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What To Do: The Bayesian Recipe

Assess hypotheses by calculating their probabilities
p(Hi| . . .) conditional on known and/or presumed
information using the rules of probability theory.

But . . . what does p(Hi| . . .) mean?



What is distributed in p(x)?

Frequentist: Probability describes “randomness”

Venn, Boole, Fisher, Neymann, Pearson. . .

x is a random variable if it takes different values
throughout an infinite (imaginary?) ensemble of
“identical” sytems/experiments.

p(x) describes how x is distributed throughout the
ensemble.

x is distributed

x

P

Probability ≡ frequency (pdf ≡ histogram).



Bayesian: Probability describes uncertainty

Bernoulli, Laplace, Bayes, Gauss. . .

p(x) describes how probability (plausibility) is distributed
among the possible choices for x in the case at hand.

Analog: a mass density, ρ(x)
P

x

p is distributed

x has a single,
uncertain value

Relationships between probability and frequency were
demonstrated mathematically (large number theorems,
Bayes’s theorem).



Interpreting Abstract Probabilities

Symmetry/Invariance/Counting

• Resolve possibilities into equally plausible “microstates”
using symmetries

• Count microstates in each possibility

Frequency from probability

Bernoulli’s laws of large numbers: In repeated trials,
given P (success), predict

Nsuccess
Ntotal

→ P as N →∞



Probability from frequency

Bayes’s “An Essay Towards Solving a Problem in the
Doctrine of Chances”→ Bayes’s theorem

Probability 6= Frequency!



Bayesian Probability:
A Thermal Analogy

Intuitive notion Quantification Calibration

Hot, cold Temperature, T Cold as ice = 273K

Boiling hot = 373K

uncertainty Probability, P Certainty = 0, 1

p = 1/36:

plausible as “snake’s eyes”

p = 1/1024:

plausible as 10 heads



The Bayesian Recipe

Assess hypotheses by calculating their probabilities
p(Hi| . . .) conditional on known and/or presumed
information using the rules of probability theory.

Probability Theory Axioms (“grammar”):

‘OR’ (sum rule) P (H1 +H2|I) = P (H1|I) + P (H2|I)
−P (H1, H2|I)

‘AND’ (product rule) P (H1, D|I) = P (H1|I)P (D|H1, I)

= P (D|I)P (H1|D, I)



Direct Probabilities (“vocabulary”):

• Certainty: If A is certainly true given B, P (A|B) = 1

• Falsity: If A is certainly false given B, P (A|B) = 0

• Other rules exist for more complicated types of
information; for example, invariance arguments,
maximum (information) entropy, limit theorems (CLT; tying
probabilities to frequencies), bold (or desperate!)
presumption. . .



Important Theorems

Normalization:

For exclusive, exhaustive Hi

∑

i

P (Hi| · · ·) = 1

Bayes’s Theorem:

P (Hi|D, I) = P (Hi|I)
P (D|Hi, I)

P (D|I)

posterior ∝ prior × likelihood



Marginalization:

Note that for exclusive, exhaustive {Bi},
∑

i

P (A,Bi|I) =
∑

i

P (Bi|A, I)P (A|I) = P (A|I)

=
∑

i

P (Bi|I)P (A|Bi, I)

→ We can use {Bi} as a “basis” to get P (A|I).
Example: Take A = D, Bi = Hi; then

P (D|I) =
∑

i

P (D,Hi|I)

=
∑

i

P (Hi|I)P (D|Hi, I)

prior predictive for D = Average likelihood for Hi



Inference With Parametric Models
Parameter Estimation

I = Model M with parameters θ (+ any add’l info)

Hi = statements about θ; e.g. “θ ∈ [2.5, 3.5],” or “θ > 0”

Probability for any such statement can be found using a
probability density function (pdf) for θ:

P (θ ∈ [θ, θ + dθ]| · · ·) = f(θ)dθ

= p(θ| · · ·)dθ



Posterior probability density:

p(θ|D,M) =
p(θ|M) L(θ)

∫

dθ p(θ|M) L(θ)

Summaries of posterior:

• “Best fit” values: mode, posterior mean

• Uncertainties: Credible regions (e.g., HPD regions)

• Marginal distributions:
I Interesting parameters ψ, nuisance parameters φ
I Marginal dist’n for ψ:

p(ψ|D,M) =

∫

dφ p(ψ, φ|D,M)

Generalizes “propagation of errors”



Model Uncertainty: Model Comparison

I = (M1 +M2 + . . .) — Specify a set of models.
Hi =Mi — Hypothesis chooses a model.

Posterior probability for a model:

p(Mi|D, I) = p(Mi|I)
p(D|Mi, I)

p(D|I)
∝ p(Mi)L(Mi)

But L(Mi) = p(D|Mi) =
∫

dθi p(θi|Mi)p(D|θi,Mi).

Likelihood for model = Average likelihood for its
parameters

L(Mi) = 〈L(θi)〉



Model Uncertainty: Model Averaging

Models have a common subset of interesting
parameters, ψ.

Each has different set of nuisance parameters φi (or
different prior info about them).

Hi = statements about ψ.

Calculate posterior PDF for ψ:

p(ψ|D, I) =
∑

i

p(ψ|D,Mi)p(Mi|D, I)

∝
∑

i

L(Mi)

∫

dθi p(ψ, φi|D,Mi)

The model choice is itself a (discrete) nuisance
parameter here.



What’s the Difference?
Bayesian Inference (BI):

• Specify at least two competing hypotheses and priors

• Calculate their probabilities using probability theory
I Parameter estimation:

p(θ|D,M) =
p(θ|M)L(θ)

∫

dθ p(θ|M)L(θ)

I Model Comparison:

O ∝
∫

dθ1 p(θ1|M1)L(θ1)
∫

dθ2 p(θ2|M2)L(θ2)



Frequentist Statistics (FS):

• Specify null hypothesis H0 such that rejecting it implies an
interesting effect is present

• Specify statistic S(D) that measures departure of the
data from null expectations

• Calculate p(S|H0) =
∫

dD p(D|H0)δ[S − S(D)]

(e.g. by Monte Carlo simulation of data)

• Evaluate S(Dobs); decide whether to reject H0 based on,
e.g.,

∫

>Sobs
dS p(S|H0)



Crucial Distinctions
The role of subjectivity:

BI exchanges (implicit) subjectivity in the choice of null &
statistic for (explicit) subjectivity in the specification of
alternatives.

• Makes assumptions explicit
• Guides specification of further alternatives that

generalize the analysis
• Automates identification of statistics:

I BI is a problem-solving approach
I FS is a solution-characterization approach

The types of mathematical calculations:

• BI requires integrals over hypothesis/parameter space
• FS requires integrals over sample/data space



An Example Confidence/Credible Region

Infer µ : xi = µ+ εi; p(xi|µ,M) =
1

σ
√
2π

exp

[

− (xi − µ)2
2σ2

]

→ L(µ) ∝ exp

[

− (x̄− µ)2
2(σ/

√
N)2

]

68% confidence region: x̄± σ/√N
∫

dNxi · · · =
∫

d(angles)
∫ x̄+σ/

√
N

x̄−σ/
√
N

dx̄ · · · = 0.683

68% credible region: x̄± σ/√N

∫ x̄+σ/
√
N

x̄−σ/
√
N
dµ exp

[

− (x̄−µ)2
2(σ/

√
N)2

]

∫∞
−∞ dµ exp

[

− (x̄−µ)2
2(σ/

√
N)2

] ≈ 0.683



Difficulty of Parameter Space Integrals

Inference with independent data:

Consider N data, D = {xi}; and model M with m
parameters (m¿ N).

Suppose L(θ) = p(x1|θ) p(x2|θ) · · · p(xN |θ).

Frequentist integrals:

∫

dx1 p(x1|θ)
∫

dx2 p(x2|θ) · · ·
∫

dxN p(xN |θ)f(D)

Seek integrals with properties independent of θ. Such
rigorous frequentist integrals usually can’t be found.

Approximate (e.g., asymptotic) results are easy via Monte
Carlo (due to independence).



Bayesian integrals:

∫

dmθ g(θ) p(θ|M)L(θ)

Such integrals are sometimes easy if analytic (especially
in low dimensions).

Asymptotic approximations require ingredients familiar
from frequentist calculations.

For large m (> 4 is often enough!) the integrals are often
very challenging because of correlations (lack of
independence) in parameter space.



How To Do It
Tools for Bayesian Calculation

• Asymptotic (large N) approximation: Laplace
approximation

• Low-D Models (m<∼10):
I Randomized Quadrature: Quadrature + dithering
I Subregion-Adaptive Quadrature: ADAPT,
DCUHRE, BAYESPACK

I Adaptive Monte Carlo: VEGAS, miser

• High-D Models (m ∼ 5–106): Posterior Sampling
I Rejection method
I Markov Chain Monte Carlo (MCMC)



Subregion-Adaptive Quadrature

Concentrate points where most of the probability lies via
recursion. Use a pair of lattice rules (for error estim’n),
subdivide regions w/ large error.

ADAPT in action (galaxy polarizations)



Tools for Bayesian Calculation

• Asymptotic (large N) approximation: Laplace
approximation

• Low-D Models (m<∼10):
I Randomized Quadrature: Quadrature + dithering
I Subregion-Adaptive Quadrature: ADAPT,
DCUHRE, BAYESPACK

I Adaptive Monte Carlo: VEGAS, miser

• High-D Models (m ∼ 5–106): Posterior Sampling
I Rejection method
I Markov Chain Monte Carlo (MCMC)



Posterior Sampling

General Approach:

Draw samples of θ, φ from p(θ, φ|D,M); then:

• Integrals, moments easily found via
∑

i f(θi, φi)

• {θi} are samples from p(θ|D,M)

But how can we obtain {θi, φi}?

Rejection Method:
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Hard to find efficient comparison function if m>∼6.



Markov Chain Monte Carlo (MCMC)

Let − Λ(θ) = ln [p(θ|M) p(D|θ,M)]

Then p(θ|D,M) =
e−Λ(θ)

Z
Z ≡

∫

dθ e−Λ(θ)

Bayesian integration looks like problems addressed in
computational statmech and Euclidean QFT.

Markov chain methods are standard: Metropolis;
Metropolis-Hastings; molecular dynamics; hybrid Monte
Carlo; simulated annealing



The MCMC Recipe:

Create a “time series” of samples θi from p(θ):

• Draw a candidate θi+1 from a kernel T (θi+1|θi)
• Enforce “detailed balance” by accepting with p = α

α(θi+1|θi) = min

[

1,
T (θi|θi+1)p(θi+1)
T (θi+1|θi)p(θi)

]

Choosing T to minimize “burn-in” and corr’ns is an art.

Coupled, parallel chains eliminate this for select problems
(“exact sampling”).



Why Do It
• What you get

• What you avoid

• Foundations



What you get

• Probabilities for hypotheses
I Straightforward interpretation
I Identify weak experiments
I Crucial for global (hierarchical) analyses

(e.g., pop’n studies)
I Forces analyst to be explicit about assumptions

• Handle Nuisance parameters

• Valid for all sample sizes

• Handles multimodality

• Quantitative Occam’s razor

• Model comparison for > 2 alternatives; needn’t be
nested



And there’s more . . .

• Use prior info/combine experiments

• Systematic error treatable

• Straightforward experimental design

• Good frequentist properties:
I Consistent
I Calibrated—E.g., if you choose a model only if

odds > 100, you will be right ≈ 99% of the time
I Coverage as good or better than common

methods

• Unity/simplicity



What you avoid

• Hidden subjectivity/arbitrariness

• Dependence on “stopping rules”

• Recognizable subsets

• Defining number of “independent” trials in searches

• Inconsistency & incoherence (e.g., inadmissable
estimators)

• Inconsistency with prior information

• Complexity of interpretation (e.g., significance vs.
sample size)



Foundations
“Many Ways To Bayes”

• Consistency with logic + internal consistency→ BI
(Cox; Jaynes; Garrett)

• “Coherence”/Optimal betting→ BI (Ramsey; DeFinetti; Wald)

• Avoiding recognizable subsets→ BI (Cornfield)

• Avoiding stopping rule problems→ L-principle
(Birnbaum; Berger & Wolpert)

• Algorithmic information theory→ BI
(Rissanen; Wallace & Freeman)

• Optimal information processing→ BI (Good; Zellner)

There is probably something to all of this!



What the theorems mean

When reporting numbers ordering hypotheses, values
must be consistent with calculus of probabilities for
hypotheses.

Many frequentist methods satisfy this requirement.

Role of priors

Priors are not fundamental!

Priors are analogous to initial conditions for ODEs.

• Sometimes crucial
• Sometimes a nuisance



The On/Off Problem
Basic problem

• Look off-source; unknown background rate b
Count Noff photons in interval Toff

• Look on-source; rate is r = s+ b with unknown signal s
Count Non photons in interval Ton

• Infer s

Conventional solution

b̂ = Noff/Toff ; σb =
√
Noff/Toff

r̂ = Non/Ton − b̂; σr =
√
Non/Ton

ŝ = r̂ − b̂; σs =
√

σ2r + σ2b

But ŝ can be negative!



Examples

Spectra of X-Ray Sources
Bassani et al. 1989 Di Salvo et al. 2001



Spectrum of Ultrahigh-Energy Cosmic Rays
Nagano & Watson 2000



Bayesian Solution

From off-source data:

p(b|Noff) =
Toff(bToff)

Noffe−bToff

Noff !

Use as a prior to analyze on-source data:

p(s|Non, Noff) =

∫

db p(s, b | Non, Noff)

∝
∫

db (s+ b)NonbNoffe−sTone−b(Ton+Toff)

=
Non
∑

i=0

Ci
Ton(sTon)

ie−sTon

i!

Can show that Ci = probability that i on-source counts
are indeed from the source.



About that flat prior . . .

Bayes’s justification for a flat prior

Not that ignorance of r → p(r|I) = C

Require (discrete) predictive distribution to be flat:

p(n|I) =

∫

dr p(r|I)p(n|r, I) = C

→ p(r|I) = C

A convention

• Use a flat prior for a rate that may be zero

• Use a log-flat prior (∝ 1/r) for a nonzero scale parameter

• Use proper (normalized, bounded) priors

• Plot posterior with abscissa that makes prior flat



Supernova Neutrinos

Tarantula Nebula in the LMC, ca. Feb 1987



Neutrinos from Supernova SN 1987A



Why Reconsider the SN Neutrinos?

Advances in astrophysics

Two scenarios for Type II SN: prompt and delayed

’87: Delayed scenario new, poorly understood
Prompt scenario problematic, but favored
→ Most analyses presumed prompt scenario

’90s: Consensus that prompt shock fails
Better understanding of delayed scenario

Advances in statistics

’89: First applications of Bayesian methods to modern
astrophysical problems

’90s: Diverse Bayesian analyses of Poisson processes
Better computational methods



Likelihood for SN Neutrino Data
Models for neutrino rate spectrum

R(ε, t) =

[

Emitted
ν̄e signal

]

×
[

Propagation
to earth

]

×
[

Interaction
w/ detector

]

= Astrophysics × Particle
physics

× Instrument
properties

Models have ≥ 6 parameters; 3+ are nuisance
parameters.



Ideal Observations

Detect all captured ν̄e with precise (ε, t)

t

ε
●

●

●

●

●

●

●

●

●

∆ε
t∆

L(θ) =
[

∏

p(non-dtxns)
]

×
[

∏

p(dtxns)
]

= exp

[

−
∫

dt

∫

dεR(ε, t)

]

∏

i

R(εi, ti)



Real Observations

• Detection efficiency η(ε) < 1

• εi measured with significant uncertainty

Let `i(ε) = p(di|ε, I); “individual event likelihood”

L(θ) = exp

[

−
∫

dt

∫

dε η(ε)R(ε, t)

]

∏

i

∫

dεi `i(ε)R(ε, ti)

Instrument background rates and dead time further
complicate L.



Inferences for Signal Models

Two-component Model (Delayed Scenario)

Odds favors delayed scenario by ∼ 102 with conservative
priors; by ∼ 103 with informative priors.



Prompt vs. Delayed SN Models

Nascent Neutron Star Properties

Prompt shock scenario Delayed shock scenario

First direct evidence favoring delayed scenario.



Electron Antineutrino Rest Mass
Marginal Posterior for mν̄e



Summary

Overview of Bayesian inference

• What to do
I Calculate probabilities for hypotheses

I Integrate over parameter space

• How to do it—many (unfamiliar?) tools

• Why do it this way—pragmatic & principled reasons

Astrophysical examples

• The “on/off” problem—simple problem, new solution

• Supernova Neutrinos—A lot of info from few data!
I Strongly favor delayed SN scenario

I Constrain neutrino mass <∼6 eV



That’s all, folks!



An Automatic Occam’s Razor

Predictive probabilities can favor simpler models:

p(D|Mi) =

∫

dθi p(θi|M) L(θi)

Dobs
D

P(D|H)

Complicated H

Simple H



The Occam Factor:
p, L

θ
∆θ

δθ
Prior

Likelihood

p(D|Mi) =

∫

dθi p(θi|M) L(θi) ≈ p(θ̂i|M)L(θ̂i)δθi

≈ L(θ̂i)
δθi
∆θi

= Maximum Likelihood×Occam Factor

Models with more parameters often make the data more
probable— for the best fit.

Occam factor penalizes models for “wasted” volume of
parameter space.



Bayesian Calibration

Credible region ∆(D) with probability P :

P =

∫

∆(D)
dθ p(θ|I)p(D|θ, I)

p(D|I)

What fraction of the time, Q, will the true θ be in ∆(D)?

1. Draw θ from p(θ|I)
2. Simulate data from p(D|θ, I)
3. Calculate ∆(D) and see if θ ∈ ∆(D)

Q =

∫

dθ p(θ|I)
∫

dD p(D|θ, I) [θ ∈ ∆(D)]



Q =

∫

dθ p(θ|I)
∫

dD p(D|θ, I) [θ ∈ ∆(D)]

Note appearance of p(θ,D|I) = p(θ|D, I)p(D|I):

Q =

∫

dD

∫

dθ p(θ|D, I) p(D|I) [θ ∈ ∆(D)]

=

∫

dD p(D|I)
∫

∆(D)
dθ p(θ|D, I)

= P

∫

dD p(D|I)

= P

Bayesian inferences are “calibrated.” Always.
Calibration is with respect to choice of prior & L.



Real-Life Confidence Regions

Theoretical confidence regions

A rule δ(D) gives a region with covering probability:

Cδ(θ) =

∫

dD p(D|θ, I) [θ ∈ δ(D)]

It’s a confidence region iff C(θ) = P , a constant.

Such rules almost never exist in practice!



Average coverage

Intuition suggests reporting some kind of average
performance:

∫

dθ f(θ)Cδ(θ)

Recall the Bayesian calibration condition:

P =

∫

dθ p(θ|I)
∫

dD p(D|θ, I) [θ ∈ ∆(D)]

=

∫

dθ p(θ|I)Cδ(θ)

provided we take δ(D) = ∆(D).

• If C∆(θ) = P , the credible region is a confidence
region.

• Otherwise, the credible region accounts for a priori
uncertainty in θ—we need priors for this.



A Frequentist Confidence Region

Infer µ : xi = µ+ εi; p(xi|µ,M) =
1

σ
√
2π

exp

[

−(xi − µ)2
2σ2

]

2

x1

p(x ,x |   )µ21

x 1x

2x

µ

68% confidence region: x̄± σ/√N



Monte Carlo Algorithm:

1. Pick a null hypothesis, µ = µ0

2. Draw xi ∼ N(µ0, σ
2) for i = 1 to N

3. Find x̄; check if µ0 ∈ x̄± σ/
√
N

4. Repeat M >> 1 times; report fraction (≈ 0.683)
5. Hope result is independent of µ0!

A Monte Carlo calculation of the N-dimensional integral:

∫

dx1
e−

(x1−µ)
2

2σ2

σ
√
2π
· · ·

∫

dxN
e−

(xN−µ)
2

2σ2

σ
√
2π

× [µ0 ∈ x̄± σ/
√
N ]

=

∫

d(angles)
∫ x̄+σ/

√
N

x̄−σ/
√
N

dx̄ · · · ≈ 0.683



A Bayesian Credible Region

Infer µ : Flat prior; L(µ) ∝ exp

[

− (x̄− µ)2
2(σ/
√
N)2

]

2

x1

p(x ,x |   )µ21

L(   )µ

x

�����

µ

µ

�����
68% credible region: x̄± σ/√N



68% credible region: x̄± σ/√N

∫ x̄+σ/
√
N

x̄−σ/
√
N dµ exp

[

− (x̄−µ)2
2(σ/

√
N)2

]

∫∞
−∞ dµ exp

[

− (x̄−µ)2
2(σ/

√
N)2

] ≈ 0.683

Equivalent to a Monte Carlo calculation of a 1-d integral:

1. Draw µ from N(x̄, σ2/N) (i.e., prior ×L)
2. Repeat M >> 1 times; histogram
3. Report most probable 68.3% region

This simulation uses hypothetical hypotheses rather than
hypothetical data.
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