Learning How To Count: Poisson Processes

(Lecture 3)

Tom Loredo
Dept. of Astronomy, Cornell University

Motivation/Terminology

We consider processes that produces discrete, isolated events in some interval, possibly multidimensional. We will make inferences about the event rates per unit interval.
Examples:

- Arrival time series: $D=\left\{t_{i}\right\}$, rate $r(t)=$ events s^{-1}
- Photon \# flux: $D=\left\{t_{i}, x_{i}, y_{i}\right\}$, flux $F(t, x, y)=$ photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$
- Spectrum: $D=\left\{\epsilon_{i}\right\}$, specific intensity $I_{\epsilon}(\epsilon)=$ cts $^{2} \mathrm{keV}^{-2}$
- Population studies: $D=\left\{L_{i}\right\}$, luminosity function $n(L)=$ events/luminosity

If our measurements are coarse, we "bin" events and can only report the number of events in one or more finite intervals. Then the appropriate model is the Poisson counting process.

If our measurements have sufficient resolution for us to measure every individual event, the appropriate model is the Poisson point process. If the event characteristics are measured with error, it is a point process with error.

If the event rate is constant over the entire interval of interest, the process is homogeneous; otherwise it is inhomogeneous.

Today's Lecture

- Poisson Process Fundamentals
- Poisson counting processes-Photon counting
- Poisson point processes—Arrival time series
- Point processes with error:
- Population studies-TNO size distribution
- Spatio-temporal coincidences-GRBs, cosmic rays

Poisson Process Fundamentals

For simplicity we consider 1-d processes; for concreteness, consider time series.

Let $r(t)$ be the event rate per unit time.
Let $E=$ "An event occured in $[t, t+d t]$ "
Let Q denote any kind of information about events occuring or not occuring in other intervals.

A Poisson process model results from two properties (M):

- Given the event rate $r(t)$, the probability for finding an event in a small interval $[t, t+d t]$ is proportional to the size of the interval:

$$
p(E \mid r, M)=r(t) d t
$$

- Information about what happened in other intervals is irrelevant if we know r; the probabilities for separate intervals are independent:

$$
p(E \mid Q, r, M)=p(E \mid r, M)=r(t) d t
$$

Basic datum: The number of events, n, in a given interval of duration T. We seek $p(n \mid r, M)$.

No event:

$$
h(t)=P(\text { no event in }[0, t] \mid r, M) ; \quad h(0)=1
$$

$A=\quad$ "No event in $[0, t+d t]$ "
$=$ "No event in $[0, t]$ " AND
"No event in $[t, t+d t]$ "

$$
\begin{aligned}
P(A \mid r, M) & =h(t+d t)=h(t)[1-r d t] \\
h(t)+d t \frac{d h}{d t} & =h(t)-r d t h(t) \\
\frac{d h}{d t} & =-r h(t) \\
\Rightarrow h(t)=e^{-r t} &
\end{aligned}
$$

One event:

$B=$ "One event is seen in $[0, T]$ in $\left[t_{1}, t_{1}+d t_{1}\right]$ "

$$
\begin{gathered}
P(B \mid r, M)=e^{-r t_{1}} \cdot\left(r d t_{1}\right) \cdot e^{-r\left(T-t_{1}\right)}=e^{-r T} r d t_{1} \\
p(n=1 \mid r, M)=\int_{0}^{T} d t_{1} r e^{-r T}=(r T) e^{-r T}
\end{gathered}
$$

Two events:

$C=$ "Two events are seen in $[0, T]$ at $\left(t_{1}, t_{2}\right)$ in $\left(d t_{1}, d t_{2}\right)$ "

$$
\begin{aligned}
& P(C \mid r, M)=e^{-r t_{1}} \cdot\left(r d t_{1}\right) \cdot e^{-r\left(t_{2}-t_{1}\right)} \cdot\left(r d t_{2}\right) \cdot e^{-r\left(T-t_{2}\right)} \\
&= e^{-r T} r^{2} d t_{1} d t_{2} \\
& p(n=2 \mid r, M)=\int_{0}^{T} d t_{2} \int_{0}^{t_{2}} d t_{1} r^{2} e^{-r T} \\
&=r^{2} e^{-r T} \int_{0}^{T} d t_{2} t_{2} \\
&=\frac{(r T)^{2}}{2} e^{-r T} \\
& \Rightarrow \quad p(n \mid r, M)=\frac{(r T)^{n}}{n!} e^{-r T}
\end{aligned}
$$

The Poisson Distribution for n.

Moments:

$$
\begin{aligned}
& \langle n\rangle \equiv \sum_{n=0}^{\infty} n p(n \mid r, M) \\
& \quad=r T \equiv \bar{n} \\
& {\left[\left\langle(n-\bar{n})^{2}\right\rangle\right]^{1 / 2}=\sqrt{\bar{n}}} \\
& p(n \mid \bar{n}, M)=\frac{\bar{n}^{n}}{n!} e^{-\bar{n}}
\end{aligned}
$$

\bar{n} specifies both the mean and standard deviation.

Inferring a Rate from Counts

Problem: Observe n counts in T; infer r
Likelihood:

$$
\mathcal{L}(r) \equiv p(n \mid r, M)=p(n \mid r, M)=\frac{(r T)^{n}}{n!} e^{-r T}
$$

Prior: Two standard choices:

- r known to be nonzero; it is a scale parameter:

$$
p(r \mid M)=\frac{1}{\ln \left(r_{u} / r_{l}\right)} \frac{1}{r}
$$

- r may vanish; require $p(n \mid M) \sim$ Const:

$$
p(r \mid M)=\frac{1}{r_{u}}
$$

Predictive:

$$
\begin{aligned}
p(n \mid M) & =\frac{1}{r_{u}} \frac{1}{n!} \int_{0}^{r_{u}} d r(r T)^{n} e^{-r T} \\
& \approx \frac{1}{r_{u} T} \text { for } r_{u} \gg \frac{n}{T}
\end{aligned}
$$

Posterior: A gamma distribution:

$$
p(r \mid n, M)=\frac{T(r T)^{n}}{n!} e^{-r T}
$$

Summaries:

- Mode $\hat{r}=\frac{n}{T}$; mean $\langle r\rangle=\frac{n+1}{T}$ (shift down 1 with $1 / r$ prior)
- Std. dev'n $\sigma_{r}=\frac{\sqrt{n+1}}{T}$; credible regions found by integrating (can use incomplete gamma function)

The flat prior . . .
Bayes's justification: Not that ignorance of $r \rightarrow p(r \mid I)=C$
Require (discrete) predictive distribution to be flat:

$$
\begin{aligned}
p(n \mid I) & =\int d r p(r \mid I) p(n \mid r, I)=C \\
& \rightarrow p(r \mid I)=C
\end{aligned}
$$

A convention:

- Use a flat prior for a rate that may be zero
- Use a log-flat prior ($\propto 1 / r$) for a nonzero scale parameter
- Use proper (normalized, bounded) priors
- Plot posterior with abscissa that makes prior flat

Inferring a Signal in a Known Background

Problem: As before, but $r=s+b$ with b known; infer s

$$
\begin{aligned}
& p(s \mid n, b, M)=C \frac{T[(s+b) T]^{n}}{n!} e^{-(s+b) T} \\
& C^{-1}=\frac{e^{-b T}}{n!} \int_{0}^{\infty} d(s T)(s+b)^{n} T^{n} e^{-s T} \\
& \quad=\sum_{i=0}^{n} \frac{(b T)^{i}}{i!} e^{-b T}
\end{aligned}
$$

A sum of Poisson probabilities for background events; it can be found using the incomplete gamma function.

The On/Off Problem

Basic problem:

- Look off-source; unknown background rate b

Count $N_{\text {off }}$ photons in interval $T_{\text {off }}$

- Look on-source; rate is $r=s+b$ with unknown signal s Count $N_{\text {on }}$ photons in interval $T_{\text {on }}$
- Infer s

Conventional solution:

$$
\begin{array}{ll}
\hat{b}=N_{\text {off }} / T_{\text {off }} ; & \sigma_{b}=\sqrt{N_{\text {off }}} / T_{\text {off }} \\
\hat{r}=N_{\text {on }} / T_{\text {on }} ; & \sigma_{r}=\sqrt{N_{\text {on }}} / T_{\text {on }} \\
\hat{s}=\hat{r}-\hat{b} ; & \sigma_{s}=\sqrt{\sigma_{r}^{2}+\sigma_{b}^{2}}
\end{array}
$$

But \hat{s} can be negative!

Examples

Spectra of X-Ray Sources

Bassani et al. 1989

Di Salvo et al. 2001

Spectrum of Ultrahigh-Energy Cosmic Rays

Nagano \& Watson 2000

"Advanced" solutions:

- Higher order approximation (Zhang and Ramsden 1990) But for $N_{\text {off }}=0$ and large $T_{\text {off }}$, confidence region collapses to $s=0$
- Likelihood-based methods

Several incorrect attempts (interpret likelihood ratio as coverage; do not account for b uncertainty)

Backgrounds as Nuisance Parameters

Background marginalization with Gaussian noise:

Measure background rate $b=\hat{b} \pm \sigma_{b}$ with source off.
Measure total rate $r=\hat{r} \pm \sigma_{r}$ with source on.
Infer signal source strength s, where $r=s+b$.
With flat priors,

$$
p(s, b \mid D, M) \propto \exp \left[-\frac{(b-\hat{b})^{2}}{2 \sigma_{b}^{2}}\right] \times \exp \left[-\frac{(s+b-\hat{r})^{2}}{2 \sigma_{r}^{2}}\right]
$$

Marginalize b to summarize the results for s (complete the square to isolate b dependence; then do a simple Gaussian integral over b):

$$
p(s \mid D, M) \propto \exp \left[-\frac{(s-\hat{s})^{2}}{2 \sigma_{s}^{2}}\right] \quad \begin{aligned}
& \hat{s}=\hat{r}-\hat{b} \\
& \sigma_{s}^{2}=\sigma_{r}^{2}+\sigma_{b}^{2}
\end{aligned}
$$

Background subtraction is a special case of background marginalization.

Bayesian Solution to On/Off Problem

From off-source data:

$$
p\left(b \mid N_{\text {off }}\right)=\frac{T_{\text {off }}\left(b T_{\text {off }}\right)^{N_{\text {off }}} e^{-b T_{\text {off }}}}{N_{\text {off }}!}
$$

Use as a prior to analyze on-source data:

$$
\begin{aligned}
p\left(s \mid N_{\mathrm{on}}, N_{\mathrm{off}}\right) & =\int d b p\left(s, b \mid N_{\text {on }}, N_{\text {off }}\right) \\
& \propto \int d b(s+b)^{N_{\text {on }} b^{N_{\text {off }}} e^{-s T_{\text {on }}} e^{-b\left(T_{\text {on }}+T_{\text {off }}\right)}} \\
& =\sum_{i=0}^{N_{\text {on }}} C_{i} \frac{T_{\text {on }}\left(s T_{\text {on }}\right)^{i} e^{-s T_{\text {on }}}}{i!}
\end{aligned}
$$

Can show that $C_{i}=$ probability that i on-source counts are indeed from the source.

Example On/Off Posteriors-Short Integrations

Example On/Off Posteriors-Long Background Integrations

Inhomogeneous Point Processes

Arrival Time Series

Data: Set of N arrival times $\left\{t_{i}\right\}$, known with small, finite resolution $\Delta t ; N=$ dozens to millions

Time
Goal: Detect periodicity, bursts, structure...

Conventional methods for period detection

- Binned FFT
- Rayleigh statistic

$$
R^{2}(\omega)=\frac{1}{N}\left[\left(\sum_{i=1}^{N} \sin \phi_{i}\right)^{2}+\left(\sum_{i=1}^{N} \cos \phi_{i}\right)^{2}\right]
$$

- Z_{n}^{2} statistic

$$
Z_{n}^{2}(\omega)=\sum_{j=1}^{n} R^{2}(j \omega)
$$

- Epoch folding
- Fold data with trial period ($\phi_{i}=\omega t_{i}$); bin $\rightarrow n_{j}, j=1$ to M
- Calculate Pearson's $\chi^{2}(\omega)$ vs. $n_{j}=N / M$

Bayesian Approach

Likelihood:

$$
\begin{aligned}
& p_{0}(t)=P(\text { no event in } \Delta t \text { at } t \mid \theta, M) \\
& p_{1}(t)=P(\text { one event in } \Delta t \text { at } t \mid \theta, M) \\
& \Rightarrow \quad p(D \mid \theta, M)=\prod_{i} p_{1}\left(t_{i}\right) \prod_{\text {empties }} p_{0}(t)
\end{aligned}
$$

From the Poisson dist'n,

$$
\begin{aligned}
& p_{0}(t)=e^{-r(t) \Delta t} \\
& p_{1}(t)=r(t) \Delta t e^{-r(t) \Delta t} \\
& \Rightarrow \quad p(D \mid \theta, M)=(\Delta t)^{N} \exp \left[-\int_{T} d t r(t)\right] \prod_{i=1}^{N} r\left(t_{i}\right)
\end{aligned}
$$

Likelihood for periodic models:

Rate $=$ avg. rate $A \times$ periodic shape $\rho(\phi)$ (params $\mathcal{S})$

$$
r(t)=A \rho(\omega t-\phi ; \mathcal{S})
$$

Inhom. point process likelihood (for $T \gg$ period)

$$
\mathcal{L}(A, \omega, \phi, \mathcal{S})=\left[A^{N} e^{-A T}\right] \prod \rho\left(\omega t_{i}-\phi ; \mathcal{S}\right)
$$

Marginal likelihood for $\omega, \phi, \mathcal{S}$

$$
\mathcal{L}(\omega, \phi, \mathcal{S})=\prod_{i} \rho\left(\omega t_{i}-\phi ; \mathcal{S}\right)
$$

Example models:

- Log-Fourier models-analytic ϕ marginalization

$$
\log \rho(\theta) \propto \kappa \cos (\theta) \rightarrow \mathcal{L} \propto I_{0}[\kappa N R(\omega)] / I_{0}^{N}(\kappa)
$$

Harmonic sum $\rightarrow Z_{n}^{2}+$ interference terms

- Piecewise constant models-analytic \mathcal{S} marginalization
ρ flat in M bins $\rightarrow \mathcal{L} \propto \frac{(M-1)!}{(N+M-1)!}\left[\frac{n_{1}!n_{2}!\ldots n_{M}!}{N!}\right]$
For signal detection, integrate over ω, rather than maximize over a grid. This removes ambiguity/subjectivity from conventional approach.

Piecewise Constant Modeling of X-Ray Pulsar

X-Ray Pulsar PSR 0540-693 (Gregory \& Loredo 1996)
3300 events over $10^{5} \mathrm{~s}$, many gaps, FFT fails

Point Processes With Error
 Population Studies

Multiple searches for Trans-Neptunian Objects report $\left\{R_{i}, \sigma_{i}\right\}$ or non-detections. What are the sizes of TNOs? How far out does the pop'n extend?

Phenomenology

Cumulative dist'n $\Sigma(R)=10^{\alpha\left(R-R_{0}\right)}$, params α, R_{0}
Differential dist'n $\sigma(R)=d \Sigma / d R$
Physics
Size dist'n $f(D)$ and radial dist'n $n(r)$
Visible via reflection \rightarrow calculate R from D^{2} / r^{4} law
Conventional analyses
Least squares or χ^{2} fit to binned cumulative dist' n Ignores uncertainties; ambiguity in correcting for sampling; difficulty handling nondetections; difficulty combining disparate types of data; arbitrary, correlated bins

Bayesian approach

Multiply likelihoods for each survey modeled as point process with error,

$$
\mathcal{L}(\theta)=\exp \left[-\Omega \int d R \eta(R) \sigma(R)\right] \prod_{i} \int d R \ell_{i}(R) \sigma(R)
$$

A point process likelihood, including detection efficiency, $\eta(R)$, and object uncertainties, $\ell_{i}(R)=p\left(d_{i} \mid R\right)$.

Gladman et al. 1998, 2001

Spatio-Temporal Coincidences
 Do GRB sources repeat?

250 GRB directions

If GRBs repeat, many existing models are ruled out!

Coincidences Among UHE Cosmic Rays?

AGASA data above GZK cutoff (Hayashida et al. 2000)
AGASA + A20

Supergalactic Plane

- 58 events with $E>4 \times 10^{19} \mathrm{eV}$
- Energy-dependent direction uncertainty $\sim 2^{\circ}$
- Significance test -Search for coincidences $<2.5^{\circ}$:
- 6 pairs; $\lesssim 1 \%$ significance
- 1 triplet; $\lesssim 1 \%$ significance

Frequentist nearest neighbor analysis-two objects:

Null hypothesis H_{0} : no repetition, isotropic source dist'n
Statistic: Angle to nearest neighbor, θ_{12}
Sampling Dist'n:

$$
\begin{aligned}
p\left(\cos \theta_{12}, \phi_{12}\right) & =\frac{1}{4 \pi}, \quad \text { independent of uncertainty } \\
\rightarrow p\left(\theta_{12}\right) & =\frac{\sin \theta_{12}}{2} \\
p\left(<\theta_{12}\right) & =\frac{1-\cos \theta_{12}}{2}
\end{aligned}
$$

Reject H_{0} if this probability is small; e.g.:

- $\theta_{12}=26^{\circ} \rightarrow p\left(<26^{\circ}\right)=0.05$
- $\theta_{12}=0^{\circ} \quad \rightarrow \quad p\left(<0^{\circ}\right)=0$

Bayesian coincidence assessment-two objects:

Direction uncertainties accounted for via likelihoods for object directions:

$$
\mathcal{L}_{i}(\mathbf{n})=p\left(d_{i} \mid \mathbf{n}\right), \quad \text { normalized w.r.t. } \mathbf{n}
$$

H_{0} : No repetition

$$
\begin{aligned}
p\left(d_{1}, d_{2} \mid H_{0}\right) & =\int d \mathbf{n}_{1} p\left(\mathbf{n}_{1} \mid H_{0}\right) \mathcal{L}_{1}\left(\mathbf{n}_{1}\right) \quad \times \int d \mathbf{n}_{2} \cdots \\
& =\frac{1}{4 \pi} \int d \mathbf{n}_{1} \mathcal{L}_{1}\left(\mathbf{n}_{1}\right) \times \frac{1}{4 \pi} \int d \mathbf{n}_{2} \cdots \\
& =\frac{1}{(4 \pi)^{2}}
\end{aligned}
$$

H_{1} : Repeating (same direction!)

$$
p\left(d_{1}, d_{2} \mid H_{0}\right)=\int d \mathbf{n} p\left(\mathbf{n} \mid H_{0}\right) \mathcal{L}_{1}(\mathbf{n}) \mathcal{L}_{2}(\mathbf{n})
$$

Odds favoring repetition:

$$
\begin{gathered}
O=4 \pi \int d \mathbf{n} \mathcal{L}_{1}(\mathbf{n}) \mathcal{L}_{2}(\mathbf{n}) \\
\qquad \begin{aligned}
O & \frac{2}{\sigma_{12}^{2}} \exp \left[-\frac{\theta_{12}^{2}}{2 \sigma_{12}^{2}}\right] ; \quad \sigma_{12}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2} \\
\text { E.g.: } \sigma_{1}=\sigma_{2}=10^{\circ} \quad O & \approx 6 \text { for } \theta_{12}=26^{\circ} \\
O & \approx 33 \text { for } \theta_{12}=0^{\circ} \\
\sigma_{1}=\sigma_{2}=20^{\circ} \quad O & \approx 5 \text { for } \theta_{12}=26^{\circ} \\
O & \approx 8 \text { for } \theta_{12}=0^{\circ}
\end{aligned}
\end{gathered}
$$

Compare or Reject Hypotheses?

Frequentist Significance Testing (G.O.F. tests):

- Specify simple null hypothesis H_{0} such that rejecting it implies an interesting effect is present
- Divide sample space into probable and improbable parts (for H_{0})
- If $D_{\text {obs }}$ lies in improbable region, reject H_{0}; otherwise accept it

Bayesian Model Comparison:

- Favor the hypothesis that makes the observed data most probable (up to a prior factor)

If the data are improbable under H_{0}, the hypothesis may be wrong, or a rare event may have occured. GOF tests reject the latter possibility at the outset.

Challenge: Large hypothesis spaces
For $N=2$ events, there was a single coincidence hypothesis, M_{1} above.
For $N=3$ events:

- Three doublets: $1+2,1+3$, or $2+3$
- One triplet

For N events, \# of hypotheses with $n_{k} k$-tuplets (n_{2} doublets, n_{3} triplets. ..)

$$
\mathcal{N}=\frac{N!}{\prod_{k=1}^{K}(k!)^{n_{k} n_{k}}!}
$$

E.g. for $n_{2}=2, \mathcal{N} \approx N^{4} / 8$.

Bayesian Analysis of AGASA Cosmic Rays

$M_{0}: N=58$ different directions
M_{1} : Unknown number of pairs $\left(n_{2}\right)$ and triplets $\left(n_{3}\right)$
$\rightarrow O_{10}=1.4$ favoring clusters (i.e., no significant evidence)
If indeed clusters are present, we can constrain the number by calculating $p\left(n_{2}, n_{3} \mid D, M_{1}\right)$:

Key Ideas

Poisson processes handled without approximation

- Counting processes:
- Can treat rigorously for any n
- Backgrounds handled straightforwardly
- Point processes: No binning necessary!
- Point processes with error: Uncertainties easily handled

