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Motivation/Terminology

We consider processes that produces discrete, isolated
events in some interval, possibly multidimensional. We will
make inferences about the event rates per unit interval.
Examples:

• Arrival time series: D = {ti}, rate r(t) = events s−1

• Photon # flux: D = {ti, xi, yi}, flux F (t, x, y) = photons
cm−2 s−1

• Spectrum: D = {εi}, specific intensity Iε(ε) = cts keV−2

• Population studies: D = {Li}, luminosity function n(L) =

events/luminosity
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If our measurements are coarse, we “bin” events and can
only report the number of events in one or more finite
intervals. Then the appropriate model is the Poisson
counting process.

If our measurements have sufficient resolution for us to
measure every individual event, the appropriate model is
the Poisson point process. If the event characteristics
are measured with error, it is a point process with error.

If the event rate is constant over the entire interval of
interest, the process is homogeneous; otherwise it is
inhomogeneous.
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Today’s Lecture

• Poisson Process Fundamentals

• Poisson counting processes—Photon counting

• Poisson point processes—Arrival time series

• Point processes with error:
I Population studies—TNO size distribution
I Spatio-temporal coincidences—GRBs, cosmic

rays
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Poisson Process Fundamentals
For simplicity we consider 1-d processes; for concreteness,
consider time series.

Let r(t) be the event rate per unit time.

Let E = “An event occured in [t, t + dt]”

Let Q denote any kind of information about events occuring or
not occuring in other intervals.
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A Poisson process model results from two properties (M ):

• Given the event rate r(t), the probability for finding an
event in a small interval [t, t + dt] is proportional to the
size of the interval:

p(E|r, M) = r(t) dt

• Information about what happened in other intervals is
irrelevant if we know r; the probabilities for separate
intervals are independent:

p(E|Q, r, M) = p(E|r, M) = r(t) dt
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Homogeneous Poisson Counting Process

Basic datum: The number of events, n, in a given interval
of duration T . We seek p(n|r, M).

No event:
h(t) = P (no event in [0, t]|r, M); h(0) = 1

A = “No event in [0, t + dt]”
= “No event in [0, t]” AND

“No event in [t, t + dt]”

P (A|r, M) = h(t + dt) = h(t)[1 − r dt]

h(t) + dt
dh

dt
= h(t) − r dt h(t)

dh

dt
= −r h(t)

⇒ h(t) = e−rt
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One event:

B = “One event is seen in [0, T ] in [t1, t1 + dt1]”

P (B|r, M) = e−rt1 · (r dt1) · e−r(T−t1) = e−rT r dt1

p(n = 1|r, M) =

∫ T

0

dt1 r e−rT = (rT )e−rT
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Two events:
C = “Two events are seen in [0, T ] at (t1, t2) in (dt1, dt2)”

P (C|r, M) = e−rt1 · (r dt1) · e−r(t2−t1) · (r dt2) · e−r(T−t2)

= e−rT r2 dt1 dt2

p(n = 2|r, M) =

∫ T

0

dt2

∫ t2

0

dt1 r2 e−rT

= r2 e−rT

∫ T

0

dt2t2

=
(rT )2

2
e−rT

⇒ p(n|r, M) =
(rT )n

n!
e−rT

The Poisson Distribution for n.

p.9/42



Moments:

〈n〉 ≡
∞
∑

n=0

n p(n|r, M)

= rT ≡ n̄

[

〈(n − n̄)2〉
]1/2

=
√

n̄

p(n|n̄, M) =
n̄n

n!
e−n̄

n̄ specifies both the mean and standard deviation.
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Inferring a Rate from Counts

Problem: Observe n counts in T ; infer r

Likelihood:

L(r) ≡ p(n|r, M) = p(n|r, M) =
(rT )n

n!
e−rT

Prior: Two standard choices:

• r known to be nonzero; it is a scale parameter:

p(r|M) =
1

ln(ru/rl)

1

r

• r may vanish; require p(n|M) ∼ Const:

p(r|M) =
1

ru
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Predictive:

p(n|M) =
1

ru

1

n!

∫ ru

0

dr(rT )ne−rT

≈ 1

ruT
for ru � n

T

Posterior: A gamma distribution:

p(r|n, M) =
T (rT )n

n!
e−rT

Summaries:

• Mode r̂ = n
T

; mean 〈r〉 = n+1
T

(shift down 1 with 1/r prior)

• Std. dev’n σr =
√

n+1
T

; credible regions found by
integrating (can use incomplete gamma function)
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The flat prior . . .

Bayes’s justification: Not that ignorance of r → p(r|I) = C

Require (discrete) predictive distribution to be flat:

p(n|I) =

∫

dr p(r|I)p(n|r, I) = C

→ p(r|I) = C

A convention:

• Use a flat prior for a rate that may be zero

• Use a log-flat prior (∝ 1/r) for a nonzero scale parameter

• Use proper (normalized, bounded) priors

• Plot posterior with abscissa that makes prior flat
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Inferring a Signal in a Known Background

Problem: As before, but r = s + b with b known; infer s

p(s|n, b, M) = C
T [(s + b)T ]n

n!
e−(s+b)T

C−1 =
e−bT

n!

∫ ∞

0

d(sT ) (s + b)nT ne−sT

=
n
∑

i=0

(bT )i

i!
e−bT

A sum of Poisson probabilities for background events; it can
be found using the incomplete gamma function.
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The On/Off Problem
Basic problem:

• Look off-source; unknown background rate b

Count Noff photons in interval Toff

• Look on-source; rate is r = s + b with unknown signal s

Count Non photons in interval Ton

• Infer s

Conventional solution:

b̂ = Noff/Toff ; σb =
√

Noff/Toff

r̂ = Non/Ton; σr =
√

Non/Ton

ŝ = r̂ − b̂; σs =
√

σ2
r + σ2

b

But ŝ can be negative!
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Examples

Spectra of X-Ray Sources
Bassani et al. 1989 Di Salvo et al. 2001
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Spectrum of Ultrahigh-Energy Cosmic Rays
Nagano & Watson 2000
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“Advanced” solutions:

• Higher order approximation (Zhang and Ramsden 1990)
But for Noff = 0 and large Toff , confidence region
collapses to s = 0

• Likelihood-based methods
Several incorrect attempts (interpret likelihood ratio as
coverage; do not account for b uncertainty)
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Backgrounds as Nuisance Parameters

Background marginalization with Gaussian noise:

Measure background rate b = b̂ ± σb with source off.

Measure total rate r = r̂ ± σr with source on.

Infer signal source strength s, where r = s + b.

With flat priors,

p(s, b|D, M) ∝ exp

[

−(b − b̂)2

2σ2
b

]

× exp

[

−(s + b − r̂)2

2σ2
r

]
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Marginalize b to summarize the results for s (complete the
square to isolate b dependence; then do a simple
Gaussian integral over b):

p(s|D, M) ∝ exp

[

−(s − ŝ)2

2σ2
s

]

ŝ = r̂ − b̂

σ2
s = σ2

r + σ2
b

Background subtraction is a special case of background
marginalization.
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Bayesian Solution to On/Off Problem

From off-source data:

p(b|Noff) =
Toff(bToff)Noffe−bToff

Noff !

Use as a prior to analyze on-source data:

p(s|Non, Noff) =

∫

db p(s, b | Non, Noff)

∝
∫

db (s + b)NonbNoffe−sTone−b(Ton+Toff)

=
Non
∑

i=0

Ci

Ton(sTon)
ie−sTon

i!

Can show that Ci = probability that i on-source counts
are indeed from the source.
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Example On/Off Posteriors—Short Integrations

p.22/42



Example On/Off Posteriors—Long Background Integrations
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Inhomogeneous Point Processes
Arrival Time Series

Data: Set of N arrival times {ti}, known with small, finite
resolution ∆t; N = dozens to millions

Goal: Detect periodicity, bursts, structure. . .
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Conventional methods for period detection
• Binned FFT

• Rayleigh statistic

R2(ω) =
1

N





(

N
∑

i=1

sin φi

)2

+

(

N
∑

i=1

cos φi

)2




• Z2
n statistic

Z2
n(ω) =

n
∑

j=1

R2(jω)

• Epoch folding
I Fold data with trial period (φi = ωti);

bin → nj, j = 1 to M

I Calculate Pearson’s χ2(ω) vs. nj = N/M
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Bayesian Approach

Likelihood:

p0(t) = P (no event in ∆t at t|θ, M)

p1(t) = P (one event in ∆t at t|θ, M)

⇒ p(D|θ, M) =
∏

i

p1(ti)
∏

empties

p0(t)

From the Poisson dist’n,

p0(t) = e−r(t)∆t

p1(t) = r(t)∆t e−r(t)∆t

⇒ p(D|θ, M) = (∆t)N exp

[

−
∫

T

dt r(t)

] N
∏

i=1

r(ti)
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Likelihood for periodic models:

Rate = avg. rate A × periodic shape ρ(φ) (params S)

r(t) = Aρ(ωt − φ;S)

Inhom. point process likelihood (for T � period)

L(A, ω, φ,S) =
[

ANe−AT
]

∏

i

ρ(ωti − φ;S)

Marginal likelihood for ω, φ, S

L(ω, φ,S) =
∏

i

ρ(ωti − φ;S)
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Example models:

• Log-Fourier models—analytic φ marginalization

log ρ(θ) ∝ κ cos(θ) → L ∝ I0 [κNR(ω)] /IN
0 (κ)

Harmonic sum → Z2
n + interference terms

• Piecewise constant models—analytic S marginalization

ρ flat in M bins → L ∝ (M−1)!
(N+M−1)!

[

n1! n2! ...nM !
N !

]

For signal detection, integrate over ω, rather than maximize

over a grid. This removes ambiguity/subjectivity from conven-

tional approach.
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Piecewise Constant Modeling of X-Ray Pulsar

X-Ray Pulsar PSR 0540-693 (Gregory & Loredo 1996)

3300 events over 105 s, many gaps, FFT fails
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Point Processes With Error
Population Studies

Multiple searches for Trans-Neptunian Objects report {Ri, σi} or non-detections.
What are the sizes of TNOs? How far out does the pop’n extend?
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Phenomenology

Cumulative dist’n Σ(R) = 10α(R−R0), params α, R0

Differential dist’n σ(R) = dΣ/dR

Physics

Size dist’n f(D) and radial dist’n n(r)

Visible via reflection → calculate R from D2/r4 law

Conventional analyses

Least squares or χ2 fit to binned cumulative dist’n

Ignores uncertainties; ambiguity in correcting for
sampling; difficulty handling nondetections; difficulty
combining disparate types of data; arbitrary, correlated
bins
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Bayesian approach

Multiply likelihoods for each survey modeled as point
process with error,

L(θ) = exp

[

−Ω

∫

dR η(R)σ(R)

]

∏

i

∫

dR `i(R)σ(R)

A point process likelihood, including detection efficiency,
η(R), and object uncertainties, `i(R) = p(di|R).

Gladman et al. 1998, 2001
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Spatio-Temporal Coincidences

Do GRB sources repeat?

250 GRB directions Subset with neighbor within 3◦ (39)

If GRBs repeat, many existing models are ruled out!
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Coincidences Among UHE Cosmic Rays?
AGASA data above GZK cutoff (Hayashida et al. 2000)

h12

Supergalactic Plane

+60

-60

-30

+30

0

o

o

o

o
Galactic Plane

Dec

RA
h h

24

AGASA + A20

• 58 events with E > 4 × 1019 eV

• Energy-dependent direction uncertainty ∼ 2◦

• Significance test — Search for coincidences < 2.5 ◦:
I 6 pairs; <∼1% significance

I 1 triplet; <∼1% significance
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Frequentist nearest neighbor analysis—two objects:

Null hypothesis H0: no repetition, isotropic source dist’n

Statistic: Angle to nearest neighbor, θ12

Sampling Dist’n:

p(cos θ12, φ12) =
1

4π
, independent of uncertainty

→ p(θ12) =
sin θ12

2

p(< θ12) =
1 − cos θ12

2

Reject H0 if this probability is small; e.g.:

• θ12 = 26◦ → p(< 26◦) = 0.05

• θ12 = 0◦ → p(< 0◦) = 0
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Bayesian coincidence assessment—two objects:

Direction uncertainties accounted for via likelihoods for
object directions:

Li(n) = p(di|n), normalized w.r.t. n

H0: No repetition

p(d1, d2|H0) =

∫

dn1 p(n1|H0)L1(n1) ×
∫

dn2 · · ·

=
1

4π

∫

dn1 L1(n1) × 1

4π

∫

dn2 · · ·

=
1

(4π)2
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H1: Repeating (same direction!)

p(d1, d2|H0) =

∫

dn p(n|H0)L1(n)L2(n)

Odds favoring repetition:

O = 4π

∫

dn L1(n)L2(n)

≈ 2

σ2
12

exp

[

− θ2
12

2σ2
12

]

; σ2
12 = σ2

1 + σ2
2

E.g.: σ1 = σ2 = 10◦ O ≈ 6 for θ12 = 26◦

O ≈ 33 for θ12 = 0◦

σ1 = σ2 = 20◦ O ≈ 5 for θ12 = 26◦

O ≈ 8 for θ12 = 0◦
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Compare or Reject Hypotheses?

Frequentist Significance Testing (G.O.F. tests):

• Specify simple null hypothesis H0 such that rejecting it
implies an interesting effect is present

• Divide sample space into probable and improbable
parts (for H0)

• If Dobs lies in improbable region, reject H0; otherwise
accept it

Dobs

P=95%

D

H0
P(D|H)

p.38/42



Compare or Reject Hypotheses?

Bayesian Model Comparison:

• Favor the hypothesis that makes the observed data
most probable (up to a prior factor)

Dobs

2H
H1

H0

D

P(D|H)

If the data are improbable under H0, the hypothesis may be
wrong, or a rare event may have occured. GOF tests reject
the latter possibility at the outset.
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Challenge: Large hypothesis spaces

For N = 2 events, there was a single coincidence
hypothesis, M1 above.

For N = 3 events:

• Three doublets: 1 + 2, 1 + 3, or 2 + 3

• One triplet

For N events, # of hypotheses with nk k-tuplets (n2

doublets, n3 triplets. . .)

N =
N !

∏K
k=1(k!)nknk!

E.g. for n2 = 2, N ≈ N 4/8.
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Bayesian Analysis of AGASA Cosmic Rays

M0: N = 58 different directions

M1: Unknown number of pairs (n2) and triplets (n3)

→ O10 = 1.4 favoring clusters (i.e., no significant
evidence)

If indeed clusters are present, we can constrain the
number by calculating p(n2, n3|D, M1):
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Key Ideas

Poisson processes handled without approximation

• Counting processes:
I Can treat rigorously for any n

I Backgrounds handled straightforwardly

• Point processes: No binning necessary!

• Point processes with error: Uncertainties easily handled
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