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ABSTRACT

Many common audio test and measurement procedures require characterization of the output signal of the device
under test in terms of harmonic (sinusoidal) components and residual noise when the device processes sinusoidal
input signals. This work uses the Bayesian approach to statistical inference to address such problems as parameter
estimation problems when discrete samples of the output signal are given. In the resulting Bayesian harmonic analysis
the power spectrum computed from the discrete-time Fourier transform appears as the logarithm of the posterior
probability for the frequency of a single sinusoid rather than as an estimate of the signal spectrum; more complicated
functions of the transform arise when analyzing signals with multiple sinusoids. Problems such as spectral leakage
are addressed by nonlinear processing of the Fourier transform, offering several advantages over methods that use
(linear) windowing of data.

INTRODUCTION

Many common audio test and measurement procedures re-
quire characterization of the output signal of the device un-
der test in terms of harmonic (sinusoidal) components and
residual noise when the device processes a harmonic input sig-
nal. Examples include measurement of frequency and phase
response, signal-to-noise ratio, total harmonic distortion, and
intermodulation distortion; see [1, 2, 3] for excellent overviews
of standard methods for performing such measurements. This

work uses the Bayesian approach to statistical inference to ad-
dress such problems as parameter estimation problems when
discrete samples of the output signal are given. Jaynes first
adopted this approach in a 1987 analysis of acoustic chirp
from bats [4]; Bretthorst has applied it with considerable
success to analysis of decaying sinusoidal signals in nuclear
magnetic resonance (NMR) data from chemical analyses of
materials [5, 6]. In Jaynes’s analysis, the power spectrum or
periodogram derived from the discrete-time Fourier transform



LOREDO

(DTFT) appears, not as an estimate of the signal spectrum,
but as the logarithm of the posterior probability density for
the frequency of a sinusoid in the sampled data.

This paper explores the consequences of a similar analysis of
data from tone-based testing of audio systems. The result-
ing algorithms process the DTFT in a nonlinear manner, in
contrast to traditional methods that smooth the power spec-
trum via data tapering or windowing. The nonlinear process-
ing produces accurate estimates of signal characteristics (e.g.,
amplitudes of fundamentals and harmonics and measurement
of the noise level) without requiring smoothing to reduce
“spectral leakage,” and thus without the loss of resolution
resulting from smoothing. When the signal has more than
one sinusoidal component (e.g., for distortion measurements),
Bayesian harmonic analysis identifies nonlinear combinations
of the real and imaginary parts of the DTFT at multiple fre-
quencies that can produce accurate estimates of signal char-
acteristics even when the frequencies lie within a single power
spectrum peak, provided the SNR is high enough. When the
frequencies are well-separated, the multiple-component anal-
ysis effectively reduces to the simpler single-component anal-
ysis.

This brief report motivates the Bayesian approach, outlines
the general algorithm, and presents a few sample calculations
analyzing simulated data to demonstrate the approach. De-
tailed derivations and development of additional algorithms
will appear in a future publication.

AUDIO TESTING AS STATISTICAL INFERENCE

To motivate what follows, we first recall some basic facts
about sampled time series. Suppose one has uniformly spaced
samples of the amplitude h(t) of a signal that is a continuous
function of time, ¢. Denote the sample values by d; = h(t;),
with t; = 1At, with At the sampling interval and ¢ = 0 to
N — 1. Suppose further that the signal is known to be ban-
dlimited to the Nyquist interval, and that it is known to be
comprised of a number M of discrete sinusoids of unknown fre-
quencies, phases, and amplitudes. If the samples are noiseless
and M =1 (a single sinusoid is present), then with just N = 3
samples we can perfectly infer the frequency, amplitude, and
phase of the sinusoid because only the correct sinusoid will
pass exactly through all the samples. This is true for any
frequency from DC to the Nyquist frequency. If M > 1, we
need more samples (3M), but it remains possible to infer the
frequencies, phases, and amplitudes of the sinusoids perfectly
with relatively few samples. The method of least squares can
be used to find the sinusoid parameters, with no uncertainty
in the estimated parameters.

When analyzing data from real systems, even if we believe
there is only a single sinusoid in the data we must use many
samples because noise complicates our inferences. The data
do not directly give us h(t;); rather,

d; = h(ti) + n;, (1)

where n; is the (unknown) noise contribution to datum . As
a result, a candidate sinusoid that passes close to but not ex-
actly through the d; cannot be ruled out as a possible h(t); the
difference between the candidate sinusoid and the d; values
may be due to noise. The measurement problem has quali-
tatively changed from one of simple logic to one of statistical
inference. One must develop estimators for the sinusoidal
parameters that acknowledge the presence of noise and ac-
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count for the resulting uncertainty in inferences of the signal
parameters.

Although many basic discussions of audio testing methodol-
ogy make little if any reference to statistics, the mathematical
methods of audio testing have statistical origins. In particu-
lar, techniques such as power spectrum estimation and data
windowing have their origins in the conventional frequentist
or sampling theory approach to statistics (“frequentist” here
refers to the interpretation of probability as giving the long-
run frequency of occurrence of an outcome in repeated tri-
als). But there is another approach to statistical inference—
the Bayesian approach—that leads to different procedures in
many problems. Historically, it is the original approach to sta-
tistical inference, dating back to the work of Laplace, Bayes,
Gauss and their contemporaries in the late 1700s and early
1800s. This approach fell out of favor in the late 1800s, setting
the stage for the development of the frequentist approach by
Fisher, Pearson, Neymann and others in the early 1900s. But
in recent decades there has been a resurgence of interest in the
Bayesian approach, due in large part to the rapid growth of
computing power making feasible the sometimes complicated
calculations it requires.

In this work we explore the implications of the Bayesian ap-
proach for audio testing, viewing testing as a statistical in-
ference problem (parameter estimation). As background, we
first review how the frequentist and Bayesian approaches dif-
fer.

In frequentist statistics, one chooses a default “null” hypoth-
esis, Hy (e.g., a model specifying the signal h(t)), and selects
a statistic S(D) (a function of the data, D) that measures de-
parture of the data from the predictions of Hp. The value of S
found using the observed data, S(Dobs), is used to make infer-
ences (e.g., estimate or constrain a parameter, decide whether
to reject Hp). Using the sampling distribution for the data,
p(D|Hop), one then calculates the distribution for the statis-
tic given the null, p(S|Hp) (analytically or via Monte Carlo
simulation, generating hypothetical data sets and evaluating
S(D) for each simulated data set). Sums and moments of this
distribution provide measures of the long-run performance of
basing inferences on S(D,ps). These include the bias of an
estimator, the confidence level associated with a confidence
region, or the significance level (“false alarm” probability) of
a hypothesis test.

In the Bayesian approach, one must specify at least two com-
peting hypotheses for the data (e.g., a single parameterized
model with the parameters indexing the hypotheses; or two
or more competing models that may or may not have un-
known parameters). One then uses the rules of probability
theory to calculate the posterior probabilities for the hypothe-
ses given the observed data, p(H;|Dops, I), with the hypothe-
ses denoted by H;, and the background information and as-
sumptions used in the calculation denoted by I (including,
e.g., distributional assumptions for the noise). According to
Bayes’s theorem,

p(Hi|Dobsvl) O(p(HiU)p(Dobs'Hi’I): (2)

where p(H;|I) is the prior probability for H;, and
p(Dobs|Hi, I), considered as a function of Hj, is the likeli-
hood for H;. For final inferences, one calculates sums and
moments of (2). For example, to report probabilities for hy-
potheses, one must sum the right hand side to find the nor-
malization constant. Another common example arises when
estimating parameters in a model. Typically, the model, M,
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has both interesting parameters, s (e.g., signal parameters),
and uninteresting parameters, b (e.g., background DC level or
possibly the noise level). The hypotheses needed to predict
the data are indexed jointly by s and b, but ultimately we
are directly interested only in s. Inferences for s alone can
be found by integrating the posterior distribution for s and b
over b, or marginalizing over b:

p(5| Doy M) = / db p(s,b| Do, M); 3)

p(8|Dobs, M) is called the marginal distribution for s.

Two points of departure are apparent from this brief sketch
of the two approaches (see [9, 10] for further discussion of the
following points). The first concerns the choice of statistic.
In the frequentist case, specifying a good statistic for a non-
trivial problem is a difficult art. In the Bayesian approach,
once a hypothesis space is specified, probability theory au-
tomatically identifies what functions of the data to use to
discriminate between the hypotheses (i.e., the functions that
appear in the likelihood). This automatic behavior comes
at the cost of having to specify alternative hypotheses (some
frequentist calculations can proceed without specifying an al-
ternative to the null hypothesis, e.g., goodness-of-fit tests).
Second, the two approaches use the sampling distribution for
the data very differently. In frequentist calculations, the hy-
pothesis is fixed, and sums and integrals are calculated in the
sample space of hypothetical data. In Bayesian calculations,
the data are fixed to the observed values, and sums and in-
tegrals are calculated in the hypothesis or parameter space.
Consequently, even when the same statistics are used in both
approaches, qualitatively different results can be found.

A BAYESIAN LOOK AT THE POWER SPEC-
TRUM

As an illustration of how these differences manifest themselves
in a simple setting, consider the problem of characterizing a
periodic signal h(t) using the uniformly sampled data d; de-
scribed above. For simplicity, we assume independent Gaus-
sian distributions for the noise with zero mean and common
standard deviation, o (white noise).

To formulate a frequentist solution to this problem, we must
choose a statistic. An informal rule that often guides the
choice of statistic in a frequentist calculation might be sum-
marized as follows: “Do to the data what you would do to
the signal that produced it.” Given a periodic function h(t),
an unknown period could be readily identified by examining
the amplitude of the Fourier transform of h(t). This suggests
choosing a statistic based on the squared amplitude of the
DTFT of the data,

2 2
1

+ N ; d; sin(27rfti)} .
(4)
Viewed as a continuous function of the frequency f, we call
I(f) the (continuous) periodogram. In a frequentist calcula-
tion, we will be interested in how it behaves as the values of
the N data vary through repeated observation. Since there
are only N data, there must only be at most N “pieces of
information” in the continuous function I(f). Actually, there
are N/2 4+ 1 (nearest integer if N is odd) values of I(f) at
equally spaced frequencies that determine the entire func-
tion. These values can be found using the discrete Fourier

I(f) = % {Z d; cos(2m ft;)
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transform (DFT) of the data to calculate the power spec-
trum at N/2 + 1 Fourier frequencies, In(f;) = I(f;), where
fj = 2mj /T, with T equal to the duration spanned by the data
and j = 0 to N/2. The Fourier power spectral density (PSD)
that is conventionally used is In(f;), with a possible sub-
traction of an average term, and with various normalizations
adopted (to simplify its statistical properties). For simplicity,
we call In(f;) the PSD.

From the perspective of frequentist statistics, an important
virtue of focusing on the Fourier frequencies is that the val-
ues of I at these frequencies are statistically independent
under the null hypothesis of a constant (perhaps zero) sig-
nal (plus noise). But an unfortunate consequence of there
only being N/2 + 1 Fourier frequencies is that the expected
behavior of the PSD differs depending on whether the un-
known true period of the signal lies exactly on or away from
a Fourier frequency. This is illustrated in Figure 1. Fig-
ure la shows the PSD calculated from data with a signal at a
Fourier frequency and a signal-to-noise of 10; Figure 1b shows
the PSD calculated from similar data, but with the signal
frequency midway between two Fourier frequencies. Spectral
leakage is apparent; when the true frequency is not a Fourier
frequency, power “leaks” to neighboring frequencies, reduc-
ing the amplitude of the PSD peak, and broadening it. This
complicates the interpretation and use of the PSD for both
detection and estimation. Conventional remedies for leakage
use windowing or tapering of the data (essentially a linear av-
eraging process) to reduce leakage at non-Fourier frequencies,
at the expense of spreading the signal power when the signal
is at or near a Fourier frequency. (More detailed discussion
is available in [2, 3, 12, 13]; Priestly [13] gives a thorough
discussion of the statistical underpinnings of frequentist peri-
odogram methods.)

Now consider the problem from the Bayesian perspective. We
cannot try to detect a periodic signal without specifying a
model for one; obviously, there are many possible periodic
models. As a starting point, presume h(t) is a single sinusoid
of unknown amplitude A, frequency f, and phase ¢; then

d; = Acos(2m ft; + ¢) + ny. (5)
This model, M7, has three parameters. The likelihood func-
tion for the parameters, L(f, A, ®) = p(Dobs|f, A, ¢, M1), is,
assuming Gaussians for the error probabilities,

£(f: A7 d)) X exp |:7%X2(f7"47¢):| ) (6)

where

i — cos(<4m i 2
U AS) =Y [di — Acos(2mft; +¢)]* 7

" 0'2
3

To estimate the frequency of a periodic signal, we integrate
the resulting posterior distribution over A and ¢. Using flat
priors for A and ¢, Jaynes (1987) and Bretthorst (1989) found
that for large N,

I(f)}’

P71 Datas My) o exp | 15 (®)
where the continuous periodogram, I(f), arises automatically
from the algebra given the single sinusoid model. If instead of
estimating f we are seeking to detect a signal, we must com-
pare M to an alternative model, My, assuming, say, only a
DC signal is present (with noise). Comparison of these mod-
els requires integration of the likelihoods associated with each
over all parameters.
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Fig. 1: Leakage in the PSD. (a) The PSD (up to 2 kHz) for data simulated with a weak sinusoidal signal and added
Gaussian noise; S/N = 5, with 1024 samples at a 48 kHz sampling rate. The sinusoid frequency is at the Fourier
frequency nearest 1 kHz (1031.25 Hz). (b) As in (a), but the frequency (1008 Hz) is between two Fourier frequencies.

Figure 2 illustrates some aspects of the Bayesian procedure.
Figure 2a shows the continuous periodogram for the same
data used to produce the solid curve in Figure la (signal at
a Fourier frequency). Dots highlight the values at Fourier
frequencies (the values plotted in Fig. 1a). Figure 2b shows
a similar plot, corresponding to Figure 1b (signal at a non-
Fourier frequency). Although the values at Fourier frequen-
cies exhibit very different behavior in Figures la and 1b, the
continuous periodograms are qualitatively very similar. The
insets in the figures show the marginal posterior distributions
for the frequency in each case, calculated using (8). These dis-
tributions are extremely sharp and narrow in both cases, and
very accurately pinpoint the correct frequency. The sidelobes
and other structure evident in the continuous periodograms
are exponentially attenuated. Detection probabilities (for de-
termining whether a periodic signal is present), found by in-
tegrating the exponentiated periodogram over f, similarly ex-
hibit comparable performance for Fourier and non-Fourier fre-
quencies.

We can now see important differences between Bayesian and
frequentist use of Fourier methods. In Bayesian spectrum
analysis, the periodogram arises automatically from consid-
eration of a specific time-domain model—a single sinusoid.
In frequentist statistics it is known that the PSD is closely
related to the residuals found from least-squares fitting of a
sinusoid (e.g., [14]), but the PSD is viewed in a more general
fashion as a somewhat distorted estimate of the (continuous)
power spectrum of the underlying signal. The sources of the
distortion are the finite span of the data, and the discrete
sampling; these cause spectral leakage and other problems.

From the Bayesian viewpoint, there is no spectral leakage
problem associated with non-Fourier frequencies. The con-
tinuous periodogram has a complicated shape for all possible
signal frequencies; the complications are merely hidden if one
focuses only on the Fourier frequencies. This focus arises in
the frequentist approach because of its reliance on sample
space integrals; only periodogram values at Fourier frequen-
cies are independent. Since the Bayesian calculation instead
requires parameter space (e.g., frequency) integrals, the con-
tinuous periodogram is of interest, with Fourier frequencies
playing no special role. Moreover, the complicated shape of

the periodogram, though a consequence of the finite and dis-
crete nature of the data, is not to be viewed as arising from
convolution of an underlying spectrum with window and sam-
pling functions. Rather, the shape conveys information about
how the finite and discrete nature of the data can confuse
one’s inferences about a single sinusoid when noise is signifi-
cant (in which case the sidelobes will not be as attenuated as
in the examples above). The periodogram is interpreted as
the logarithm of the marginal distribution for the frequency
of a simple sinusoidal signal, not as an estimate of the PSD of
the signal. When there is significant evidence for a sinusoid,
the sidelobes and leakage in the periodogram are eliminated,
not by linear smoothing (which decreases resolution), but by
exponential attenuation (which sharpens the peak).

A further consequence of the Bayesian calculation is that the
PSD is identified as the statistic of interest for a signal model
with only a single sinusoid, calling into question the adequacy
of the PSD for more complicated signals. For example, Bret-
thorst ([5]; § 6.3) shows that a model presuming two sinusoids
leads to a different statistic. When the frequencies of the si-
nusoids are well separated, the statistic can be accurately
estimated from the values of the periodogram at the two fre-
quencies of interest (the frequencies produce distinct peaks);
but when the frequencies are close, the periodogram fails. In-
stead one must calculate a nonlinear combination of the real
and imaginary parts of the DTFT evaluated at the two fre-
quencies, not just its squared modulus at a single frequency
(as in the PSD). Using this statistic, the Bayesian procedure
can estimate two frequencies accurately even when they lie
well within a single periodogram peak (see below for an ex-
ample). In other words, for signals more complicated than a
single sinusoid, there is important information in the phases of
the Fourier transform that can be extracted by time-domain
Bayesian modeling.

Bretthorst [6, 7] has extended these calculations to develop
methodology for analysis of NMR data that is now in wide
use. NMR hardware produced by the Varian Corporation
now ships with software implementing Bretthorst’s methods;
the success of these methods was recently reported in the sci-
ence press [8]. The author has developed similar techniques in
astronomy for time series sampled with Poisson rather than
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Fig. 2: Details of the continuous periodogram. (a) Periodogram near its peak, for the data used for Fig. 1(a) (at a
Fourier frequency); dots show values of the (discrete) PSD. Inset shows the posterior distribution for the frequency
found by exponentiating the periodogram scaled by the noise variance. (b) As in (a), but for the data used for

Fig. 1(b) (signal frequency between Fourier frequencies).

Gaussian statistics (see, e.g., [11]), and is currently applying
the Jaynes/Bretthorst methodology to the problem of detect-
ing extrasolar planets using radial velocity and astrometric
measurements of motions of nearby stars (this work is cur-
rently being prepared for publication). The present paper
outlines application of the approach to selected audio test
and measurement tasks that seek to decompose the signal
from the device under test into a finite number of sinusoids.
We call the resulting family of algorithms Bayesian harmonic
analysis (BHA).

OUTLINE OF THE ALGORITHM

A detailed derivation of the general algorithm for Bayesian
harmonic analysis will appear in a forthcoming publication.
It is a special case of more general algorithms derived by Bret-
thorst [5]. For this report, we merely summarize the algorithm
as a “recipe” whose elements should appear familiar to read-
ers acquainted with Fourier analysis and linear least squares.

We model the signal as a sum of M sinusoids,

Z Aq cos(2m fat — da)

h(t)

D [Cacos(2m fat) + Sasin(@nfat)],  (9)

[e3

where in the second line we replaced the original amplitude
and phase with two amplitudes. This simplifies some of the
later mathematics; the original model has two nonlinear pa-
rameters (fo and ¢o) for each harmonic, but the reparam-
eterized model has only one nonlinear parameter, the fre-
quency. We will sometimes denote the frequencies collectively
by f = {fa}, and similarly with the amplitudes A, S, and C.
Note that we use greek indices to label the harmonics (going
over 1 to M), reserving lower case roman indices for the data
(going over 0 to N — 1). Our goal is to develop algorithms
for estimating the frequencies f and the amplitudes S and C
(from which we can easily recover A and ¢).

The sets of values of the cos and sin functions evaluated at
the N sample times can be thought of as the components of
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vectors in an N-dimensional space. Denote these vectors by
Co and §,, with components cq; = cos(2m fat;), etc.. There
are 2M such vectors. To simplify subsequent notation, de-
note them collectively by Ga, where the A index runs from 1
to 2M, and §1 = ¢1, g2 = 51, g3 = Ca, etc.. Note that these
vectors are functions of the frequencies f. Associated with
these vectors are amplitudes By, with By = Cy1, B2 = Sq,
B3 = C>, etc..

The first ingredient we must calculate to implement BHA is
the 2M X 2M metric matrix n for the 2M-dimensional sub-
space spanned by the model vectors. Its components are just
the dot products of the model vectors,

ga-GB

Z 9Ai9Bi-
i

This is a symmetric, positive-definite matrix. Since the vec-
tors are functions of f, the metric is as well. The sums in
equation (10) are sums of products of sines and cosines over
evenly spaced arguments, and can be calculated analytically.

NAB

(10)

The data samples can also be thought of as the components of
a vector in the same N-dimensional space the models live in,
with d = {d;}. The second ingredient we need is the collection
of projections of the models on the data,

d-ga

> digai-

The projections are also functions of f. Since the components
of the g vectors are just cosines and sines, the projections are
just the real and (negative) imaginary parts of the DTFT of
the data. If we evaluate them only at Fourier frequencies, they
are given by the DTF of the data; but the Fourier frequencies
will often form too crude a grid. We can efficiently interpolate
between the Fourier frequencies by using a zero-padded DFT.

With these ingredients—the f-dependent metric and
projections—we can now state the algorithm. For each f of

Py
(11)
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interest, the estimated amplitudes are given by

B=n"'P, (12)

where =1 is the matrix inverse of the metric, and B and

P are 2M-dimensional column vectors with components B 4
and P4. The components of n~1 are the covariances of the
amplitude estimates; in particular, the square roots of the di-
agonal components give the individual uncertainties for each
amplitude. One can combine these to find the uncertainty for
the overall amplitude of each sinusoidal component.

To estimate the frequencies, calculate the sufficient statistic

S(f) =3 BaPa. (13)
A

Use this to calculate the squared residual of the fit to the
data,

ri(f) = di = 5(h), (14)

From this the marginal probability density for the frequencies

is given by
2
wr1D) = Kexp |- )]
202

where K is a normalization constant that can be found by
integrating the remaining factor over f. The most proba-
ble choice of f is the one that maximizes this probability, and
thus the one that minimizes r2(f) or, equivalently, maximizes
S(f). Our uncertainty in f can be quantified by using the dis-
tribution in equation (15) to find a standard deviation for f or
the size of a region that encloses, say, 95% of the probability.

(15)

For M =1 (a single sinusoid), it is straightforward to show
that S(f1) is proportional to the standard Fourier power spec-
trum when N is large (for large N the off-diagonal terms in
the metric become negligible, leaving a simple diagonal ma-
trix; see [5]). In this sense, the Bayesian approach derives the
power spectrum. For M = 2, there are two frequencies to
estimate, and the sufficient statistic is now a two-dimensional
function, S(f1,f2). One can show that when the two fre-
quencies are well-separated (many Fourier frequencies apart),
S(f1, f2) = S(f1) + S(f2). Thus, the usual power spectrum
has all the information needed to get the sufficient statistic.
But when the frequencies are close, this decomposition fails,
and one must use the full algorithm to make accurate infer-
ences of the sinusoid parameters.

EXAMPLE CALCULATIONS

As a simple illustration of BHA in action, we consider here a
simplified version of measurement of SMPTE intermodulation
distortion (IMD). We simulated data containing the SMPTE
test tones at f1 = 60 Hz and f» = 7 kHz with a 4 : 1 am-
plitude ratio; the simulated data also contained a single, very
weak mock distortion product at fs3 = fo — fi = 6940 Hz.
A real system would have other distortion products; here we
limit ourselves to one only to simplify the plots and discussion.
The amplitude of the distortion component was 3x10~5 of the
amplitude of the 7 kHz component, representing IMD distor-
tion at the 0.003% level (—90.46 dB). We simulated data sets
with varying levels of noise. For all of the analyses reported
here, N = 1024 data samples were used at a 48 kHz sampling
rate. Note that this corresponds to less than 22 ms of sam-
pling time, corresponding to just 1.28 periods of the 60 Hz
modulation (a nonintegral number of cycles). The Fourier
spacing is about 47 Hz, so the distortion product power is
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in a frequency bin immediately adjacent to the test signal’s
frequency bin in the FFT of the data.

Figure 3a shows the power spectrum of data simulated with a
signal-to-noise ratio S/N = 80 dB (o for the noise set to 104
times the amplitude of the 7 kHz test tone). The effects of
spectral leakage are evident. There is no obvious indication of
the presence of a distortion product; indeed it seems hopeless
to expect to find such a product at -90 dB in these data.

Figure 3b shows contours of the BHA sufficient statistic as
a function of the two upper frequencies with fi fixed at the
known value of 60 Hz. The contours are chosen so that the
innermost contour bounds a region with more than 99% of
the marginal probability density for the frequencies. Despite
the discouraging appearance of the power spectrum, it is ev-
ident that the two frequencies can be easily resolved by the
Bayesian analysis, with frequency resolution orders of magni-
tude finer than the Fourier spacing for the 7 kHz signal. The
inferred amplitude of the distortion product is 0.0031(5)%,
with the digit in parentheses indicating the uncertainty in
the last digit of the estimate. This agrees very well with the
true value.

Figure 4 shows how the algorithm performs as a function of
S/N. For each of a number of values of S/N, we simulated 20
data sets and used BHA to estimate the IMD level for each;
the estimates are plotted as dots on the Figure. The algorithm
produces useful estimates for S/N as low as 75 dB, which
seems usefully low considering that the distortion product it-
self is below —90 dB and that very short and nonsynchronous
data samples were used. It may appear that at lower S/N the
algorithm misleads the user into thinking a larger distortion
product is present than is actually present. But this is not
so; for each estimate, the algorithm also provides an uncer-
tainty (not shown on the plot). For the low S/N estimates,
the estimated amplitude itself is typically smaller than one or
two times its uncertainty, indicating that no definite distor-
tion product was detected. This criterion can be made more
precise within the Bayesian framework (using Bayesian model
comparison to compare a two-frequency model to the three-
frequency model assumed here). But in practice the informal
rule of rejecting measurements smaller than a few times their
uncertainty is usually adequate.

A future publication will elaborate on these developments,
presenting a more complete derivation of Bayesian harmonic
analysis and details of applications to several other common
audio measurements.

The author gratefully acknowledges many conversations over
the last decade with the late Ed Jaynes and especially with
Larry Bretthorst that clarified his understanding of Bayesian
inference with superposed nonlinear models (of which BHA
is a special case).
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Fig. 3: (a, left) Periodogram of simulated data for the simplified SMPTE IMD measurement with S/N = 80 dB
described in the text. Significant spectral leakage prevents measurement of the distortion product 90 dB below the

7 kHz test signal. (b, right) Contours of the Bayesian posterior probability density for the frequencies of the 7 kHz
test signal and the distortion product at 6940 Hz, using the same data as used for (a).

-70
75 F ° i
]
]
. .
L
-80 & ' -
L] : °
s 4 .
° 3
. 85} ] i . 1
o L4 [}
k=) ! L] .
2 o .
o . .
s L]
- 90} : !
. i s | ' L
° L] . ! L
L]
95 - . H . e
° . .
L]
-100 E
L]
-105 Il Il Il ? Il Il Il Il Il
50 55 60 65 70 75 80 85 90 95 100
SIN (dB)

Fig. 4: Bayesian estimates of the amplitude of a single SMPTE IMD distortion component for data simulated with
various S/N.
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