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The Frequentist Outlook

Probabilities for hypotheses are meaningless because
hypotheses are not “random variables.”

Data are random, so only probabilities for data can appear in
calculations.

These probabilities must be interpreted as long-run
frequencies.

⇒ Seek to identify procedures that have good behavior in the
long run.

What is good for the long run
is good for the case at hand.
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The Bayesian Outlook

Quantify information about the case at hand as completely
and consistently as possible.

No explicit regard given to long run performance.

But a result that claims to be optimal in each case should
behave well in the long run.

Is what is good for the case at hand
also good for the long run?
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Long Run Behavior of Bayesian Methods

Agenda

• Bayesian calibration

• Consistency & convergence of Bayesian methods
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Bayesian Calibration

Credible region ∆(D) with probability P :

P =

∫

∆(D)
dθ p(θ|I)p(D|θ, I)

p(D|I)

What fraction of the time, Q, will the true θ be in ∆(D)?

1. Draw θ from p(θ|I)
2. Simulate data from p(D|θ, I)
3. Calculate ∆(D) and see if θ ∈ ∆(D)

Q =

∫

dθ p(θ|I)
∫

dD p(D|θ, I) [θ ∈ ∆(D)]
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Q =

∫

dθ p(θ|I)
∫

dD p(D|θ, I) [θ ∈ ∆(D)]

Note appearance of p(θ,D|I) = p(θ|D, I)p(D|I):

Q =

∫

dD

∫

dθ p(θ|D, I) p(D|I) [θ ∈ ∆(D)]

=

∫

dD p(D|I)
∫

∆(D)
dθ p(θ|D, I)

= P

∫

dD p(D|I)

= P

Bayesian inferences are “calibrated.” Always.
Calibration is with respect to choice of prior & L.
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Real-Life Confidence Regions

Theoretical (frequentist) confidence regions:

A rule δ(D) gives a region with covering probability:

Cδ(θ) =

∫

dD p(D|θ, I) [θ ∈ δ(D)]

It’s a confidence region iff C(θ) = P , a constant.

Such rules almost never exist in practice!

The CR requirement is often relaxed: require C(θ) ≥ P
(conservative).

The actual coverage of many standard regions thus
fluctuates (even for coin flipping—Brown et al. 2000).
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Average coverage:

Intuition suggests reporting some kind of average
performance:

∫

dθ f(θ)Cδ(θ)

Recall the Bayesian calibration condition:

P =

∫

dθ p(θ|I)
∫

dD p(D|θ, I) [θ ∈ ∆(D)]

=

∫

dθ p(θ|I)Cδ(θ)

provided we take δ(D) = ∆(D).

• If C∆(θ) = P , the credible region is a confidence
region.

• Otherwise, the credible region’s probability content
accounts for a priori uncertainty in θ—we need priors
for this.
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Calibration for Bayesian Model Comparison

Assign prior probabilities to NM different models.

Choose as the true model that with the highest posterior
probability, but only if the probability exceeds Pcrit.

Iterate via Monte Carlo:

• 1.Choose a model by sampling from the model prior.

• 2.Choose parameters for that model by sampling from the
parameter prior pdf.

• 3.Sample data from that model’s sampling distribution
conditioned on the chosen parameters.

• 4.Calculate the posteriors for all the models; choose the
most probable if its P > Pcrit.

⇒ Will be correct ≥ 100Pcrit% of the time that we reach a
conclusion in the Monte Carlo experiment. p.9/38



Robustness to model prior:

What if model frequencies 6= model priors?

Choose between two models based on the Bayes factor,
B, but let them occur with nonequal frequencies. Let

γ = max

[

p(M1 | I)
p(M2 | I)

,
p(M2 | I)
p(M1 | I)

]

Fraction of time a correct conclusion is made if we require
B > Bcrit or B < 1/Bcrit is

Q >
1

1 + γ
Bcrit

E.g., if Bcrit = 100:

• Correct ≥ 99% if γ = 1
• Correct ≥ 91% if γ = 9
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A Worry: Incorrect Models

What if none of the models is “true”?

Comfort from experience: Rarely are statistical models
precisely true, yet standard models have proved
themselves adequate in applications.

Comfort from probabilists: Studies of consistency in the
framework of nonparametric Bayesian inference show
“good priors are those that are approximately right for
most densities; parametric priors [e.g., histograms] are
often good enough” (Lavine 1994).

One should worry somewhat, but there is not yet any
theory providing a consistent, quantitative “model failure
alert.”
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Bayesian Consistency & Convergence

Parameter Estimation:

• Estimates are consistent if the prior doesn’t exclude the
true value.

• Credible regions found with flat priors are typically
confidence regions to O(n−1/2).

• Using standard nonuniform “reference” priors can
improve their performance to O(n−1).

• For handling nuisance parameters, regions based on
marginal likelihoods have superior long-run performance
to regions found with conventional frequentist methods
like profile likelihood.
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Model Comparison:

• Model comparison is asymptotically consistent. Popular
frequentist procedures (e.g., χ2 test, asymptotic likelihood
ratio (∆χ2), AIC) are not.

• For separate (not nested) models, the posterior
probability for the true model converges to 1 exponentially
quickly.

• When selecting between more than 2 models, carrying
out multiple frequentist significance tests can give
misleading results. Bayes factors continue to function
well.
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Summary

Parametric Bayesian methods are typically excellent
frequentist methods!

Not too surprising—methods that claim to be optimal for each

individual case should be good in the long run, too.
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Bayesian Adaptive Exploration

Prior information & data Combined information

Interim

Strategy New data Predictions Strategy
Observ’n Design

Inference

results

• Theory
I Decision theory
I Experimental design

• Proof of concept: Exoplanets
I Motivation: SIM EPIc Survey
I Demonstration: A few BAE cycles

• Challenges
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Bayesian Decision Theory

Decisions depend on consequences

Might bet on an improbable outcome provided the payoff
is large if it occurs and the loss is small if it doesn’t.

Utility and loss functions

Compare consequences via utility quantifying the benefits
of a decision, or via loss quantifying costs.

Utility = U(c, o)

Choice of action (decide b/t these)

Outcome (what we are uncertain of)
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Deciding amidst uncertainty

We are uncertain of what the outcome will be
→ average:

EU(c) =
∑

outcomes

P (o|I)U(c, o)

The best choice maximizes the expected utility:

ĉ = argmax
c

EU(c)
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Bayesian Experimental Design

Basic principles

Choices = {e}, possible experiments (sample times,
sample sizes. . .).

Outcomes = {d}, values of future data.

Utility balances value of d for achieving experiment goals
against the cost of the experiment.

Choose the experiment that maximizes

EU(e) =
∑

d

p(d|e, I)U(e, d)

To predict d we must know which of several hypothetical
“states of nature” Hi is true. → Average over Hi:

EU(e) =
∑

Hi

p(Hi|I)
∑

d

p(d|Hi, e, I)U(e, d)
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Information as Utility

Common goal: discern among the Hi.
→ Utility = information I(e, d) in p(Hi|d, e, I):

U(e, d) =
∑

Hi

p(Hi|d, e, I) log [p(Hi|d, e, I)]

= −Entropy of posterior

Design to maximize expected information.
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Measuring Information With Entropy

Entropy of a Gaussian

p(x) ∝ e−(x−µ)
2/2σ2 → I ∝ − log(σ)

p(~x) ∝ exp
[

−12~x ·V
−1 · ~x

]

→ I ∝ − log(detV)

Entropy measures volume, not width

x

p(x)

x

p(x)

These distributions have the same entropy/amount of
information. p.20/38



Finding Exoplanets: The Space Interferometry Mission

SIM in 2009 (?) The Sun’s Wobble From 10 pc
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EPIcS: Extrasolar Planet Interferometric Survey

Tier 1

• Goal: Identify Earth-like planets in habitable regions
around nearby Sun-like stars

• Requires 1 µas astrometry
I Long integration times

I Astrometrically stable reference stars

• ∼ 75 MS stars within 10 pc, ∼ 70 epochs per target
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Tier 2

• Goal: Explore the nature and evolution of planetary
systems in their full variety

• Requires 4 µas astrometry, short integration times

• ∼ 1000 targets, “piggyback” on Tier 1

Preparatory observing

• High precision radial velocity and adaptive optics
observing

• Identify science targets

• Identify reference stars (K giants? eccentric binaries?)

Huge resource expenditures
→ must optimize use of resources
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Example: Orbit Estimation With Radial Velocity Observations

Data are Kepler velocity plus noise:

di = V (ti; τ, e,K) + ei

3 remaining geometrical params (t0, λ, i) are fixed.

Noise probability is Gaussian with known σ = 8 m s−1.

Simulate data with “typical” Jupiter-like exoplanet
parameters:

τ = 800 d
e = 0.5

K = 50 ms−1

Goal: Estimate parameters τ , e and K.
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Cycle 1: Observation

Prior “setup” stage specifies 10 equispaced observations.
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Cycle 1: Inference
Use flat priors,

p(τ, e,K|D, I) ∝ exp[−Q(τ, e,K)/2σ2]

Q = sum of squared residuals using best-fit amplitudes.

Generate {τj, ej, Kj} via posterior sampling.

p.26/38



Aside: Kepler Periodograms

Keplerian radial velocity model:

V (t) = A1 + A2[e+ cos υ(t)] + A3 sin υ(t)

υ(t) = f(t; τ, e, T ) via Kepler’s eqn

Period τ and 2 other nonlinear parameters (e, T )
3 linear amplitudes (COM velocity, orbital velocity, λ)

Use Bretthorst algorithm. For e = 0→ L-S periodogram,
the current standard tool, but the Bayesian generalization
accounts for orbital eccentricity.

For astrometry, 2D data require x(t), y(t).
Extra parameters: inclination, parallax, proper motion.
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Cycle 1: Design

Predict value of future datum at t

p(d|t,D, I) =
∫

dτ de dK p(τ, e,K|D, I)

× 1

σ
√
2π
exp

(

− [d− v(t; τ, e,K)]2

2σ2

)

≈ 1

N

∑

{τj ,ej ,Kj}

1

σ
√
2π
exp

(

− [d− v(t; τj, ej, Kj)]
2

2σ2

)

Effect of a datum on inferences

Information if we sample at t and get datum d:

I(d, t) =
∫

dτ de dK p(τ, e,K|d, t,D, I) log[p(τ, e,K|d, t,D, I)]
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Average over unknown datum value

Expected information:

EI(t) =
∫

dd p(d|t,D, I) I(d, t)

Width of noise dist’n is independent of value of the
signal→

EI(t) = −
∫

dd p(d|t,D, I) log[p(d|t,D, I)]

Maximum entropy sampling.
(Sebastiani & Wynn 1997, 2000)

Evaluate by Monte Carlo using posterior samples & data
samples.

Pick t to maximize EI(t).
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Design Results: Predictions, Entropy
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Cycle 2: Observation
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Cycle 2: Inference
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Cycle 2: Design
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Evolution of Inferences

Cycle 1 (10 samples)

Cycle 2 (11 samples)
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Cycle 3 (12 samples)

Cycle 4 (13 samples)
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Challenges

Evolving goals for inference

Goal may originally be detection (model comparison),
then estimation. How are these related? How/when to
switch?

Generalizing the utility function

Cost of a sample vs. time or costs of samples of different
size could enter utility. How many bits is an observation
worth?

Computational algorithms

Are there MCMC algorithms uniquely suited to adaptive
exploration? When is it smart to linearize?
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Design for the “setup” cycle

What should the size of a setup sample be? Can the
same algorithms be used for setup design?

When is it worth the effort?
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Key Ideas

Sample space integrals are useful in a Bayesian setting.

• Long run behavior of Bayesian methods
I Bayesian methods are calibrated

I Parametric Bayesian methods have good frequentist
behavior

Bayes may be the best way to be frequentist!

• Bayesian adaptive exploration
I Can provide dramatic benefits in nonlinear settings

I Many challenges and open questions
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