Bayesian Inference in Astronomy \& Astrophysics A Short Course

Tom Loredo
Dept. of Astronomy, Cornell University

Five Lectures

- Overview of Bayesian Inference
- From Gaussians to Periodograms
- Learning How To Count: Poisson Processes
- Miscellany: Frequentist Behavior, Experimental Design
- Why Try Bayesian Methods?

Overview of Bayesian Inference

- What to do
- What's different about it
- How to do it: Tools for Bayesian calculation

What To Do: The Bayesian Recipe

Assess hypotheses by calculating their probabilities $p\left(H_{i} \mid \ldots\right)$ conditional on known and/or presumed information using the rules of probability theory.

But ... what does $p\left(H_{i} \mid \ldots\right)$ mean?

What is distributed in $p(x)$?

Frequentist: Probability describes "randomness"
Venn, Boole, Fisher, Neymann, Pearson...
x is a random variable if it takes different values throughout an infinite (imaginary?) ensemble of "identical" sytems/experiments.
$p(x)$ describes how x is distributed throughout the ensemble.

Probability \equiv frequency ($\mathrm{pdf} \equiv$ histogram).

Bayesian: Probability describes uncertainty

Bernoulli, Laplace, Bayes, Gauss...
$p(x)$ describes how probability (plausibility) is distributed among the possible choices for x in the case at hand.
Analog: a mass density, $\rho(x)$

Relationships between probability and frequency were demonstrated mathematically (large number theorems, Bayes's theorem).

Interpreting Abstract Probabilities

Symmetry/Invariance/Counting

- Resolve possibilities into equally plausible "microstates" using symmetries
- Count microstates in each possibility

Frequency from probability
Bernoulli's laws of large numbers: In repeated trials, given P (success), predict

$$
\frac{N_{\text {success }}}{N_{\text {total }}} \rightarrow P \quad \text { as } \quad N \rightarrow \infty
$$

Probability from frequency

Bayes's "An Essay Towards Solving a Problem in the Doctrine of Chances" \rightarrow Bayes's theorem

Probability \neq Frequency!

Bayesian Probability: A Thermal Analogy

Intuitive notion	Quantification	Calibration
Hot, cold	Temperature, T	Cold as ice $=273 \mathrm{~K}$ Boiling hot $=373 \mathrm{~K}$
uncertainty	Probability, P	Certainty $=0,1$ $p=1 / 36:$ plausible as "snake's eyes" $p=1 / 1024:$ plausible as 10 heads

The Bayesian Recipe

Assess hypotheses by calculating their probabilities $p\left(H_{i} \mid \ldots\right)$ conditional on known and/or presumed information using the rules of probability theory.

Probability Theory Axioms ("grammar"):

$$
\text { ‘OR' (sum rule) } \begin{aligned}
P\left(H_{1}+H_{2} \mid I\right)= & P\left(H_{1} \mid I\right)+P\left(H_{2} \mid I\right) \\
& -P\left(H_{1}, H_{2} \mid I\right)
\end{aligned}
$$

‘AND' (product rule) $\quad P\left(H_{1}, D \mid I\right)=P\left(H_{1} \mid I\right) P\left(D \mid H_{1}, I\right)$

$$
=P(D \mid I) P\left(H_{1} \mid D, I\right)
$$

Direct Probabilities ("vocabulary"):

- Certainty: If A is certainly true given $B, P(A \mid B)=1$
- Falsity: If A is certainly false given $B, P(A \mid B)=0$
- Other rules exist for more complicated types of information; for example, invariance arguments, maximum (information) entropy, limit theorems (CLT; tying probabilities to frequencies), bold (or desperate!) presumption...

Three Important Theorems

Normalization:
For exclusive, exhaustive H_{i}

$$
\sum_{i} P\left(H_{i} \mid \cdots\right)=1
$$

Bayes's Theorem:

$$
P\left(H_{i} \mid D, I\right)=P\left(H_{i} \mid I\right) \frac{P\left(D \mid H_{i}, I\right)}{P(D \mid I)}
$$

posterior \propto prior \times likelihood

Marginalization:

Note that for exclusive, exhaustive $\left\{B_{i}\right\}$,

$$
\begin{aligned}
\sum_{i} P\left(A, B_{i} \mid I\right) & =\sum_{i} P\left(B_{i} \mid A, I\right) P(A \mid I)=P(A \mid I) \\
& =\sum_{i} P\left(B_{i} \mid I\right) P\left(A \mid B_{i}, I\right)
\end{aligned}
$$

\rightarrow We can use $\left\{B_{i}\right\}$ as a "basis" to get $P(A \mid I)$.
Example: Take $A=D, B_{i}=H_{i}$; then

$$
\begin{aligned}
P(D \mid I) & =\sum_{i} P\left(D, H_{i} \mid I\right) \\
& =\sum_{i} P\left(H_{i} \mid I\right) P\left(D \mid H_{i}, I\right)
\end{aligned}
$$

prior predictive for $D=$ Average likelihood for H_{i}

Inference With Parametric Models

Parameter Estimation

$I=$ Model M with parameters $\theta(+$ any add'l info)
$H_{i}=$ statements about θ; e.g. " $\theta \in[2.5,3.5]$," or " $\theta>0$ "
Probability for any such statement can be found using a probability density function (pdf) for θ :

$$
\begin{aligned}
P(\theta \in[\theta, \theta+d \theta] \mid \cdots) & =f(\theta) d \theta \\
& =p(\theta \mid \cdots) d \theta
\end{aligned}
$$

Posterior probability density:

$$
p(\theta \mid D, M)=\frac{p(\theta \mid M) \mathcal{L}(\theta)}{\int d \theta p(\theta \mid M) \mathcal{L}(\theta)}
$$

Summaries of posterior:

- "Best fit" values: mode, posterior mean
- Uncertainties: Credible regions (e.g., HPD regions)
- Marginal distributions:
- Interesting parameters ψ, nuisance parameters ϕ
- Marginal dist'n for ψ :

$$
p(\psi \mid D, M)=\int d \phi p(\psi, \phi \mid D, M)
$$

Generalizes "propagation of errors"

Model Uncertainty: Model Comparison

$I=\left(M_{1}+M_{2}+\ldots\right)$ - Specify a set of models. $H_{i}=M_{i}$ - Hypothesis chooses a model.

Posterior probability for a model:

$$
\begin{aligned}
p\left(M_{i} \mid D, I\right) & =p\left(M_{i} \mid I\right) \frac{p\left(D \mid M_{i}, I\right)}{p(D \mid I)} \\
& \propto p\left(M_{i}\right) \mathcal{L}\left(M_{i}\right)
\end{aligned}
$$

But $\mathcal{L}\left(M_{i}\right)=p\left(D \mid M_{i}\right)=\int d \theta_{i} p\left(\theta_{i} \mid M_{i}\right) p\left(D \mid \theta_{i}, M_{i}\right)$.
Likelihood for model = Average likelihood for its parameters

$$
\mathcal{L}\left(M_{i}\right)=\left\langle\mathcal{L}\left(\theta_{i}\right)\right\rangle
$$

Model Uncertainty: Model Averaging

Models have a common subset of interesting parameters, ψ.

Each has different set of nuisance parameters ϕ_{i} (or different prior info about them).
$H_{i}=$ statements about ψ.
Calculate posterior PDF for ψ :

$$
\begin{aligned}
p(\psi \mid D, I) & =\sum_{i} p\left(M_{i} \mid D, I\right) p\left(\psi \mid D, M_{i}\right) \\
& \propto \sum_{i} \mathcal{L}\left(M_{i}\right) \int d \theta_{i} p\left(\psi, \phi_{i} \mid D, M_{i}\right)
\end{aligned}
$$

The model choice is itself a (discrete) nuisance parameter here.

An Automatic Occam's Razor

Predictive probabilities can favor simpler models:

$$
p\left(D \mid M_{i}\right)=\int d \theta_{i} p\left(\theta_{i} \mid M\right) \mathcal{L}\left(\theta_{i}\right)
$$

The Occam Factor:

$$
\begin{aligned}
p\left(D \mid M_{i}\right) & =\int d \theta_{i} p\left(\theta_{i} \mid M\right) \mathcal{L}\left(\theta_{i}\right) \approx p\left(\hat{\theta}_{i} \mid M\right) \mathcal{L}\left(\hat{\theta}_{i}\right) \delta \theta_{i} \\
& \approx \mathcal{L}\left(\hat{\theta}_{i}\right) \frac{\delta \theta_{i}}{\Delta \theta_{i}} \\
& =\text { Maximum Likelihood } \times \text { Occam Factor }
\end{aligned}
$$

Models with more parameters often make the data more probable- for the best fit.
Occam factor penalizes models for "wasted" volume of parameter space.

What's the Difference?

Bayesian Inference (BI):

- Specify at least two competing hypotheses and priors
- Calculate their probabilities using probability theory
- Parameter estimation:

$$
p(\theta \mid D, M)=\frac{p(\theta \mid M) \mathcal{L}(\theta)}{\int d \theta p(\theta \mid M) \mathcal{L}(\theta)}
$$

- Model Comparison:

$$
O \propto \frac{\int d \theta_{1} p\left(\theta_{1} \mid M_{1}\right) \mathcal{L}\left(\theta_{1}\right)}{\int d \theta_{2} p\left(\theta_{2} \mid M_{2}\right) \mathcal{L}\left(\theta_{2}\right)}
$$

Frequentist Statistics (FS):

- Specify null hypothesis H_{0} such that rejecting it implies an interesting effect is present
- Specify statistic $S(D)$ that measures departure of the data from null expectations
- Calculate $p\left(S \mid H_{0}\right)=\int d D p\left(D \mid H_{0}\right) \delta[S-S(D)]$ (e.g. by Monte Carlo simulation of data)
- Evaluate $S\left(D_{\text {obs }}\right)$; decide whether to reject H_{0} based on, e.g., $\int_{>S_{\text {obs }}} d S p\left(S \mid H_{0}\right)$

Crucial Distinctions

The role of subjectivity:
BI exchanges (implicit) subjectivity in the choice of null \& statistic for (explicit) subjectivity in the specification of alternatives.

- Makes assumptions explicit
- Guides specification of further alternatives that generalize the analysis
- Automates identification of statistics:
- BI is a problem-solving approach
- FS is a solution-characterization approach

The types of mathematical calculations:

- BI requires integrals over hypothesis/parameter space
- FS requires integrals over sample/data space

Complexity of Statistical Integrals

Inference with independent data:
Consider N data, $D=\left\{x_{i}\right\}$; and model M with m parameters $(m \ll N)$.
Suppose $\mathcal{L}(\theta)=p\left(x_{1} \mid \theta\right) p\left(x_{2} \mid \theta\right) \cdots p\left(x_{N} \mid \theta\right)$.
Frequentist integrals:

$$
\int d x_{1} p\left(x_{1} \mid \theta\right) \int d x_{2} p\left(x_{2} \mid \theta\right) \cdots \int d x_{N} p\left(x_{N} \mid \theta\right) f(D)
$$

Seek integrals with properties independent of θ. Such rigorous frequentist integrals usually can't be found.
Approximate (e.g., asymptotic) results are easy via Monte Carlo (due to independence).

Bayesian integrals:

$$
\int d^{m} \theta g(\theta) p(\theta \mid M) \mathcal{L}(\theta)
$$

Such integrals are sometimes easy if analytic (especially in low dimensions).
Asymptotic approximations require ingredients familiar from frequentist calculations.
For large m (>4 is often enough!) the integrals are often very challenging because of correlations (lack of independence) in parameter space.

How To Do It

Tools for Bayesian Calculation

- Asymptotic (large N) approximation: Laplace approximation
- Low-D Models ($m \lesssim 10$):
- Randomized Quadrature: Quadrature + dithering
- Subregion-Adaptive Quadrature: ADAPT, DCUHRE, BAYESPACK
- Adaptive Monte Carlo: vegAs, miser
- High-D Models ($m \sim 5-10^{6}$): Posterior Sampling
- Rejection method
- Markov Chain Monte Carlo (MCMC)

Laplace Approximations

Suppose posterior has a single dominant (interior) mode at $\hat{\theta}$, with m parameters

$$
\rightarrow p(\theta \mid M) \mathcal{L}(\theta) \approx p(\hat{\theta} \mid M) \mathcal{L}(\hat{\theta}) \exp \left[-\frac{1}{2}(\theta-\hat{\theta}) \mathbf{I}(\theta-\hat{\theta})\right]
$$

where $\quad \mathbf{I}=\left.\frac{\partial^{2} \ln [p(\theta \mid M) \mathcal{L}(\theta)]}{\partial^{2} \theta}\right|_{\hat{\theta}}$, Info matrix

Bayes Factors:

$$
\int d \theta p(\theta \mid M) \mathcal{L}(\theta) \approx p(\hat{\theta} \mid M) \mathcal{L}(\hat{\theta})(2 \pi)^{m / 2}|\mathbf{I}|^{-1 / 2}
$$

Marginals:

$$
\begin{gathered}
\text { Profile likelihood } \quad \mathcal{L}_{p}(\theta) \equiv \max _{\phi} \mathcal{L}(\theta, \phi) \\
\rightarrow p(\theta \mid D, M) \otimes \mathcal{L}_{p}(\theta)|\mathbf{I}(\theta)|^{-1 / 2}
\end{gathered}
$$

The Laplace approximation:
Uses same ingredients as common frequentist calculations
Uses ratios \rightarrow approximation is often $O(1 / N)$
Using "unit info prior" in i.i.d. setting \rightarrow Schwarz criterion; Bayesian Information Criterion (BIC)

$$
\ln B \approx \ln \mathcal{L}(\hat{\theta})-\ln \mathcal{L}(\hat{\theta}, \hat{\phi})+\frac{1}{2}\left(m_{2}-m_{1}\right) \ln N
$$

Bayesian counterpart to adjusting χ^{2} for d.o.f., but accounts for parameter space volume.

Low-D $(m \lesssim 10)$: Quadrature \& Monte Carlo

Quadrature/Cubature Rules:

$$
\int d \theta f(\theta) \approx \sum_{i} w_{i} f\left(\theta_{i}\right)+O\left(n^{-2}\right) \text { or } O\left(n^{-4}\right)
$$

Smoothness \rightarrow fast convergence in 1-D
Curse of dimensionality $\rightarrow O\left(n^{-2 / m}\right)$ or $O\left(n^{-4 / m}\right)$ in m-D

Monte Carlo Integration:

$\int d \theta g(\theta) p(\theta) \approx \sum_{\theta_{i} \sim p(\theta)} g\left(\theta_{i}\right)+O\left(n^{-1 / 2}\right) \quad\left[\begin{array}{c}\sim O\left(n^{-1}\right) \text { with } \\ \text { quasi-MC }\end{array}\right]$
Ignores smoothness \rightarrow poor performance in 1-D
Avoids curse: $O\left(n^{-1 / 2}\right)$ regardless of dimension
Practical problem: multiplier is large (variance of g)
\rightarrow hard if $m \gtrsim 6$ (need good "importance sampler" p)

Randomized Quadrature:

Quadrature rule + random dithering of abscissas
\rightarrow get benefits of both methods
Most useful in settings resembling Gaussian quadrature
Subregion-Adaptive Quadrature/MC:
Concentrate points where most of the probability lies via recursion
Adaptive quadrature: Use a pair of lattice rules (for error estim'n), subdivide regions w/ large error (ADAPT, DCUhRe, BAYESPACK by Genz et al.)
Adaptive Monte Carlo: Build the importance sampler on-the-fly (e.g., VEGAS, miser in Numerical Recipes)

Subregion-Adaptive Quadrature

Concentrate points where most of the probability lies via recursion. Use a pair of lattice rules (for error estim'n), subdivide regions w/ large error.

ADAPT in action (galaxy polarizations)

Posterior Sampling

General Approach:
Draw samples of θ, ϕ from $p(\theta, \phi \mid D, M)$; then:

- Integrals, moments easily found via $\sum_{i} f\left(\theta_{i}, \phi_{i}\right)$
- $\left\{\theta_{i}\right\}$ are samples from $p(\theta \mid D, M)$

But how can we obtain $\left\{\theta_{i}, \phi_{i}\right\}$?
Rejection Method:

Hard to find efficient comparison function if $m \gtrsim 6$.

Markov Chain Monte Carlo (MCMC)

$$
\text { Let } \quad-\Lambda(\theta)=\ln [p(\theta \mid M) p(D \mid \theta, M)]
$$

Then $\quad p(\theta \mid D, M)=\frac{e^{-\Lambda(\theta)}}{Z} \quad Z \equiv \int d \theta e^{-\Lambda(\theta)}$
Bayesian integration looks like problems addressed in computational statmech and Euclidean QFT.
Markov chain methods are standard: Metropolis; Metropolis-Hastings; molecular dynamics; hybrid Monte Carlo; simulated annealing; thermodynamic integration

A Complicated Marginal Distribution

Nascent neutron star properties inferred from neutrino data from SN 1987A

Two variables derived from 9-dimensional posterior distribution.

The MCMC Recipe:

Create a "time series" of samples θ_{i} from $p(\theta)$:

- Draw a candidate θ_{i+1} from a kernel $T\left(\theta_{i+1} \mid \theta_{i}\right)$
- Enforce "detailed balance" by accepting with $p=\alpha$

$$
\alpha\left(\theta_{i+1} \mid \theta_{i}\right)=\min \left[1, \frac{T\left(\theta_{i} \mid \theta_{i+1}\right) p\left(\theta_{i+1}\right)}{T\left(\theta_{i+1} \mid \theta_{i}\right) p\left(\theta_{i}\right)}\right]
$$

Choosing T to minimize "burn-in" and corr'ns is an art.
Coupled, parallel chains eliminate this for select problems ("exact sampling").

Summary

Bayesian/frequentist differences:

- Probabilities for hypotheses vs. for data
- Problem solving vs. solution characterization
- Integrals: Parameter space vs. sample space

Computational techniques for Bayesian inference:

- Large N : Laplace approximation
- Exact:
- Adaptive quadrature for low- d
- Posterior sampling for hi- d

