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Outline

• Parametric Bayesian inference
– Probability theory

– Parameter estimation

– Model uncertainty

• What’s different about it?

• Bayesian calculation
– Asymptotics: Laplace approximations

– Quadrature

– Posterior sampling and MCMC



Bayesian Statistical Inference:
Quantifying Uncertainty

Inference:

• Reasoning from one proposition to another

• Deductive Inference: Strong syllogisms, logic; quantify with Boolean
algebra

• Plausible Inference: Weak syllogisms; quantify with probability

Propositions of interest to us are descriptions of data (D),
and hypotheses about the data, Hi

Statistical:

• Statistic: Summary of what data say about a particular ques-
tion/issue

• Statistic = f(D) (value, set, etc.); implicitly also f(question)

• Statistic is chosen & interpreted via probability theory

• Statistical inference = Plausible inference using probability theory

Bayesian (vs. Frequentist):

What are valid arguments for probabilities P (A| · · ·)?

• Bayesian: Any propositions are valid (in principle)

• Frequentist: Only propositions about random events (data)

How should we use probability theory to do statistics?

• Bayesian: Calculate P (Hi|D, · · ·) vs. Hi with D = Dobs

• Frequentist: Create methods for choosing among Hi with
good long run behavior determined by examining P (D|Hi)
for all possible hypothetical D; apply method to Dobs



What is distributed in p(x)?
Bayesian: Probability describes uncertainty

Bernoulli, Laplace, Bayes, Gauss. . .

p(x) describes how probability (plausibility) is distributed
among the possible choices for x in the case at hand.
Analog: a mass density, ρ(x)

P

x

p is distributed

x has a single,
uncertain value

Relationships between probability and frequency were
demonstrated mathematically (large number theorems,
Bayes’s theorem).

Frequentist: Probability describes “randomness”

Venn, Boole, Fisher, Neymann, Pearson. . .

x is a random variable if it takes different values through-
out an infinite (imaginary?) ensemble of “identical”
sytems/experiments.

p(x) describes how x is distributed throughout the infi-
nite ensemble.

x is distributed

x

P

Probability ≡ frequency.



Interpreting Abstract Probabilities

Symmetry/Invariance/Counting

•Resolve possibilities into equally plausible “microstates”
using symmetries
•Count microstates in each possibility

Frequency from probability

Bernoulli’s laws of large numbers: In repeated trials,
given P (success), predict

Nsuccess

Ntotal
→ P as N →∞

Probability from frequency

Bayes’s “An Essay Towards Solving a Problem in the
Doctrine of Chances” → Bayes’s theorem

Probability 6= Frequency!

Bayesian Probability:
A Thermal Analogy

Intuitive notion Quantification Calibration

Hot, cold Temperature, T Cold as ice = 273K
Boiling hot = 373K

uncertainty Probability, P Certainty = 0, 1

p = 1/36:
plausible as “snake’s eyes”

p = 1/1024:
plausible as 10 heads



The Bayesian Recipe

Assess hypotheses by calculating their probabilities
p(Hi| . . .) conditional on known and/or presumed in-
formation using the rules of probability theory.

Probability Theory Axioms (“grammar”):

‘OR’ (sum rule) P (H1+H2|I) = P (H1|I) + P (H2|I)
−P (H1, H2|I)

‘AND’ (product rule) P (H1, D|I) = P (H1|I)P (D|H1, I)

= P (D|I)P (H1|D, I)

Direct Probabilities (“vocabulary”):

• Certainty: If A is certainly true given B, P (A|B) = 1

• Falsity: If A is certainly false given B, P (A|B) = 0

• Other rules exist for more complicated types of informa-
tion; for example, invariance arguments, maximum (in-
formation) entropy, limit theorems (tying probabilities
to frequencies), bold (or desperate!) presumption. . .



Important Theorems

Normalization:

For exclusive, exhaustive Hi

∑

i

P (Hi| · · ·) = 1

Bayes’s Theorem:

P (Hi|D, I) = P (Hi|I)
P (D|Hi, I)

P (D|I)

posterior ∝ prior × likelihood

Marginalization:

Note that for exclusive, exhaustive {Bi},
∑

i

P (A,Bi|I) =
∑

i

P (Bi|A, I)P (A|I) = P (A|I)

=
∑

i

P (Bi|I)P (A|Bi, I)

→ We can use {Bi} as a “basis” to get P (A|I). This is
sometimes called “extending the conversation.”

Example: Take A = D, Bi = Hi; then

P (D|I) =
∑

i

P (D,Hi|I)

=
∑

i

P (Hi|I)P (D|Hi, I)

prior predictive for D = Average likelihood for Hi



Inference With Parametric Models

Parameter Estimation

I = Model M with parameters θ (+ any add’l info)

Hi = statements about θ; e.g. “θ ∈ [2.5,3.5],” or “θ > 0”

Probability for any such statement can be found using a
probability density function (PDF) for θ:

P (θ ∈ [θ, θ+ dθ]| · · ·) = f(θ)dθ

= p(θ| · · ·)dθ

Posterior probability density:

p(θ|D,M) = p(θ|M) L(θ)
∫

dθ p(θ|M) L(θ)

Summaries of posterior:

• “Best fit” values: mode, posterior mean

• Uncertainties: Credible regions

• Marginal distributions:
– Interesting parameters ψ, nuisance parameters φ
– Marginal dist’n for ψ:

p(ψ|D,M) =

∫

dφ p(ψ, φ|D,M)

Generalizes “propagation of errors”



Model Uncertainty: Model Comparison

I = (M1+M2+ . . .) — Specify a set of models.

Hi =Mi — Hypothesis chooses a model.

Posterior probability for a model:

p(Mi|D, I) = p(Mi|I)
p(D|Mi, I)

p(D|I)
∝ p(Mi)L(Mi)

But L(Mi) = p(D|Mi) =
∫

dθi p(θi|Mi)p(D|θi,Mi).

Likelihood for model = Average likelihood for its
parameters

L(Mi) = 〈L(θi)〉

Posterior odds and Bayes factors:

Discrete nature of hypothesis space makes odds conve-
nient:

Oij ≡
p(Mi|D, I)
p(Mj|D, I)

=
p(Mi|I)
p(Mj|I)

× p(D|Mi)

p(D|Mj)

= Prior Odds×Bayes Factor Bij

Often take models to be equally probable a priori
→ Oij = Bij.



Model Uncertainty: Model Averaging

Models have a common subset of interesting pa-
rameters, ψ.

Each has different set of nuisance parameters φi
(or different prior info about them).

Hi = statements about ψ

Calculate posterior PDF for ψ:

p(ψ|D, I) =
∑

i

p(ψ|D,Mi)p(Mi|D, I)

∝
∑

i

L(Mi)
∫

dθi p(ψ, φi|D,Mi)

The model choice is itself a (discrete) nuisance
parameter here.



An Automatic Occam’s Razor

Predictive probabilities prefer simpler models:

Dobs
D

P(D|H)

Complicated H

Simple H

The Occam Factor:

p, L

θ
∆θ

δθ
Prior

Likelihood

p(D|Mi) =

∫

dθi p(θi|M) L(θi)

≈ p(θ̂i|M)L(θ̂i)δθi
≈ L(θ̂i)

δθi

∆θi
= Maximum Likelihood×Occam Factor

Models with more parameters usually make the data
more probable for the best fit.

The Occam factor penalizes models for “wasted” vol-
ume of parameter space.



Comparison of Bayesian &
Frequentist Approaches

Bayesian Inference (BI):

• Specify at least two competing hypotheses and priors

• Calculate their probabilities using the rules of probability
theory

– Parameter estimation:

p(θ|D,M) =
p(θ|M)L(θ)

∫

dθ p(θ|M)L(θ)

– Model Comparison:

O ∝
∫

dθ1 p(θ1|M1)L(θ1)
∫

dθ2 p(θ2|M2)L(θ2)

Frequentist Statistics (FS):

• Specify null hypothesis H0 such that rejecting it implies
an interesting effect is present

• Specify statistic S(D) that measures departure of the
data from null expectations

• Calculate p(S|H0) =
∫

dD p(D|H0)δ[S − S(D)]
(e.g. by Monte Carlo simulation of data)

• Evaluate S(Dobs); decide whether to reject H0 based on,
e.g.,

∫

>Sobs
dS p(S|H0)



Crucial Distinctions

The role of subjectivity:

BI exchanges (implicit) subjectivity in the choice of null
& statistic for (explicit) subjectivity in the specification
of alternatives.

• Makes assumptions explicit

• Guides specification of further alternatives that gen-
eralize the analysis

• Automates identification of statistics:

BI is a problem-solving approach

FS is a solution-characterization approach

The types of mathematical calculations:

The two approaches require calculation of very different
sums/averages.

• BI requires integrals over hypothesis/parameter space

• FS requires integrals over sample/data space



A Frequentist Confidence Region

Infer µ : xi = µ+ εi; p(xi|µ,M) =
1

σ
√
2π

exp

[

−(xi − µ)
2

2σ2

]

2

x1

p(x ,x |   )µ21

x 1x

2x

µ

68% confidence region: x̄± σ/√N

1. Pick a null hypothesis, µ = µ0

2. Draw xi ∼ N(µ0, σ2) for i = 1 to N

3. Find x̄; check if µ0 ∈ x̄± σ/
√
N

4. Repeat M >> 1 times; report fraction (≈ 0.683)

5. Hope result is independent of µ0!

A Monte Carlo calculation of the N-dimensional integral:

∫

dx1
e−

(x1−µ)2

2σ2

σ
√
2π
· · ·

∫

dxN
e−

(xN−µ)2

2σ2

σ
√
2π
× [µ0 ∈ x̄± σ/

√
N ] ≈ 0.683



A Bayesian Credible Region

Infer µ : Flat prior; L(µ) ∝ exp

[

− (x̄− µ)2
2(σ/

√
N)2

]

2

x1

p(x ,x |   )µ21

L(   )µ

x
���
�

µ

µ

���
�

68% credible region: x̄± σ/√N

∫ x̄−σ/√N
x̄−σ/√N dµ exp

[

− (x̄−µ)2

2(σ/
√
N)2

]

∫∞
−∞ dµ exp

[

− (x̄−µ)2

2(σ/
√
N)2

] ≈ 0.683

Equivalent to a Monte Carlo calculation of a 1-d integral:

1. Draw µ from N(x̄, σ2/N) (i.e., prior ×L)

2. Repeat M >> 1 times; histogram

3. Report most probable 68.3% region

This simulation uses hypothetical hypotheses rather than
hypothetical data.



When Will Results Differ?

When models are linear in the parameters and

have additive Gaussian noise, frequentist results

are identical to Bayesian results with flat priors.

This mathematical coincidence will not occur if:

• The choice of statistic is not obvious
(no sufficient statistics)

• There is no identity between parameter space
and sample space integrals (due to nonlinearity

or the form of the sampling distribution)

• There is important prior information

In addition, some problems can be quantitatively

addressed only from the Bayesian viewpoint; e.g.,

systematic error.



Benefits of Calculating
in Parameter Space

• Provides probabilities for hypotheses
– Straightforward interpretation
– Identifies weak experiments
– Crucial for global (hierarchical) analyses

(e.g., pop’n studies)
– Allows analysis of systematic error models
– Forces analyst to be explicit about assumptions

• Handles nuisance parameters via marginalization

• Automatic Occam’s razor

• Model comparison for > 2 alternatives; needn’t be nested

• Valid for all sample sizes

• Handles multimodality

• Avoids inconsistency & incoherence

• Automated identification of statistics

• Accounts for prior information (including other data)

• Avoids problems with sample space choice:
– Dependence of results on “stopping rules”
– Recognizable subsets
– Defining number of “independent” trials in searches

• Good frequentist properties:
– Consistent
– Calibrated—E.g., if you choose a model only if B >

100, you will be right ≈ 99% of the time
– Coverage as good or better than common methods



Challenges from Calculating
in Parameter Space

Inference with independent data:

Consider N data, D = {xi}; and model M with m pa-
rameters (m¿ N).

Suppose L(θ) = p(x1|θ) p(x2|θ) · · · p(xN |θ).

Frequentist integrals:

∫

dx1 p(x1|θ)
∫

dx2 p(x2|θ) · · ·
∫

dxN p(xN |θ)f(D)

Seek integrals with properties independent of θ. Such
rigorous frequentist integrals usually cannot be identi-
fied.

Approximate results are easy via Monte Carlo (due to
independence).

Bayesian integrals:

∫

dmθ g(θ) p(θ|M)L(θ)

Such integrals are sometimes easy if analytic (especially
in low dimensions).

Asymptotic approximations require ingredients familiar
from frequentist calculations.

For large m (> 4 is often enough!) the integrals are
often very challenging because of correlations (lack of
independence) in parameter space.



Bayesian Integrals:
Laplace Approximations

Suppose posterior has a single dominant (interior) mode at
θ̂, with m parameters

→ p(θ|M)L(θ) ≈ p(θ̂|M)L(θ̂) exp
[

−1
2
(θ − θ̂)I(θ − θ̂)

]

where I =
∂2 ln[p(θ|M)L(θ)]

∂2θ

∣

∣

∣

θ̂
, Info matrix

Bayes Factors:
∫

dθ p(θ|M)L(θ) ≈ p(θ̂|M)L(θ̂) (2π)m/2|I|−1/2

Marginals:

Profile likelihood Lp(θ) ≡ max
φ
L(θ, φ)

→ p(θ|D,M) ∝∼ Lp(θ)|I(θ)|−1/2

Uses same ingredients as common frequentist calculations

Uses ratios → approximation is often O(1/N)

Using “unit info prior” in i.i.d. setting → Schwarz criterion;
Bayesian Information Criterion (BIC)

lnB ≈ lnL(θ̂)− lnL(θ̂, φ̂) + 1

2
(m2 −m1) lnN



Low-D Models (m<∼10):
Quadrature & MC Integration

Quadrature/Cubature Rules:

∫

dθ f(θ) ≈
∑

i

wi f(θi) +O(n−2) or O(n−4)

Smoothness → fast convergence in 1-D

Curse of dimensionality → O(n−2/m) or O(n−4/m) in m-D

Monte Carlo Integration:

∫

dθ g(θ)p(θ) ≈
∑

θi∼p(θ)
g(θi) +O(n−1/2)

[

∼ O(n−1) with
quasi-MC

]

Ignores smoothness → poor performance in 1-D

Avoids curse: O(n−1/2) regardless of dimension

Practical problem: multiplier is large (variance of g)
→ hard if m>∼6 (need good “importance sampler” p)



Randomized Quadrature:

Quadrature rule + random dithering of abscissas
→ get benefits of both methods

Most useful in settings resembling Gaussian quadrature

Subregion-Adaptive Quadrature/MC:

Concentrate points where most of the probability lies
via recursion

Adaptive quadrature: Use a pair of lattice rules (for
error estim’n), subdivide regions w/ large error

• ADAPT (Genz & Malik) at GAMS (gams.nist.gov)

• BAYESPACK (Genz; Genz & Kass)—many methods
Automatic; regularly used up to m ≈ 20

Adaptive Monte Carlo: Build the importance sampler
on-the-fly (e.g., VEGAS, miser in Numerical Recipes)

ADAPT in action (galaxy polarizations)



High-D Models (m ∼ 5–106):
Posterior Sampling

General Approach:

Draw samples of θ, φ from p(θ, φ|D,M); then:

• Integrals, moments easily found via
∑

i f(θi, φi)

• {θi} are samples from p(θ|D,M)

But how can we obtain {θi, φi}?

Rejection Method:
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Hard to find efficient comparison function if m>∼6

A 2-D marginal of a 6-D posterior



Markov Chain Monte Carlo (MCMC):

Let − Λ(θ) = ln [p(θ|M) p(D|θ,M)]

Then p(θ|D,M) =
e−Λ(θ)

Z
Z ≡

∫

dθ e−Λ(θ)

Bayesian integration looks like problems addressed in
computational statmech and Euclidean QFT!

Markov chain methods are standard: Metropolis; Metropolis-
Hastings; molecular dynamics; hybrid Monte Carlo; sim-
ulated annealing

The MCMC Recipe:

Create a “time series” of samples θi from p(θ):

• Draw a candidate θi+1 from a kernel T (θi+1|θi)

• Enforce “detailed balance” by accepting with p = α

α(θi+1|θi) = min

[

1,
T (θi|θi+1)p(θi+1)

T (θi+1|θi)p(θi)

]

Choosing T to minimize “burn-in” and corr’ns is an art!
Coupled, parallel chains eliminate this for select prob-
lems (“exact sampling”).



Summary

What’s different about Bayesian Inference:

• Problem-solving vs. solution-characterizing approach

• Calculate in parameter space rather than sample
space

Bayesian Benefits:

• Rigorous foundations, consistent & simple interpre-
tation

• Automated identification of statistics

• Numerous benefits from parameter space vs. sample
space

Bayesian Challenges:

• More complicated problem specification
(≥ 2 alternatives; priors)

• Computational difficulties with large parameter spaces

– Laplace approximation for “quick entry”

– Adaptive & randomized quadrature for lo-D

– Posterior sampling via MCMC for hi-D



Compare or Reject Hypotheses?

Frequentist Significance Testing (G.O.F. tests):

• Specify simple null hypothesis H0 such that rejecting
it implies an interesting effect is present

• Divide sample space into probable and improbable
parts (for H0)

• If Dobs lies in improbable region, reject H0; otherwise
accept it

Dobs

P=95%

D

H0
P(D|H)

Bayesian Model Comparison:

• Favor the hypothesis that makes the observed data
most probable (up to a prior factor)

Dobs

2H
H1

H0

D

P(D|H)

If the data are improbable under M1, the hypothesis may be
wrong, or a rare event may have occured. GOF tests reject
the latter possibility at the outset.



Backgrounds as Nuisance
Parameters

Background marginalization with Gaussian noise:

Measure background rate b = b̂± σb with source off.

Measure total rate r = r̂ ± σr with source on.

Infer signal source strength s, where r = s+ b.

With flat priors,

p(s, b|D,M) ∝ exp

[

−(b− b̂)
2

2σ2b

]

× exp

[

−(s+ b− r̂)2
2σ2r

]

Marginalize b to summarize the results for s (complete
the square to isolate b dependence; then do a simple
Gaussian integral over b):

p(s|D,M) ∝ exp

[

−(s− ŝ)
2

2σ2s

]

ŝ = r̂ − b̂
σ2s = σ2r + σ2b

Background subtraction is a special case of background
marginalization.



Analytical Simplification:
The Jaynes-Bretthorst Algorithm

Superposed Nonlinear Models

N samples of a superpos’n of nonlinear functions plus Gaus-
sian errors,

di =

M
∑

α=1

Aαgα(xi; θ) + εi

or ~d =
∑

α

Aα~gα(θ) + ~ε.

The log-likelihood is a quadratic form in Aα,

L(A, θ) ∝ 1

σN
exp

[

−Q(A, θ)
2σ2

]

Q =

[

~d−
∑

α

Aα~gα

]2

= d2 − 2
∑

α

Aα
~d · ~gα+

∑

α,β

AαAβηαβ

ηαβ = ~gα · ~gβ

Estimate θ given a prior, π(θ).

Estimate amplitudes.

Compare rival models.



The Algorithm

• Switch to orthonormal set of models, ~hµ(θ) by
diagonalizing ηαβ; new amplitudes B = {Bµ}.

Q =
∑

µ

[

Bµ − ~d · ~hµ(θ)
]2

+ r2(θ,B)

residual ~r(θ,B) = ~d−
∑

µ

Bµ
~hµ

p(B, θ|D, I) ∝ π(θ)J(θ)

σN
exp

[

− r2

2σ2

]

exp

[

−1
2σ2

∑

µ

(Bµ − B̂µ)
2

]

where J(θ) =
∏

µ

λµ(θ)
−1/2

• Marginalize B’s analytically.

p(θ|D, I) ∝ π(θ)J(θ)

σN−M
exp

[

−r
2(θ)

2σ2

]

r2(θ) =
residual sum of squares

from least squares

• If σ unknown, marginalize using p(σ|I) ∝ 1
σ.

p(θ|D, I) ∝ π(θ)J(θ)
[

r2(θ)
]

M−N
2



Frequentist Behavior
of Bayesian Results

Bayesian inferences have good long-run proper-

ties, sometimes better than conventional frequen-

tist counterparts.

Parameter Estimation:

• Credible regions found with flat priors are typically con-
fidence regions to O(n−1/2).

• Using standard nonuniform “reference” priors can im-
prove their performance to O(n−1).

• For handling nuisance parameters, regions based on marginal
likelihoods have superior long-run performance to re-
gions found with conventional frequentist methods like
profile likelihood.

Model Comparison:

• Model comparison is asymptotically consistent. Popular
frequentist procedures (e.g., χ2 test, asymptotic likeli-
hood ratio (∆χ2), AIC) are not.

• For separate (not nested) models, the posterior prob-
ability for the true model converges to 1 exponentially
quickly.

• When selecting between more than 2 models, carrying
out multiple frequentist significance tests can give mis-
leading results. Bayes factors continue to function well.


