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Five Lectures

• Overview of Bayesian Inference

• From Gaussians to Periodograms

• Learning How To Count: Poisson Processes

• Miscellany: Frequentist Behavior, Experimental
Design

• Why Try Bayesian Methods?
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Overview of Bayesian Inference

• What to do

• What’s different about it

• How to do it: Tools for Bayesian calculation
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What To Do: The Bayesian Recipe

Assess hypotheses by calculating their probabilities
p(Hi| . . .) conditional on known and/or presumed
information using the rules of probability theory.

But . . . what does p(Hi| . . .) mean?
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What is distributed in p(x)?

Frequentist: Probability describes “randomness”

Venn, Boole, Fisher, Neymann, Pearson. . .

x is a random variable if it takes different values
throughout an infinite (imaginary?) ensemble of
“identical” sytems/experiments.

p(x) describes how x is distributed throughout the
ensemble.

x is distributed

x

P

Probability ≡ frequency (pdf ≡ histogram).
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Bayesian: Probability describes uncertainty

Bernoulli, Laplace, Bayes, Gauss. . .

p(x) describes how probability (plausibility) is distributed
among the possible choices for x in the case at hand.

Analog: a mass density, ρ(x)
P

x

p is distributed

x has a single,
uncertain value

Relationships between probability and frequency were
demonstrated mathematically (large number theorems,
Bayes’s theorem).
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Interpreting Abstract Probabilities

Symmetry/Invariance/Counting

• Resolve possibilities into equally plausible “microstates”
using symmetries

• Count microstates in each possibility

Frequency from probability

Bernoulli’s laws of large numbers: In repeated trials,
given P (success), predict

Nsuccess
Ntotal

→ P as N →∞

p.7/37



Probability from frequency

Bayes’s “An Essay Towards Solving a Problem in the
Doctrine of Chances”→ Bayes’s theorem

Probability 6= Frequency!
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Bayesian Probability:
A Thermal Analogy

Intuitive notion Quantification Calibration

Hot, cold Temperature, T Cold as ice = 273K

Boiling hot = 373K

uncertainty Probability, P Certainty = 0, 1

p = 1/36:

plausible as “snake’s eyes”

p = 1/1024:

plausible as 10 heads
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The Bayesian Recipe

Assess hypotheses by calculating their probabilities
p(Hi| . . .) conditional on known and/or presumed
information using the rules of probability theory.

Probability Theory Axioms (“grammar”):

‘OR’ (sum rule) P (H1 +H2|I) = P (H1|I) + P (H2|I)

−P (H1, H2|I)

‘AND’ (product rule) P (H1, D|I) = P (H1|I)P (D|H1, I)

= P (D|I)P (H1|D, I)
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Direct Probabilities (“vocabulary”):

• Certainty: If A is certainly true given B, P (A|B) = 1

• Falsity: If A is certainly false given B, P (A|B) = 0

• Other rules exist for more complicated types of
information; for example, invariance arguments,
maximum (information) entropy, limit theorems (CLT; tying
probabilities to frequencies), bold (or desperate!)
presumption. . .

p.11/37



Three Important Theorems

Normalization:

For exclusive, exhaustive Hi

∑

i

P (Hi| · · ·) = 1

Bayes’s Theorem:

P (Hi|D, I) = P (Hi|I)
P (D|Hi, I)

P (D|I)

posterior ∝ prior × likelihood
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Marginalization:

Note that for exclusive, exhaustive {Bi},

∑

i

P (A,Bi|I) =
∑

i

P (Bi|A, I)P (A|I) = P (A|I)

=
∑

i

P (Bi|I)P (A|Bi, I)

→ We can use {Bi} as a “basis” to get P (A|I).

Example: Take A = D, Bi = Hi; then

P (D|I) =
∑

i

P (D,Hi|I)

=
∑

i

P (Hi|I)P (D|Hi, I)

prior predictive for D = Average likelihood for Hi
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Inference With Parametric Models
Parameter Estimation

I = Model M with parameters θ (+ any add’l info)

Hi = statements about θ; e.g. “θ ∈ [2.5, 3.5],” or “θ > 0”

Probability for any such statement can be found using a
probability density function (pdf) for θ:

P (θ ∈ [θ, θ + dθ]| · · ·) = f(θ)dθ

= p(θ| · · ·)dθ
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Posterior probability density:

p(θ|D,M) =
p(θ|M) L(θ)

∫

dθ p(θ|M) L(θ)

Summaries of posterior:

• “Best fit” values: mode, posterior mean

• Uncertainties: Credible regions (e.g., HPD regions)

• Marginal distributions:
I Interesting parameters ψ, nuisance parameters φ
I Marginal dist’n for ψ:

p(ψ|D,M) =

∫

dφ p(ψ, φ|D,M)

Generalizes “propagation of errors”
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Model Uncertainty: Model Comparison

I = (M1 +M2 + . . .) — Specify a set of models.
Hi =Mi — Hypothesis chooses a model.

Posterior probability for a model:

p(Mi|D, I) = p(Mi|I)
p(D|Mi, I)

p(D|I)

∝ p(Mi)L(Mi)

But L(Mi) = p(D|Mi) =
∫

dθi p(θi|Mi)p(D|θi,Mi).

Likelihood for model = Average likelihood for its
parameters

L(Mi) = 〈L(θi)〉
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Model Uncertainty: Model Averaging

Models have a common subset of interesting
parameters, ψ.

Each has different set of nuisance parameters φi (or
different prior info about them).

Hi = statements about ψ.

Calculate posterior PDF for ψ:

p(ψ|D, I) =
∑

i

p(Mi|D, I) p(ψ|D,Mi)

∝
∑

i

L(Mi)

∫

dθi p(ψ, φi|D,Mi)

The model choice is itself a (discrete) nuisance
parameter here.
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An Automatic Occam’s Razor

Predictive probabilities can favor simpler models:

p(D|Mi) =

∫

dθi p(θi|M) L(θi)

Dobs
D

P(D|H)

Complicated H

Simple H
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The Occam Factor:
p, L

θ
∆θ

δθ
Prior

Likelihood

p(D|Mi) =

∫

dθi p(θi|M) L(θi) ≈ p(θ̂i|M)L(θ̂i)δθi

≈ L(θ̂i)
δθi
∆θi

= Maximum Likelihood×Occam Factor

Models with more parameters often make the data more
probable— for the best fit.

Occam factor penalizes models for “wasted” volume of
parameter space.
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What’s the Difference?
Bayesian Inference (BI):

• Specify at least two competing hypotheses and priors

• Calculate their probabilities using probability theory
I Parameter estimation:

p(θ|D,M) =
p(θ|M)L(θ)

∫

dθ p(θ|M)L(θ)

I Model Comparison:

O ∝

∫

dθ1 p(θ1|M1)L(θ1)
∫

dθ2 p(θ2|M2)L(θ2)
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Frequentist Statistics (FS):

• Specify null hypothesis H0 such that rejecting it implies an
interesting effect is present

• Specify statistic S(D) that measures departure of the
data from null expectations

• Calculate p(S|H0) =
∫

dD p(D|H0)δ[S − S(D)]

(e.g. by Monte Carlo simulation of data)

• Evaluate S(Dobs); decide whether to reject H0 based on,
e.g.,

∫

>Sobs

dS p(S|H0)
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Crucial Distinctions
The role of subjectivity:

BI exchanges (implicit) subjectivity in the choice of null &
statistic for (explicit) subjectivity in the specification of
alternatives.

• Makes assumptions explicit
• Guides specification of further alternatives that

generalize the analysis
• Automates identification of statistics:

I BI is a problem-solving approach
I FS is a solution-characterization approach

The types of mathematical calculations:

• BI requires integrals over hypothesis/parameter space
• FS requires integrals over sample/data space
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Complexity of Statistical Integrals

Inference with independent data:

Consider N data, D = {xi}; and model M with m
parameters (m¿ N).

Suppose L(θ) = p(x1|θ) p(x2|θ) · · · p(xN |θ).

Frequentist integrals:

∫

dx1 p(x1|θ)

∫

dx2 p(x2|θ) · · ·

∫

dxN p(xN |θ)f(D)

Seek integrals with properties independent of θ. Such
rigorous frequentist integrals usually can’t be found.

Approximate (e.g., asymptotic) results are easy via Monte
Carlo (due to independence).

p.23/37



Bayesian integrals:

∫

dmθ g(θ) p(θ|M)L(θ)

Such integrals are sometimes easy if analytic (especially
in low dimensions).

Asymptotic approximations require ingredients familiar
from frequentist calculations.

For large m (> 4 is often enough!) the integrals are often
very challenging because of correlations (lack of
independence) in parameter space.
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How To Do It
Tools for Bayesian Calculation

• Asymptotic (large N) approximation: Laplace
approximation

• Low-D Models (m<∼10):
I Randomized Quadrature: Quadrature + dithering
I Subregion-Adaptive Quadrature: ADAPT,
DCUHRE, BAYESPACK

I Adaptive Monte Carlo: VEGAS, miser

• High-D Models (m ∼ 5–106): Posterior Sampling
I Rejection method
I Markov Chain Monte Carlo (MCMC)
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Laplace Approximations

Suppose posterior has a single dominant (interior) mode
at θ̂, with m parameters

→ p(θ|M)L(θ) ≈ p(θ̂|M)L(θ̂) exp

[

−
1

2
(θ − θ̂)I(θ − θ̂)

]

where I =
∂2 ln[p(θ|M)L(θ)]

∂2θ

∣

∣

∣

∣

θ̂

, Info matrix
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Bayes Factors:
∫

dθ p(θ|M)L(θ) ≈ p(θ̂|M)L(θ̂) (2π)m/2|I|−1/2

Marginals:

Profile likelihood Lp(θ) ≡ max
φ
L(θ, φ)

→ p(θ|D,M) ∝∼ Lp(θ)|I(θ)|
−1/2
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The Laplace approximation:

Uses same ingredients as common frequentist
calculations

Uses ratios→ approximation is often O(1/N)

Using “unit info prior” in i.i.d. setting→ Schwarz criterion;
Bayesian Information Criterion (BIC)

lnB ≈ lnL(θ̂)− lnL(θ̂, φ̂) +
1

2
(m2 −m1) lnN

Bayesian counterpart to adjusting χ2 for d.o.f., but
accounts for parameter space volume.

p.28/37



Low-D (m<∼10): Quadrature & Monte Carlo

Quadrature/Cubature Rules:

∫

dθ f(θ) ≈
∑

i

wi f(θi) +O(n−2) or O(n−4)

Smoothness→ fast convergence in 1-D

Curse of dimensionality→ O(n−2/m) or O(n−4/m) in m-D
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Monte Carlo Integration:

∫

dθ g(θ)p(θ) ≈
∑

θi∼p(θ)

g(θi) +O(n−1/2)





∼ O(n−1) with

quasi-MC





Ignores smoothness→ poor performance in 1-D

Avoids curse: O(n−1/2) regardless of dimension

Practical problem: multiplier is large (variance of g)
→ hard if m>∼6 (need good “importance sampler” p)
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Randomized Quadrature:

Quadrature rule + random dithering of abscissas
→ get benefits of both methods

Most useful in settings resembling Gaussian quadrature

Subregion-Adaptive Quadrature/MC:

Concentrate points where most of the probability lies via
recursion

Adaptive quadrature: Use a pair of lattice rules (for error
estim’n), subdivide regions w/ large error (ADAPT,
DCUHRE, BAYESPACK by Genz et al.)

Adaptive Monte Carlo: Build the importance sampler
on-the-fly (e.g., VEGAS, miser in Numerical Recipes)
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Subregion-Adaptive Quadrature

Concentrate points where most of the probability lies via
recursion. Use a pair of lattice rules (for error estim’n),
subdivide regions w/ large error.

ADAPT in action (galaxy polarizations)
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Posterior Sampling

General Approach:

Draw samples of θ, φ from p(θ, φ|D,M); then:

• Integrals, moments easily found via
∑

i f(θi, φi)

• {θi} are samples from p(θ|D,M)

But how can we obtain {θi, φi}?

Rejection Method:
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Hard to find efficient comparison function if m>∼6.
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Markov Chain Monte Carlo (MCMC)

Let − Λ(θ) = ln [p(θ|M) p(D|θ,M)]

Then p(θ|D,M) =
e−Λ(θ)

Z
Z ≡

∫

dθ e−Λ(θ)

Bayesian integration looks like problems addressed in
computational statmech and Euclidean QFT.

Markov chain methods are standard: Metropolis;
Metropolis-Hastings; molecular dynamics; hybrid Monte
Carlo; simulated annealing; thermodynamic integration
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A Complicated Marginal Distribution

Nascent neutron star properties inferred from neutrino
data from SN 1987A

Two variables derived from 9-dimensional posterior distri-

bution.
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The MCMC Recipe:

Create a “time series” of samples θi from p(θ):

• Draw a candidate θi+1 from a kernel T (θi+1|θi)
• Enforce “detailed balance” by accepting with p = α

α(θi+1|θi) = min

[

1,
T (θi|θi+1)p(θi+1)

T (θi+1|θi)p(θi)

]

Choosing T to minimize “burn-in” and corr’ns is an art.

Coupled, parallel chains eliminate this for select problems
(“exact sampling”).
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Summary

Bayesian/frequentist differences:

• Probabilities for hypotheses vs. for data

• Problem solving vs. solution characterization

• Integrals: Parameter space vs. sample space

Computational techniques for Bayesian inference:

• Large N : Laplace approximation

• Exact:
I Adaptive quadrature for low-d
I Posterior sampling for hi-d
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