior distribution. The great virtue of this approach is that
once one has generated a large number of samples θi (i = 1 to n) from the
posterior, that single set of samples can be used to evaluate a whole host of de-
sired integrals for summarizing the implications of the posterior. The marginal
distribution for any parameter or subset of parameters can be found simply by
ignoring the values of the uninteresting parameters, and plotting or calculating
properties of the set of interesting parameter values. Moments of any function
of the parameters (including an indicator function whose “moment” gives the
probability in a credible region) can be found by averaging the function over the
samples. In the case of nonparametric inference, a movie can be made where
each frame shows onem-dimensional θi (a particular function or image consistent
with the data). Viewing this movie will reveal the level of confidence one should
have in certain features of the inferred function; if the feature is consistently
present in the samples, it has a high probability of being real. Such probabilities
can be quantified by calculating appropriate functionals of the samples. This
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aspect of the approach is appealing enough that posterior sampling is also worth
considering for problems with moderate or even low dimensionality.

The problem is, how can we get the samples in the first place? As already
noted, Bayesian integration is complicated precisely because the correlations in
parameter space do not make Bayesian integrals amenable to the independent
sampling methods underlying frequentist simulation-based calculations.

The simplest method for drawing samples from a complicated probability
density function is the well-known rejection method (Press et al. 1992, § 7.3).
This method depends on the ability to construct a good rejection function that
resembles the posterior, but from which we know how to sample efficiently. For
problems with dimensions ∼< 6, this is often possible, though it can take a lot
of work. But for larger numbers of dimensions, all easily constructed rejection
functions waste too much volume, and the overwhelming majority of candidate
samples end up being rejected. Thus the rejection method cannot take us into
regimes not already accessible by other methods (but it can compete with those
methods in the low dimensional regime).

To an audience of physical scientists, a possible solution to the problem
appears when it is recast in more suggestive notation. Define a function Λ(θ)
according to Λ(θ) = − ln [p(θ|M)L(θ)]. Then the posterior distribution can be
written as p(θ|D,M) = e−Λ(θ)/Z, where Z ≡

∫
dθ e−Λ(θ). Evaluation of the

posterior now resembles two classes of problems familiar to physicists: evalu-
ating Boltzmann factors and partition functions in statistical mechanics, and
evaluating Feynman path weights and path integrals in Euclidean quantum field
theory. Accordingly, beginning in the mid 1980s, statisticians have mined the
computational physics literature for methodology from computational statisti-
cal mechanics and quantum field theory on the lattice that could be adapted
to evaluate Bayesian integrals. It seems about time this methodology found its
way back to the physical sciences.

All of these methods work by constructing a kind of random walk (Markov
chain) in the parameter space such that the probability for being in a region
of the space is proportional to the posterior density for that region. One starts
somewhere (more or less anywhere, though it helps to start at a place of high
probability), calculates the posterior density there, takes a small step, and then
recalculates the density. The step is accepted or rejected according to some rule,
and the process is repeated. The resulting output is a series of points in the sam-
ple space, usually discussed and analyzed as if it were a time series. The various
methods differ according to the rules used to make the moves in the parameter
space, and the rules determining whether or not a step is accepted. It turns
out to be extremely simple to invent such rules that are guaranteed to produce
accepted steps that correctly sample the posterior. Metropolis et al. (1953) gave
the basic algorithm; a discussion of it and some useful modern extensions that
is particularly accessible to physical scientists is available in the first section of
Toussaint’s very readable introduction to methods for lattice QCD calculations
(Toussaint 1989), a readable tutorial for statistics students is available in Chib
and Greenberg (1995), and a more thorough (but now somewhat dated) review
from the point of view of a computer scientist is provided by Neal (1993).

Although the resulting MCMC methods are simple in principle, consider-
able art is required to implement them in practice. Convergence of MCMC
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methods can be guaranteed, but it takes some time for the series of samples
to reach equilibrium; and once equilibrated, the samples comprising the output
time series are obviously correlated. Part of the art of these MCMC methods is
in choosing rules that lead to quick convergence and short correlation lengths.
Aspects of the structure of a particular problem, such as availability of condi-
tional distributions for single parameters, or availability of derivatives, can be
used to produce effective algorithms for that problem. Once the algorithm is
settled upon, one must also take care in determining when the resulting Markov
chain has reached equilibrium, and in taking into account the correlations in
the resulting samples when calculating inferences. Good output analysis is cru-
cial to successful implementation of MCMC methods and must be done with
some sophistication; one has essentially created a new inference problem (albeit
a simpler one) in the course of solving the original one.

The development and application of MCMC methods has been the most
active area of research in applied Bayesian statistics in recent years. As a re-
sult, there is a considerable body of knowledge to draw from when constructing
an MCMC algorithm and analyzing its output. A recent volume of review and
application papers collects some of this wisdom (Gilks, Richardson, and Spiegel-
halter 1996); a roundtable discussion collects further informal advice for novice
practitioners (Kass et al. 1998). A monograph discusses engineering applications
(Ó Ruanaidh and Fitzgerald 1996), and there is an MCMC web site3 devoted to
publicizing developments in MCMC methods. Although there is not yet a “black
box” MCMC algorithm with universal applicability (and there is not likely to
be one), good and simple algorithms exist with considerable generality (e.g.,
for image analysis and density estimation with common priors). In any case,
the algorithms themselves are so easy to code that experimentation is relatively
straightforward.

Two complications are worth mentioning. First, development of MCMC
methods for model comparison lags behind that for parameter estimation. Such
methods so far tend to be highly specialized to particular problems (though see
Neal 1993 for descriptions of general methods based on algorithms for calculat-
ing free energies that have not yet been thoroughly explored in the statistics
community). Second, the virtues of posterior sampling may tempt one to apply
MCMC methods to parametric models with small numbers of parameters; but
some caution is appropriate. MCMC methods so far appear to be most suc-
cessful when the parameter space is in some sense “homogeneous,” with each
parameter having a similar role in the likelihood and the same physical dimen-
sions (as with image pixels); otherwise, a “metric” is needed in the parameter
space, complicating the analysis.

Asymptotic approximations make the transition to (approximate) Bayesian
inference relatively painless for those with existing frequentist codes. Subregion-
adaptive quadrature, randomized quadrature, and posterior sampling make more
exact Bayesian calculations straightforward for models with significant, realistic
complexity. These methods have played a significant role in fueling the explosion
of interest in the Bayesian approach in applied statistics. In astrostatistics, the
last five years have seen a strong growth of interest in Bayesian inference; these

3http://www.stats.bris.ac.uk/MCMC/
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modern computational tools will certainly play a key role in expanding this
interest even further.
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