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Today’s Lecture

• Problems you avoid
I Ambiguity in what is “random”
I Recognizable subsets
I The “nuisance” of nuisance parameters
I Misleading measures of “significance”
⇒ Irrelevance of long run behavior/sample averages

• Advantages you gain

• Foundations
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The Randomness of Randomness
Theory (H0):

The number of “A” stars in a cluster should be 0.1 of the
total.

Observations:

5 A stars found out of 96 total stars observed.

Theorist’s analysis:

Calculate χ2 using n̄A = 9.6 and n̄X = 86.4.

Significance level is p(> χ2|H0) = 0.12 (or 0.07 using
more rigorous binomial tail area). Theory is accepted.
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Observer’s analysis:

Actual observing plan was to keep observing until 5 A
stars seen!

“Random” quantity is Ntot, not nA; it should follow the
negative binomial dist’n. Expect Ntot = 50± 21.

p(> χ2|H0) = 0.03. Theory is rejected.

Telescope technician’s analysis:

A storm was coming in, so the observations would have
ended whether 5 A stars had been seen or not. The
proper ensemble should take into account p(storm) . . .

Bayesian analysis:

The Bayes factor is the same for binomial or negative
binomial likelihoods, and slightly favors H0. Include
p(storm) if you want—it will drop out!
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Recognizable Subsets

p(t)

t
t0

Goal:

Locate the start time, t0, of a burst of events with an
abrupt start and a decay time τ = 1 s.

p(t|t0) =
1

τ
exp(−t− t0

τ
) for t ≥ t0
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Frequentist method of moments:

Note 〈t〉 ≡
∫

t p(t)dt = t0 + τ so unbiased estimator for t0
is

t̂0 ≡
1

N

N
∑

i=1

(ti − τ)

Also, p(t̂0|t0) is analytic → find confidence intervals.

Suppose {ti} = {12, 14, 16}. Find

t̂0 = 13; 12.15 < t0 < 13.83 (90%)

But t̂ and entire interval lie after first event!

Can show that the confidence region will not include the
true value 100% of the time in the subset of samples that
have t̂ > t1 + 0.85, and we can tell from the data whether
or not any particular sample lies in this subset.

p.6/28



Bayesian solution:

Product of event time probabilities and flat prior →

p(t0 | {ti}, I) = N exp [N(t0 − t1)] for t0 ≤ t1
= 0 for t0 > t1

Summaries:

• t̂0 = 12; 〈t0〉 = 11.66

• 90% HPD region is 11.23 < t0 < 12.0
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Marginals vs. Profiles

General problem:

Measure several quantities with an “uncalibrated”
instrument that adds Gaussian noise with unknown but
constant σ.

Learn about σ by pooling the data.

Example—Pairs of measurements:

Make 2 measurements (xi, yi) for each of N quantities µi.

L({µi}, σ) =
∏

i

exp
[

− (xi−µi)
2

2σ2

]

σ
√
2π

×
exp

[

− (yi−µi)
2

2σ2

]

σ
√
2π

Frequentist approach uses Lp(σ) = max{µi} L({µi}, σ)
But p(σ|D) and Lp(σ) differ dramatically!
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Joint & Marginal Results for σ = 1
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A Simple Significance Test

Model: xi = µ+ εi, (i = 1 to n) εi ∼ N(0, σ2)

Null hypothesis, H0: µ = µ0 = 0

Test statistic:

t(x) =
|x̄|

σ/
√
n

Significance level, α:

p(t|H0) =
1√
2π
e−t

2/2

α = sig. level/p–value/false-alarm p

= p(t ≥ tobs)

t α

1 0.317

2 0.046

3 0.003

α = .05→ “significant”

α = .01→ “highly significant”

Generalization: χ2 GOF test
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The Significance of Significance

Collect the α values from a large number of tests in situations
where the truth eventually became known, and determine
how often H0 is true at various α levels.

• Suppose that, overall, H0 was true about half of the time.

• Focus on the subset with t ≈ 2 (say, [1.95, 2.05] so
α ∈ [.04, .05], so that H0 was rejected at the 0.05 level.

• Find out how many times in that subset H0 turned out to
be true.

• Do the same for other significance levels.
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A Monte Carlo experiment:

• Choose µ = 0 OR µ ∼ N(0, 4σ2) with a fair coin flip

• Simulate n = 20 data, xi ∼ N(µ, σ2)

• Calculate tobs =
|x̄|

σ/
√
n

and α(tobs) = P (t > tobs|µ = 0)

• Bin α(t) separately for each hypothesis; repeat

Compare how often the two hypotheses produce data
with a 2– or 3–σ effect.
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Significance Level Frequencies, n = 20
bin size Null hypothesis Alternative
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Significance Level Frequencies, n = 200
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Significance Level Frequencies, n = 2000
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What about another µ prior?

• For data sets with H0 rejected at α ≈ 0.05, H0 will be true at least
23% of the time (and typically close to 50%). (Edwards et al. 1963;
Berger and Selke 1987)

• At α ≈ 0.01, H0 will be true at least 7% of the time (and typically
close to 15%).

What about a different “true” null frequency?

• If the null is initially true 90% of the time (as has been estimated in
some disciplines), for data producing α ≈ 0.05, the null is true at least
72% of the time, and typically over 90%.

In addition . . .

• At a fixed α, the proportion of the time H0 is falsely rejected grows as√
n. (Jeffreys 1939; Lindley 1957)

• Similar results hold generically; e.g., for χ2. (Delampady & Berger
1990) p.16/28



Significance is not an easily interpretable measure of the
weight of evidence against the null.

• Significance does not accurately measure how often the
null will be wrongly rejected among similar data sets.

• The “obvious” (and recommended!) interpretation
overestimates the evidence.

• For fixed significance, the weight of the evidence
decreases with increasing sample size.
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A History of Criticism

Significance tests have been under suspicion since their
creation

• “Some difficulties of interpretation encountered in the application of
the chi-square test” (Berkson 1938)

• Jeffreys 1939ff: the
√
n effect (Jeffreys-Lindley paradox)

W. L. Thompson’s on-line bibliography of works criticizing
significance tests contains > 300 entries spanning a dozen
disciplines!

• “Significance tests die hard: the amazing persistence of a
probabilistic misconception”

• “Needed: A ban on the significance test”

• “The insignificance of statistical significance”
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H. Jeffreys, addressing an audience of statisticians:

For n from about 10 to 500 the usual result is that K = 1
when (a− α0)/sα is about 2. . . not far from the rough rule
long known to astronomers, i.e. that differences up to
twice the standard error usually disappear when more or
better observations become available. . . I have always
considered the arguments for the use of P absurd. They
amount to saying that a hypothesis that may or may not
be true is rejected because a greater departure from the
[observed] trial was improbable; that is, that it has not
predicted something that has not happened. As an
argument astronomer’s experience is far better. (Jeffreys
1980)
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A Bayesian Look at Significance

B ≡ p({xi}|H1)

p({xi}|H0)
=
p(αobs|H1)

p(αobs|H0)

→ B is just the ratio calculated in the Monte Carlo!

Why is significance a poor measure of the weight of
evidence?

• We should be comparing hypotheses, not trying to
identify rare events.

• Comparison should use the actual data, not merely
membership of the data in some larger set. Significance
level conditions on incomplete information.
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The Weatherman

Joint Frequencies of

Actual & Predicted Weather

Actual

Prediction Rain Sun

Rain 1/4 1/2

Sun 0 1/4

Forecaster is right only 50% of the time.

Observer notes a prediction of ‘Sun’ every day would be
right 75% of the time, and applies for the forecaster’s job.

Should he get the job?
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Weatherman: You’ll never be in an unpredicted rain.

Observer: You’ll be in an unpredicted rain 1 day out of 4.

The value of an inference lies in its usefulness in the
individual case.

Long run performance is not an adequate criterion for
assessing the usefulness of inferences.
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What you avoid

• Hidden subjectivity/arbitrariness

• Dependence on “stopping rules”

• Recognizable subsets

• Defining number of “independent” trials in searches

• Inconsistency & incoherence (e.g., inadmissable
estimators)

• Inconsistency with prior information

• Complexity of interpretation (e.g., significance vs.
sample size)
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What you get

• Probabilities for hypotheses
I Straightforward interpretation
I Identify weak experiments
I Crucial for global (hierarchical) analyses

(e.g., pop’n studies)
I Forces analyst to be explicit about assumptions

• Handle nuisance parameters

• Valid for all sample sizes

• Handles multimodality

• Quantitative Occam’s razor

• Model comparison for > 2 alternatives; needn’t be
nested
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And there’s more . . .

• Use prior info/combine experiments

• Systematic error treatable

• Straightforward experimental design

• Good frequentist properties:
I Consistent
I Calibrated—E.g., if you choose a model only if

odds > 100, you will be right ≈ 99% of the time
I Coverage as good or better than common

methods

• Unity/simplicity
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Foundations
“Many Ways To Bayes”

• Consistency with logic + internal consistency → BI
(Cox; Jaynes; Garrett)

• “Coherence”/Optimal betting → BI (Ramsey; DeFinetti; Wald)

• Avoiding recognizable subsets → BI (Cornfield)

• Avoiding stopping rule problems → L-principle
(Birnbaum; Berger & Wolpert)

• Algorithmic information theory → BI
(Rissanen; Wallace & Freeman)

• Optimal information processing → BI (Good; Zellner)

There is probably something to all of this!
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What the theorems mean

When reporting numbers ordering hypotheses, values
must be consistent with calculus of probabilities for
hypotheses.

Many frequentist methods satisfy this requirement.

Role of priors

Priors are not fundamental!

Priors are analogous to initial conditions for ODEs.

• Sometimes crucial
• Sometimes a nuisance
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Key Ideas

• To make inferences, calculate probabilities for hypotheses

• What’s different about this approach:
I Must be explicit about alternatives (think about models

instead of statistics)

I Sum/integrate in parameter space rather than sample
space

• This avoids a variety of frequentist difficulties

• This provides many practical benefits

• It’s what one should do
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