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ABSTRACT

Astronomers are skeptical of statistical analyses, the more so the more sophisticated they are. This
has been true especially of Bayesian methods, despite the fact that such methods largely originated
in the astronomical analyses of Laplace and his contemporaries in the early 1800s. I argue here
that astronomers hold statistics in low regard because many astronomers are poor statisticians.
Further, I argue that astronomers are poor statisticians because the frequentist methods they use
have characteristics that invite statistical sloppiness when they are used by nonexperts. The Bayesian
approach to statistical inference does not share these characteristics; adoption of Bayesian methods
by astronomers thus promises to improve statistical practice in astronomy. I present a simplified
discussion of some of the issues arising in the recent analysis of an important astrophysical data
set—that provided by the Cosmic Background Explorer satellite—to illustrate some of the practical
advantages of a Bayesian outlook. I offer some advice on how to educate astronomers about Bayesian
methods. I conclude with a brief survey of recent applications of Bayesian methods to the analysis
of astrophysical data. The breadth and number of these applications may well indicate that the
time for Bayesian methods to return to the field of their origin has arrived.

1. INTRODUCTION

One could claim without too much exaggeration that statistical inference was invented because
of astronomy. As noted by Stigler (1986), problems associated with reconciling discrepant obser-
vations in astronomy and geodesy motivated such legendary mathematicians and astronomers as
Legendre, Laplace, and Gauss to develop the foundations of statistical inference based on probabil-
ity theory. Their analyses of astronomical and geodetic problems led to such notions as the use of
means to reduce uncertainty, the method of least squares, the normal distribution, the central limit
theorem, and the “method of inverse probability” (inference using Bayes’s theorem). Their work
was essentially Bayesian in outlook, and the first mature treatise on statistical inference—Laplace’s
Theorie Analytique des Probabilités (Laplace 1812)—could fairly be called a Bayesian monograph.

Viewed from the present, this aspect of the early history of statistical inference is doubly ironic.
First, contemporary astronomers (and physical scientists more generally) seldom receive any formal
training in statistics, and frequently display a skepticism of sophisticated statistical analysis that
borders on disdain. Second, until very recently, Bayesian methods in particular have been poorly
understood and unwelcome tools among physical scientists. This has been true despite the fact that
the most influential and practical Bayesian text of the first half of this century was written by a
geologist and astronomer, Sir Harold Jeffreys (Jeffreys 1939).



While physical scientists have been ignoring Bayesian methods, these methods have been re-
ceiving increasing attention from applied statisticians and from practicing scientists in various other
scientific disciplines, most notably biometrics and econometrics. Although Lindley’s prediction of
a Bayesian twenty-first century (Lindley 19xx) now appears somewhat optimistic, it is nevertheless
true that Bayesian methods are flourishing outside the physical sciences, and are now well understood
and broadly accepted by statisticians.

In this paper, I will argue that it is time for “the Prodigal” to return home: for Bayesian
inference to offer its insights to its home discipline of astronomy with the same prodigality with
which it has recently offered them to other disciplines. Indeed, there is already evidence that the
Prodigal is in sight, for a number of investigators in various areas of astronomy have independently
begun introducing Bayesian methods into the astronomer’s toolbox in recent years.

In the next section I will describe current attitudes of astronomers toward statistics. I will
document the low regard astronomers have toward statistics, and offer my own opinions as to why
this is true. In a word: astronomers have a low regard for statistics because many astronomers
are horrible statisticians. I will argue that the poor statistical performance of astronomers arises
because many characteristics of the traditional “frequentist” approach to statistics that dominates
astronomical practice invite statistical sloppiness. I will briefly describe how Bayesian inference, by
its very structure, prevents or discourages some of the bad practices of astronomers. In Section 3,
I will describe a few of the statistical mistakes astronomers commonly make. In Section 4, I will
present a simplified version of a recent, important analysis of astrophysical data that illustrates
both the pitfalls of traditional thinking and the benefits of Bayesian thinking. Presuming that the
first four sections motivate some readers to want to educate astronomers about Bayesian methods,
Section 5 offers advice on how Bayesian statisticians might make their work more accessible to
astronomers. Finally, in Section 6, I will briefly point out some recent applications of Bayesian
inference in astronomy.

I am an astrophysicist, and know best the situation in my own discipline. But it is my perception
that much of what I will say applies also to other disciplines in the physical sciences. Thus readers
may not err too severely if they read “physical sciences” wherever they see “astronomy,” or “physi-
cist” wherever they see “astronomer.” I offer this essay to this audience of Bayesian statisticians in
the hope that I might convince some of you that astronomers—and physicists more generally—need
your insights, and motivate some of you to work toward bridging the gulf that exists between our
disciplines. It appears to me that the gulf is not very wide, and that a small amount of effort on
both sides could yield large rewards.

2. FRETTING ABOUT STATISTICS

A recent issue of Physics Today began with a brief editorial column titled, “Fretting About
Statistics.” The author, one of the most highly regarded experimentalists in atomic physics, offers
the following observations about the status of statistics in the physical sciences:

A colleague . . . claims that if you need to rely on statistics to understand your experiment,
you are in serious trouble. The claim is obviously exaggerated, but he has a point: If you
need to rely on statistics, you need to worry . ... The power of statistics to deceive is so
well known that the title “statistician” is slightly suspect . ... With today’s cheap and
powerful workstations you can accumulate vast piles of data, analyze them in a jiffy and
apply sophisticated statistical tests to reassure yourself that the data are consistent and
that all is well. What you have really achieved, however, is the ability to fool yourself in a
highly sophisticated manner . . . . (Kleppner 1992)

I have taken Kleppner’s comments out of context with the consequence that the skepticism toward
statistics that he describes is exaggerated. However, my own experience is that the exaggerated
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skepticism may be more typical of many colleagues who have not thought as carefully about statistics
as Kleppner may have.

Kleppner goes on to note that “it is only fair . .. to point out that statistical analysis has been
crucial to more than a few dazzling discoveries.” The principal example he cites is an astrophysical
one we will discuss further in Section 5. The point I wish to make here is that, despite their
distrust of statistics, physical scientists are finding themselves more and more often in the position
of having to devise and rely on sophisticated manipulations of their data in order to draw scientific
inferences from them. This is a natural consequence of the drive to understand physical systems at
more detailed levels or in more extreme regimes than have been accessible previously in the history of
science, thus requiring more complicated preparation and observation of the systems under study. In
astronomy, these problems are exacerbated further by the fact that astronomy is an observational,
rather than an experimental, science. Astronomers almost always observe phenomena of interest
from great distances. The systems under study are thus inaccessible to direct manipulation, and
the physical quantities of interest usually can only be observed indirectly, through their influence on
light. This necessarily complicates one’s inferences.

Thus the scientific inferences of physicists, and particularly of astronomers, are fraught with
uncertainty, uncertainty which must be described quantitatively. As statistics is the mathematical
discipline whose goal is to quantify uncertainty, most physical scientists who handle data inevitably
find themselves “fretting” about statistics at some time in their career.

But why are astronomers fretting about statistics, instead of merely thinking or learning about
statistics? Look as hard as you want, and you will not find an editorial by a physicist or an
astronomer titled “Fretting About Integration” or “Fretting About Tensor Algebra.” What is it that
leads astronomers to react differently to statistics than they do to other mathematical disciplines? I
believe the answer to this question lies in two related characteristics of frequentist statistics, the type
of statistics which has dominated modern astronomical statistics. First, frequentist statistics bears
a different relationship to the problems it solves than do other mathematical disciplines. Second,
a consequence of this difference is that good statistical practice requires a high level of mastery of
arcane knowledge, a mastery which astronomers lack. Let me now elaborate on these assertions.

2.1. What Is Different About Frequentist Statistics?

In their training, astronomers master several mathematical disciplines at reasonably high levels
of sophistication. Some examples would include algebra; real, complex, and vector analysis (differen-
tiation and integration); tensor algebra; and differential equations. Each of these disciplines shares
the characteristic that they consist of tools for finding definitive solutions to well-posed problems.
Implicit in this characterization is the assumption that a definite (and often unique) solution exists.

Take integration as an example. I recently came across the following integral in my work:

I(k,¢) = /027r explk cos(f — ¢)]de. (2.1)

Fortunately, integral representations of some Bessel functions are part of my “integration toolbox,”
so I could show that I(k, ¢) = Iy(k), where Iy denotes the Oth order modified Bessel function. Later
in the same project, I came across the superficially similar integral,

21

N
I(k,¢) = ; df exp [Z Ko cos(al — ¢q) | - (2.2)
a=1

Here k& and ¢ denote vectors of parameters, with N components. This time my toolbox was not
up to the task. None of my favorite tricks—integration by parts, parametric integration, Fourier or
Laplace transforms—gave me the answer. Queries of other astronomers and physicists have failed to
provide a satisfactory answer (although a theoretical particle physicist found a nested infinite series
solution that, although useless in practice, is pretty impressive!).
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The point of these examples is that for integration (and most other mathematical disciplines),
you either have the tools you need to solve the problem or you do not, and there is no question about
whether you have them or not: either you can find the answer or you cannot. In the latter case,
consulting an expert (or gaining more expertise yourself) is not optional; if you want the answer,
you have no choice but to seek the expertise.

Not so with frequentist statistics. It is qualitatively different from other mathematical disciplines
in that it consists of tools for characterizing tentative solutions to problems, rather than tools for
finding definitive solutions. For example, if I need to estimate a parameter, frequentist statistics will
not “hand” me an estimator. Rather, it requires that I provide it one or more estimators (perhaps
as a parameterized class); it will then provide me with various characterizations of how well they
perform (bias, efficiency, etc.). But it is up to me to provide the estimators, to specify the relevant
characterizations of their performance, and to choose how to balance the various characterizations
in order to settle on a particular estimator.

For brevity, I will use the term frequentist distinction to refer to this distinguishing aspect
of frequentist statistics: that it characterizes tentative solutions, rather than provides definitive
solutions.

To many astronomers, this poorly appreciated distinction of frequentist statistics gives statistics
an air of imprecision. It appears that, no matter how carefully we pose our problems, there are
no “right” answers. Indeed, experience shows that it is not unusual for investigators who choose
different statistics to reach different conclusions, with no compelling criteria available to choose
between them. No wonder, then, that astronomers so often and so publicly “fret about statistics,”
trusting statistical results only when the conclusions are evident without quantitative analysis.

2.2. What We Don’t Know Does Hurt Us

A consequence of the frequentist distinction is that much of the discipline appears to an outsider
to be a collection of a huge number of arcane studies of the behavior of ad hoc statistics in many
problems. It is true that for simple problems (essentially those with minimal sufficient statistics
equal in number to the number of parameters) the statistic of choice is unambiguous and reasonably
well known, at least among statisticians. But such problems do not take us very far in the real
world. For problems of realistic complexity, only a statistician is likely to know where to look in the
huge and arcane literature of statistics in order to find a suitable, well-studied method. More likely
than not, the precise problem of interest has not been previously studied in depth, necessitating
use of expert judgement in adapting solutions of similar problems, or in devising and studying new
tentative statistics customized to the problem at hand.

We astronomers do not possess this arcane expert knowledge, and most of us have enough trouble
mastering the arcane knowledge of our own discipline that there is little possibility of us mastering
that of another as well. Ideally, then, we would consult an expert when we need statistical wisdom
that we do not possess ourselves. Realistically, this does not happen. I suppose this may be due in
part to arrogance or stubbornness. But in all fairness, I think there is a deeper reason.

Since frequentist statistics does not actually solve problems, astronomers who use frequentist
methods are not forced to confront their statistical ignorance. We can apply a simplistic method to
a complicated problem and get an answer. It may be a poor answer, but it is an answer nonetheless.
For this reason, statistics is a field where a little knowledge can hurt you, because there is no “alarm”
automatically warning you when you are applying a method outside its realm of applicability, or
alerting you to the fact that superior methods exist. When I try to evaluate an integral, and do not
have the tools, I do not get an answer. If I want to estimate a parameter, and choose simply to use
some moment of the data, I will get an answer, regardless of whether moments give poor estimates
for the data under consideration, and regardless of whether some other procedure exists that gives
a demonstrably better answer.



2.3. The Bayesian Alternative

The Bayesian approach to inference is in an important sense more like integration than like fre-
quentist statistics. Like integration and other mathematical disciplines, it is a collection of tools for
finding definitive answers to well-posed problems. Once a problem is posed, the rules of probability
theory lead one directly to its solution, providing one can do the required mathematics. One sim-
ply computes the probabilities of all hypotheses being considered, using Bayes’s theorem or other
applications of the basic sum and product rules of probability theory. Once a few “tricks of the
trade”—like marginalization, or “extending the question”—are mastered, the procedure of writing
out the formal solution becomes almost mechanical for most problems.

This being said, there are a number of practical problems that arise in the application of Bayesian
methods that I do not wish to sweep under the proverbial carpet. I would divide such problems
into two classes: problem specification, and Bayesian calculation. Some brief comments about these
problems may be in order here.

In many mathematical disciplines the conditions required for a problem to be well-posed are
so clear that they need hardly be stated explicitly. That such conditions exist for problems of
inference seems to have escaped notice by many scientists, however. We know we cannot solve
a differential equation unless we specify not just the equation, but also boundary conditions. It
should hardly come as a surprise, then, that there are certain conditions that must be satisfied to
make an inference problem well-posed. The Bayesian “recipe” is simple: to assess a hypothesis,
calculate its probability conditional on all the information at hand. The requirements for a problem
to be well-posed are: (1) That we explicitly identify all the relevant hypotheses, and (2) That we
specify whatever other information is needed to guarantee that all the direct probabilities we need
in our calculation can be unambiguously evaluated (indeed, (1) is a special case of (2)). There is
inevitable subjectivity in both requirements. For the most part, this subjectivity is shared by both
Bayesian and frequentist methods. It is perhaps most prominent in assigning prior probabilities
needed in Bayesian calculations, and I will say a little more about this later. But subjectivity also
arises in assigning sampling distributions, and this subjectivity—shared by Bayesian and frequentist
methods—may well be more worrisome than that associated with priors, even though a century of
frequentist focus has conditioned us to quick acceptance of a few “stock” sampling distributions. My
own view is that it is an important advantage of Bayesian methods that their very structure makes
the inherent subjectivity of statistical inference explicit. I will remark on a few specific examples of
subjectivity hidden in frequentist methods but made visible with Bayesian methods in the following
section.

Once a problem is well-posed, the rules of probability theory lead us to a formal statement of
its solution in the form of formulas for calculating or summarizing the needed probabilities. These
formulas inevitably require integrals over the hypothesis space, integrals which can be very hard to
evaluate accurately if the hypothesis space is of moderate or large dimension. Indeed, devising clever
algorithms for performing such integrals is one of the main areas of current research in Bayesian
inference. But it is worth emphasizing that the difficulties of Bayesian calculation are practical
difficulties; they arise because we know what we need to calculate. I am sure I am not alone in
feeling more comfortable having to devise clever approximations to the known definitive solution to
a problem than I would having to devise clever tentative solutions to the problem directly.

Practical difficulties aside, the essential point is that a well-posed inference problem has a unique
and definitive Bayesian solution, but usually no definitive frequentist solution. Cleverness is required
in both Bayesian and frequentist approaches, but cleverness of quite different kinds. Bayesian meth-
ods may require mathematical cleverness in finding ways to evaluate the formal solution (perhaps
involving clever restatement of the problem). This is a kind of cleverness that astronomers and
physical scientists have some experience with (in fact, much recent Bayesian work on Monte Carlo
methods for evaluating Bayesian integrals is built on ideas that were first developed in the physics
literature; e.g., the Metropolis algorithm). Frequentist methods require cleverness in specifying a
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solution. This cleverness can only come from experience with advanced statistics and familiarity
with the statistics literature. And unfortunately, the frequentist approach has no built in “alarms”
alerting us when we have not been clever enough.

3. SEVEN STATISTICAL SINS

By its nature, then, frequentist statistics lets astronomers avoid their statistical ignorance. In
this section, I will describe seven common errors I have personally seen, repeatedly, in the astro-
nomical literature: consequences of us trying to get by on what little we know. Some of these “sins”
display misunderstandings so basic that they might well fail a beginning statistics student out of his
or her first statistics course! Yet all of these blunders have been commited by astronomers who, in
other respects, are quite excellent scientists.

Before I completely alienate any astronomical colleagues who have stumbled upon this paper, 1
should point out that I have made every one of these mistakes myself. I have the advantage of having
made most of them while still a graduate student, so that few of them have appeared in print; but
I am as guilty as other astronomers of sloppy statistical thinking. It is my personal experience that
a Bayesian outlook naturally guides one away from some blind alleys that otherwise may appear
attractive. For each of the problems I mention, I will thus describe how Bayesian methodology
discourages or prevents bad statistical practice.

3.1. Confusing Parameter Estimation With Model Criticism

Frequentist methodology does not consider probabilities for hypotheses conditional on the ob-
served data, but considers only probabilities for the observed and hypothetical data conditional on
an hypothesis. This encourages sloppy thinking regarding specification of the hypothesis space rel-
evant to a problem. The first three “sins” I will discuss all originate from trying to solve a problem
that is not well-posed because of incomplete or incorrect problem specification.

The first sin is the failure to distinguish between two different kinds of inference problems:
parameter estimation and model criticism. With alarming frequency, astronomers use goodness-of-
fit (model criticism) methods to find the boundary of a “confidence region,” or we quote the covering
probability of a confidence region as the “significance” of a parameter (astronomers’ slang for one
minus the Type I error probability for a model with the parameter fixed at a default value). This sin
is usually commited only when the parameter must be nonnegative (which is true of most physical
parameters).

I first committed this sin myself in an attempt to measure the mass of the fundamental particle
called the electron antineutrino using arrival times of about two dozen of them detected from a
supernova—a star that exploded—observed in a companion galaxy to our own Galaxy in 1987.
The simplest theories of fundamental particles require neutrinos to have zero mass. If this is true,
the equations of special relativity imply that all neutrinos must move with the velocity of light,
regardless of how much energy they carry. More complicated theories, however, allow the neutrino
to have nonzero mass, in which case more energetic neutrinos should move faster than less energetic
ones. The neutrinos detected from that exploding star were the first to be detected from a known
source outside our solar system. They traveled a distance of about 150,000 light years—vastly larger
than any terrestrial length scale—giving us hope that even very small velocity differences could be
detected at Earth as a detectable spread in arrival times of the neutrinos, the most energetic ones
arriving first. Unfortunately, the source itself emitted neutrinos over a broad energy range and over
a timescale similar in magnitude to the lag expected from interesting mass values, weakening our
ability to measure the neutrino mass. Still, it remained interesting to specify quantitatively what
upper limit the data implied on the neutrino mass.

To find a “95% confidence upper limit,” T devised a goodness-of-fit (GOF) statistic, S, and plot-
ted its value as a function of neutrino mass, m. For each mass value, I simulated many hypothetical
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data sets, calculated their GOF statistics, and found the fraction of these, F., that had S values
worse (larger) than that for the actual data. I identified the mass value, mgs, beyond which F. fell
below 0.05 as the 95% confidence upper limit. Of course, this procedure is completely falacious. The
95% probability associated with mgs refers to a property of that mass value only (it is 1 — o, where
« is the Type I error probability for a hypothesis test that would just reject the mgs model). It does
not refer to the interval of mass values below mygs, as would the covering probability for a confidence
region. Since the best-fit point (m = 0) had F- ~ 0.3, no “confidence regions” of size below 30%
exist with this method, but surely there is an interval of m for which we can meaningfully assign
30% confidence.

Fortunately, I discovered the errors of my ways before attempting to publish my results. Un-
fortunately, many other astronomers committed the same blunder, and both they and their referees
failed to notice it, so that the literature analyzing the supernova neutrinos is filled with several such
erroneous confidence region calculations, for the neutrino mass and for other parameters. I have
since seen the same mistake made in many other contexts, with distressing frequency.

The reverse mistake is also made. An example is given in Section 4, below. To determine
whether data provide evidence that a parameter, (), is nonzero, an estimate of the parameter was
made, with an estimate of its uncertainty (a standard deviation). The measured @ value was three
standard deviations away from zero, and this was deemed a positive detection with “3o significance,”
astronomers’ slang for a probability for falsely rejecting the Q = 0 hypothesis of 0.37% (the tail area
outside 30 for a Gaussian). Of course, the covering probability for the confidence region is not
simply related to the Type I error for a GOF test of the Q = 0 hypothesis. A crude x? test, in
fact, indicates consistency with the @) = 0 hypothesis. The Bayesian analysis of Section 4 seems to
agree with this conclusion (the full data are not publicly available, making a definitive statement
impossible).

A point that I must emphasize is that these mistakes have been made by some of the most highly
regarded astronomers in the world. I cannot emphasize this too strongly: Very basic mistakes are
being made here, but they are being made by otherwise quite brilliant people. To me this is evidence,
not merely of ignorance on the part of those making the mistakes, but of something inherently
confusing about the methods.

The confusion arises because there are several qualitatively different probabilities in frequentist
statistics. Covering probabilities for confidence regions, Type I error probabilities, Type II error
probabilities—all of these are quantities that span [0, 1] that scientists can use to assess the reason-
ableness of hypotheses. But none of them are probabilities for hypotheses, so it is easy for nonexperts
to confuse which is most closely related to the question they are asking. This confusion is exacer-
bated by the fact that all frequentist probabilities must condition on a particular point hypothesis,
even those that refer to an entire class of hypotheses. For some problems (particularly for confidence
region calculations), the hope is that the final result is independent of the particular hypothesis
used. But this is seldom true in real problems, so that one hypothesis must inevitably be chosen to
“represent” a class of hypotheses (e.g., approximate confidence regions are found using calculations
conditioning on the best-fit hypothesis).

This confusion simply cannot arise in the Bayesian approach. One always calculates probabil-
ities for hypotheses, so there is never ambiguity over what kind of hypothesis one’s probability is
associated with: you have to explicitly state it in order even to start the calculation. If I want to
know how sure I can be that a parameter is in some region, I simply calculate the probability that
it is in that region (parameter estimation). If instead I want to know how sure I can be that the
parameter is zero, I must calculate the probability for the hypothesis that the parameter is zero
(model comparison). The formalism forces one to distinguish between these options. This is an
example of the property I alluded to in the previous section; that Bayesian methods by their nature
make explicit the things we must specify to make an inference problem well-posed.



3.2. Fuilure to Specify Alternatives

The Bayesian methodology will force one to distinguish between estimation and model criticism.
An important characteristic of Bayesian methods is that model criticism must always take the form
of model comparison. A Bayesian calculation cannot assess the viability of one hypothesis without
explicit consideration of alternative hypotheses, unless one is satisfied with a model probability equal
to one, regardless of the data (so long as the data are possible consequences of the model). The
formalism forces you to specify alternatives. This is in stark contrast to the frequentist notion of a
goodness-of-fit test, with which one can assess the viability of a hypothesis without specifying an
alternative.

This is an important distinction between Bayesian and frequentist approaches. After averaging
and least-squares (or minimum x?) parameter estimation, probably the most common statistical
procedure in astronomy is the GOF test, usually based on the x? statistic for measurements with
“errors,” or the Kolmogorov-Smirnov D statistic for samples from a point process. That there are
no obvious Bayesian counterparts to GOF tests seems to some to be a serious defficiency of the
Bayesian approach.

Here I will instead argue that the failure of GOF tests to explicitly consider alternatives is
the problem, and that the second statistical sin of astronomers is their failure to recognize the
dependence of their conclusions on unspecified alternatives.

We might summarize the difference between the Bayesian and GOF approaches for assessing
models as follows. If the observed data are improbable presuming a model is true, then there are two
possibilities: either a rare event has occurred, or another model is true. The reasoning of GOF tests
is that we should always presume another model is true when a “rare” event occurs. The reasoning
of Bayesian methods is that we should only presume another model is true if another model would
make the data sufficiently more probable than they would be if the model under consideration is
true.

Viewed in this somewhat abstract manner, it is hard not to accede superiority to the Bayesian
approach. It quantitatively considers both of the possibilities underlying rare outcomes. The GOF
approach categorically rejects one possibility without bothering to assess its viability. Further bene-
fits of the Bayesian approach acrue when one considers how to distinguish “rare” events from other
events. For most hypotheses, the sample space is so large that all events have low probability. In
the continuum limit, any particular event has zero probability! Thus GOF tests must consider a
variety of hypothetical data that are somehow “like” the observed data to develop a useful definition
of “rare,” introducing inevitable subjectivity into the result.

Of course, these problems with GOF tests are not news to frequentist statisticians, nor are they
ignored by them. From the beginning, Neyman and Pearson recognized the contextual character of
hypothesis testing, and specified that a test be characterized not only by the probability of falsely
rejecting the null, but also by the probability of falsely accepting it. The latter probability, of course,
explicitly depends on alternatives.

Unfortunately, astronomers seldom consider the power of a hypothesis test. When astronomers
say a test is “powerful,” they almost always mean it in a colloquial sense: the test usually gives the
right answer, in their experience. As best as I can determine, the majority of astronomers are not
even aware that “power” has a technical meaning, and that determining the power of a test requires
explicit consideration of alternative models. Many seem to quote Type I error probabilities as if
they completely described the viability of the hypothesis under study. Sometimes hypotheses are
accepted by one investigator, only to be rejected by another who chose a different GOF statistic.
That the choice of statistic might be related to an implicit choice of alternatives is seldom recognized.

In frequentist hypothesis testing, we can get away with ignoring alternatives because the fre-
quentist approach characterizes a test with two probabilities: the false rejection and false acceptance
probabilities. The former do not depend on alternatives, so despite the warnings of Neyman and
Pearson, it remains possible to associate a probability with a model without considering alternatives,
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encouraging one to ignore alternatives altogether. In a Bayesian calculation, on the other hand, the
viability of a model is determined by one probability—that for the model itself—and it is not possi-
ble to calculate this probability without explicit consideration of alternatives. The formalism forces
one to acknowledge the contextual nature of such inferences.

Quite frequently in preprints and talks (but less so in the published literature, presumably
thanks to the care of referees and editors) astronomers will call the Type I error probability “the
probability for the model.” This is a very revealing error. It indicates quite clearly that the quantity
astronomers seek is the quantity that Bayesian calculations alone can provide. We might rephrase
this second sin, then, as confusing the Type I error probability with the probability for the model.

3.3. Confusing Data with Hypotheses

It is often easy to develop the perception that our data are very nearly direct measurements
of what we want to infer. This seems to be true, after all, of some of the simplest data. This
perception encourages one to commit a subtle statistical sin, and to confuse the sample space with
the hypothesis space. As a result inferences are sometimes made without ever explicitly specifying
the hypothesis space, with the consequence that important subjectivity in one’s conclusions goes
unrecognized.

Many astronomers seem to hold the view that the job of statistics is to “correct” the data
somehow, in order to remove uncertainties and biases. Thus you will commonly see plots of data
“corrected” for nonuniform detection efficiency, for example (even though no such correction may
be possible without reference to a model). Or you will see tables or plots of “background-subtracted
data,” for since the total signal is the sum of background and signal contributions, the “signal data”
must surely be the difference between the total data and a background estimate (often leading to
negative signal estimates and confidence regions that extend to regions of negative signal). You will
also regularly find plots of “data with their uncertainties.” Finally, the data/hypothesis confusion
seems to be most serious in the field of inverse problems, where data are regularly described as
“blurred” or “convolved” versions of reality that must be mathematically “deconvolved” in order
for us to learn the truth. It was in this field that I first faced my own confusion between data and
hypotheses, when I realized that inverse problems are inference problems, not problems of inverting
a mathematical operator.

Not all astronomers who follow these practices run astray in their conclusions. To some degree,
these practices are a kind of generally accepted shorthand; and even when they might lead one
astray, common sense and experience will help a good scientist make reasonable inferences, even if
that scientist’s concepts and tools are deficient. But too often such phrases as those just quoted are
symptoms of a deeper confusion about the role of data in inference that leads to incorrect procedures
and corrupted conclusions. This confusion, I believe, has its roots in two aspects of how frequentist
statistics looks at data.

First, frequentist calculations explicitly average over hypothetical data. As is well known, this
makes properties of the sampling distribution play a much more central role in frequentist statistics
than they do in Bayesian inference. For example, the width of the sampling distribution as a
function of the data is crucial, and it is the importance of this quantity that leads astronomers to
talk routinely about the “uncertainty of the data” and to place “error bars” on plots of raw data,
despite the fact that the values of the data are the only thing in the problem about which we have
no uncertainty.

Second, the very title of the frequentist approach to inference—statistics—implies at the outset
an emphasis on constructing and studying functions of the data (i.e., statistics), an emphasis that
encourages the “corrected data” view of inference. For this reason, in my own writing I prefer the
phrase “Bayesian Inference” to “Bayesian Statistics,” because the emphasis of the Bayesian approach
is on the logic and calculus of inference. One may end up studying functions of the data, but only
as a consequence of a more fundamental analysis.
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In the Bayesian approach, the quantities of interest are probabilities for hypotheses conditioned
on the data. The hypotheses must be specified explicitly even just to write down the symbolic form
of the quantity we want to calculate. The formalism itself, by making explicit the requirements for
an inference problem to be well-posed, discourages the data/hypothesis confusion.

3.4. Incorrect Treatment of Nuisance Parameters

The fourth statistical sin often committed by astronomers is improper consideration of nuisance
parameters. In fact, sometimes important nuisance parameters are not even explicitly introduced,
a special case (in the continuum limit) of the failure to specify relevant alternatives, a sin already
mentioned. For example, astronomers frequently search for counterparts to objects detected in one
wavelength band in a picture taken in another band. This is often done by taking a “window”
that is roughly the size of the expected image, sliding it around the second picture in the region
where the image is expected, and seeing if there is significant excess intensity in the window. In
such a procedure, the location of the window is a (vector-valued) nuisance parameter. Too often
no consideration is made for this implicit parameter in assessing the significance of a candidate
feature. I have already discussed the need to explicitly specify alternatives. Here, as in the model
comparison case discussed above, the Bayesian approach forces one to recognize such parameters
by forcing one to explicitly specify the hypothesis space. 1 will not further discuss the omission of
nuisance parameters here.

Instead, I want to point out that nuisance parameters that have been explicitly recognized are
often not treated correctly, despite the fact that they are straightforwardly dealt with in Bayesian
calculations through marginalization. Of course, statisticians readily admit the lack of a general
frequentist procedure to adequately handle nuisance parameters. This lack is why such parameters
have earned the apellation, “nuisance.” But I have yet to see an introductory statistics text that
forthrightly admits this deficiency. Needless to say, it is thus unknown to most astronomers, who
have thus been forced to invent methods of their own without realizing the limitations of those
methods. Two methods are commonly used.

The simplest method sometimes used is to condition on best-fit values of the nuisance parame-
ters. The weaknesses of this method are obvious even to astronomers, who consequently seldom use
it. In particular, if the model leads to strong correlations between inferred values of the nuisance and
interesting parameters, the uncertainty in the interesting parameters can be greatly underestimated
by this procedure.

The more sophisticated method is the profile likelihood method, independently reinvented by
astronomers aware of the problems of the conditional method just described (see, e.g., Lampton,
Margon and Bowyer 1976). This method is certainly an improvement over the conditional method,
in that it attempts to account for correlations. In cases where the likelihood function is a Gaussian
(possibly correlated) with respect to the parameters, it gives results similar or identical to those
obtained by marginalization in a Bayesian calculation. However, it maximizes rather than integrates
over the nuisance parameters, and thus does not properly account for the volume of parameter space.
With non-Gaussian likelihoods, profile likelihoods can easily and demonstrably lead one awry (I
provided a discussion of this for astronomers in Loredo 1992).

Finally, it is worth pointing out that from the Bayesian point of view, a model comparison
calculation is an inference problem in which all of the parameters for each model are nuisance
parameters, in the sense that the global or marginal likelihood for a model (the prior predictive for
the data) is obtained by integrating over the entire parameter space of each model. Such integrals
give rise to the “Occam’s Razor” behavior of Bayesian model comparison calculations (Jefferys and
Berger 1992). There is no frequentist counterpart to this aspect of Bayesian inference.

I consider the inability of frequentist methods to handle nuisance parameters one of the most
serious drawbacks of such methods. This is because it is my experience that every real astronomical
inference problem has nuisance parameters. In every inference problem I have worked on, from
the very first analysis of real data I performed as an undergraduate physics major to the analysis
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I am currently working on a dozen years later, there has always been at least something like an
uncertain background to contend with, and often one or more nuisance parameters considerably more
complicated than an additive background. I believe many “several-sigma” detections that eventually
proved spurious, and “accurate” parameter estimates that eventually proved inaccurate, owe their
origin to incorrect handling of nuisance parameters. That Bayesian methods can so straightforwardly
handle such realistic complication is a powerful advantage of such methods.

3.5. Imprecise Specification of the Sample Space

This audience need not be reminded of the disturbing sensitivity of some frequentist inferences to
intuitively irrelevant features of the sample space (e.g., stopping rules). This is news to astronomers,
however, many of whom are at least mildly disturbed on learning of the dependence of simple
frequentist results on stopping rules (I tried to spread the news a little in Loredo 1992). For the
most part, astronomers take a completely cavalier attitude toward specification of the sample space,
yet another statistical sin.

In some cases, it is easy to be forgiving about this sin. After all, the stopping rule is irrelevant
to most Bayesian calculations (and when it is relevant, it should be relevant!). In addition, it would
often be impossible to specify precisely the sample space for an astronomical study. For example,
the size of the sample can depend on such vagaries as the weather or the temperament of an unruly,
complicated piece of equipment.

This being said, there are many cases in which the sin cannot be easily forgiven. These are
cases where implicit nuisance parameters give rise to complications in the sample space. I earlier
referred to the problem of detecting a counterpart by use of a sliding window. The window position
is an unrecognized nuisance parameter. But it can be accounted for, at least to some extent, by
considering each measurement taken with a different window location to be a different “sample,”
and adjusting the final result for the number of (possibly dependent) samples examined.

This problem arises most frequently in the search for periodic signals in astrophysical time
series. One folds the data at a number of trial periods, and uses some statistic to decide whether to
reject the hypothesis that the folded phases are from a uniform distribution. Most such studies (but
unfortunately not all) take into account the number of periods examined: the sample space consists,
not of the time series itself, but of sets of folded phases. Although one time series is examined,
many sets of folded phases are examined, weakening the significance of any resulting “detection”
(i.e., rejection of the uniform hypothesis). Unfortunately, other complications of the sample space
sometimes go unaccounted for. For example, some models have additional implicit parameters, such
as unknown offset phases or parameters specifying the statistic (such as the number of bins in a x>
test). These should be accounted for somehow, particularly if they have been set with reference to
the data, in which case additional samples effectively have been examined. Bayesian methods bypass
these complications in the sample space by dealing with these complications in the hypothesis space.
Gregory and Loredo (1992) discuss these issues further.

3.6. Use of Ad Hoc Statistics

In the previous section I described the frequentist distinction. As noted there, this encourages
nonexperts to take a method that they know works in one problem and apply it directly to another
problem, possibly with some generalization. This takes us to the next sin: use of ad hoc statistics,
chosen because of familiarity or intuitive appeal, but with no deeper justification.

The most common example of this sin is the use of moments of the data to estimate parameters
that can themselves be interpreted as moments. This practice can also be thought of as another
example of the failure to distinguish between data and hypotheses. Several examples of this sin
arise in the study of gamma-ray bursters (GRBs). These are astrophysical sources of gamma rays
that turn on suddenly and unpredictably for any amount of time from a few hundredths of a second
to a few hundred seconds, and then fade again to invisibility. Perhaps 2000 such bursts have been
observed since their discovery in 1967, but the physical nature of the sources of the bursts remains
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enigmatic. Indeed, the distances to the burst sources is uncertain to many orders of magnitude!
The principal information available for inferring the spatial distribution of burst sources is the
observed distribution of the intensities of bursts (dim bursts are presumably farther away) and
of the directions to bursts (which should mimic the distribution of stars in our Galaxy if burst
sources are local to it, or be isotropic if bursts originate far from our Galaxy). One way one might
parameterize the source distribution is by the dipole moment of the directions to the sources (the
average of the cosines of the angles from the burst directions to some specified origin, such as the
Galactic center). Some investigators estimate the source dipole moment by taking the dipole moment
of the observed source directions. If bursts are sampled uniformly over the sky and if there is no
uncertainty in their measured directions, there is some justification for such a procedure. But this is
not the case. Similar methods have been used to estimate the angular correlation function for burst
directions, and moments of the intensity distribution. Some weaknesses in these procedures have
been recognized, but attempts to deal with them have themselves been ad hoc, involving “weighted”
or “smeared” moments. Loredo and Wasserman (1994) provide a Bayesian look at the problem,
derive the likelihood function for these data, and point out that moments are not sufficient statistics
for these data.

Conditioned by too much emphasis on the Gaussian distribution, astronomers underestimate the
possible dangers of naive use of moments for inference. The extreme case is the Cauchy distribution,
where the mean of any number of samples is no better an estimator of the location parameter than
any single sample. While more commonly occuring distributions may not suffer from so drastic a
failure of moments or other ad hockery, the failures are still potentially rather dramatic. I have
discussed this problem, and the problem of recognizable subsets that underlies it, in Loredo (1992)
using a simple inference problem that arose in the analysis of the supernova neutrinos mentioned
above.

In Bayesian inference, there is no freedom for ad hockery in the choice of what function of the
data to use for inferences. The data enter inferences through the likelihood function, and the rules
of probability theory dictate precisely how the likelihood function must be manipulated to make the
desired inferences.

Ad hockery is fairly common, too, in the choice of GOF statistics for hypothesis testing. From
the Bayesian point of view, the choice of statistic implicitly corresponds to a choice of relevant
alternative models. As mentioned above, Bayesian model comparison calculations force one to
explicitly identify relevant alternatives. The calculations then identify the functions of the data that
optimally address the problem.

3.7. Ignoring Simple Prior Information

The final sin I will mention is the sin of ignoring simple prior information. Sometimes prior in-
formation plays a somewhat subtle role in inferences; an example is provided in the following section.
Given the fact that there is no role for prior information in frequentist calculations, astronomers can
perhaps be forgiven for neglecting these somewhat subtle effects.

But too often astronomers use methods that ignore prior information as simple as the require-
ment that an inferred intensity be nonnegative. The result is often intensity estimates or error bars
that lie in regions of negative intensity. The remarkable thing about such absurd estimates is not
so much that they occur, but that they are published. When the method being used gives negative
estimates, this is accepted as a fact of life, rather than as evidence that the method is erroneous.

In my own field of high energy astrophysics, where light is detected by counting individual
photons that are often few in number, this situation arises fairly frequently when a background rate
is subtracted from a signal estimate. Negative estimates arise not only because of the neglect of
prior information, but sometimes also due to to poor treatment of a nuisance parameter in cases
when the background rate is uncertain. One collects photons from an “off-source” direction in order
to estimate the background intensity, and then collects photons “on-source” to use to estimate the
signal. The uncertain background rate is a nuisance parameter, and our prior information specifies
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that neither the background nor the signal rate can be negative. The usual approach is based on
subtraction of the best-fit background estimate from a signal+background estimate based on the
on-source data. For weak signals, this can easily lead to negative signal estimates. I discuss this
“on/off” problem in some detail in Loredo (1992). Its Bayesian solution is simple, instructive, and,
once found, intuitively appealing: the signal posterior is a weighted sum of gamma distributions,
with weights determined by the predictive probability for the number of background counts present
in the on-source measurement, based on the information about the background provided by the off-
source measurement. Cases that lead to negative signal estimates with the usual method are handled
easily; the posterior usually peaks at zero signal intensity, but vanishes for negative intensities. Of
course, in such cases the precise shape of the posterior can be somewhat sensitive to the shape of
the prior. But this is simply the calculation’s way of telling us that the data are uninformative.

This exhausts my list of sins. I will close this section by emphasizing again a point made above:
these mistakes are often made by otherwise excellent astronomers. This pairing of great scientific
and mathematical talent with statistical sloppiness is evidence of serious defficiencies, not only in
the statistical education of astronomers, but also in the tools of frequentist statistics themselves. For
only if the tools invite misuse can we explain their misuse by scientists who so successfully master
other mathematical tools on their own, at reasonably high levels of sophistication.

4. AN EXAMPLE

I earlier quoted from Kleppner’s Physics Today editorial. After “fretting” about statistics for
several paragraphs, he continues as follows:

Having raised some reservations . . . it is only fair for me to point out that statistical analysis
has been crucial to more than a few dazzling discoveries. The anisotropy in the cosmic
background radiation recently reported by the Cosmic Background Explorer [COBE] team
is a case in point. . . . . (Kleppner 1992)

This case—actually, a simplified version of it—will be the topic of this section.

The COBE satellite is one of NASA’s “Great Observatories;” two others whose names you
might recognize from recent coverage in the press are the Hubble Space Telescope and the Compton
Gamma Ray Observatory. The primary goal of the COBE mission is to make detailed measurements
of properties of the Cosmic Background Radiation, the fading glow of the hot, early phase of the
evolution of our universe known colloquially as the “big bang.” The two most important properties
COBE measures are the spectrum of the radiation, and its anisotropy (how its properties vary with
direction across the sky). Before discussing the data and its analysis, let us briefly review the cosmic
background radiation to establish the scientific motivation for studying its spectrum and anisotropy,
and to make clear the historic importance of the COBE data.

4.1. The Cosmic Background Radiation

It is a well-established observational fact that distant galaxies appear to be moving away from
us, with speeds proportional to the distances between the galaxies and our own Milky Way Galaxy.
The universe is expanding, in the sense that the distances between galaxies are growing. Turning
the clock backward, the average density in the universe at earlier times must have been larger than
it is now. Together with the laws of gravity and of thermodynamics, the observed expansion implies
that the universe has a finite age—between 10 and 20 billion years—and that at earlier times it was
not only more dense, but also hotter than it is at the present time.

Running the equations that describe our evolving universe back to within a few centuries of its
birth, we find conditions that were so hot and dense that matter was broken up into its constituent
parts. At these early epochs, the universe was almost entirely a plasma of electrons and protons
exchanging energy with electromagnetic radiation. The energy exchange was very efficient because
electrons and protons are electrically charged particles, and thus easily interact with electromagnetic
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radiation. But eventually the universe expanded and cooled enough that electrons and protons
could bind to form atomic hydrogen and atoms of other elements. When this happened, matter
and radiation decoupled from each other, for although atoms are made up of charged particles, as a
system an atom is electrically neutral and interacts much more weakly with radiation than do free
charged particles.

As the universe continued to expand, it cooled further, and atoms eventually combined to form
molecules, stars, galaxies—and us. All this while, the radiation from the hot, early epochs of the
universe’s history propagated with very little interaction with matter, uniformly cooling (growing in
wavelength) with the expansion of the universe but otherwise not changing. This radiation, then,
provides us with a “picture” of what the universe looked like a few hundred thousand years after its
origin billions of years ago. It should be visible from all directions as a diffuse background against
which the stars and galaxies appear, and is thus called the Cosmic Background Radiation (CBR).

This radiation was expected to have a spectrum (distribution in energy) like that of a “blackbody” —
a perfect absorber and emitter of radiation—because of the efficiency of exchange of energy before
the epoch of decoupling. Before the COBE observations, there were tantalizing hints that the CBR
spectrum was not that of a blackbody, suggesting that there might have been a time after decoupling
when the universe was reionized (perhaps by an exploding early population of stars), so that matter
and radiation once again interacted strongly, changing the blackbody spectrum that was produced
just before the earlier decoupling. The first significant finding of the COBE mission was that the
CBR spectrum is that of a blackbody to an extraordinary degree of precision (approximately 0.03%).

As already noted, the CBR provides us with a picture of the universe at the time of decoupling,
long before galaxies formed. This picture cannot be featureless, because we know that galaxies did
form. Some parts of the early universe must have been denser or hotter or otherwise different from
their surroundings in a manner that would distinguish them as future sites for clusters of galaxies,
and this difference must have left some mark on the CBR which should be visible today as anisotropy
in its appearance. For over two decades, this mark of the inhomogeneity of the early universe had
been sought by observers, to no avail. Simultaneously, theorists tried to predict the appearance of
the features. As more and more sensitive observations set tighter and tighter limits on the strength
of the features, it became increasingly difficult to construct theoretical models for the growth of
structure in the universe that could account for the presently observed structure from perturbations
small enough to escape detection.

At the time of the launch of the COBE mission, cosmology was on the brink of a crisis. Obser-
vations had pushed the limit on the amplitude of perturbations of the CBR down to less than one
hundredth of one percent. Increasingly careful and clever theoretical calculations had pushed the
predicted perturbation amplitude down to a few thousandths of one percent, below the observed limit,
but within the sensitivity of the COBE detectors. It seemed essentially impossible that any theory
could account for presently observed structure with smaller perturbations. If the COBE experiment
did not see the long sought for perturbations, it would force major changes in our understanding of
the early universe.

It took a year for the COBE experiment to map the CBR over the entire sky, but the results were
worth waiting for. The perturbations were detected, at roughly the level predicted by current theories
of the formation of large scale structure. Observers and theorists alike hailed the observations as
among the most important in decades.

It is the analysis of the CBR anisotropy data that we will discuss in some detail here. In the next
subsection, I will describe the salient features of the COBE anisotropy data. For the sake of brevity
and clarity, I am forced to omit many details that are very important in the analysis of the actual
data. Thus let me emphasize at the outset that all numbers and conclusions I am presenting are
merely illustrative of the actual results one might obtain from a full analysis of the actual data. If
and when more data become public, more complicated and accurate analyses may become possible.
This idealized analysis is adequate, however, to raise some methodological issues, and to illustrate
some of the statistical malpractice alluded to in earlier sections.
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4.2. Measuring the CBR Anisotropy

Theoretical calculations predict much more than simply a typical amplitude (in a root-mean-
square sense) for the CBR anisotropy. They predict how the amplitudes of perturbations should
depend on their angular sizes. Competing theories may predict similar rms perturbation amplitudes,
but very different distributions of amplitude with angular size. The COBE experiment provides
information on perturbations of all sizes from ~ 7° to the size of the entire sky. It thus provides
us with an opportunity to compare rival theories quantitatively, and to infer the values of free
parameters that are present in most theories. Such inferences must be statistical in nature, not only
because there is noise present in the data, but because the predictions themselves are statistical.
Theories of the evolution of large scale structure are deterministic, but they require that one specify
initial conditions to be evolved by the deterministic equations of motion. We do not know the initial
conditions; the best we can do is assign a probability distribution over the possible initial conditions.
Hence the dual role of statistics in the study of CBR anisotropy.

As noted above, the CBR has a blackbody spectrum. The shape of this spectrum (as a function
of the frequency, energy, or wavelength of the radiation) is completely specified by one parameter,
the CBR temperature, T. The sky-averaged temperature of the CBR is T ~ 2.7 K. The anisotropy of
the CBR can be described simply by considering the CBR temperature to be a function of direction,
n. Our task is to make inferences about 7'(n) based on the observational data.

A blackbody spectrum with a temperature of 2.7 K peaks at wavelengths of about 1 mm, in the
microwave region of the electromagnetic spectrum. The instrument used to detect such radiation
is called a radiometer. It consists of a horn-shaped antenna that collects radiation incident from a
small patch of the sky and funnels it to a detector that measures the amount of energy incident on it
within a narrow wavelength band, and within a small integration time, 7. Electronics then convert
the deposited energy to a voltage and eventually to a digital signal.

One can model the relationship between the signal and the sky temperature as follows. Let F(T)
denote the power (energy per unit time) that would flow perpendicularly through a unit area whose
normal pointed to a blackbody of temperature T, in the wavelength band of the detector. This is a
nonlinear function of 7" that one can calculate from the known form of the blackbody spectrum. Let
A(n) denote the area presented by the antenna to radiation from direction n. Then, in the absence
of noise, the amount of energy we expect the detector to observe is,

(E) =7 / dn A(n)F[T(n)]. (4.1)

I have written this as an expectation, because the power observed from a blackbody is actually “noise
power:” even in the absence of other noise sources, the observed power will fluctuate on repeated
measurement. These “thermal fluctuations” can be described by a Gaussian distribution, with the
standard deviation for the fluctuations given by a simple function of the temperature, wavelength
range, and integration time.

The detector electronics are designed to produce a signal that, in the absence of noise, is pro-
portional to the energy deposited in the detector. However, the physics of the detection process
introduces an inevitable large offset (essentially, every detector introduces thermal power into the
measurement because it has a nonzero temperature of its own). Thus the expected signal can be
written,

(S) =0+ gr / dn A(n)F[T(n)], (4.2)

where O is the offset, and g is a factor giving the conversion from deposited energy to output signal
amplitude; g is called the detector gain.

Now recall that the relative size of the perturbations we are measuring is of the order of 0.001%.
That is, if we write

T(n) =T + 6T(n), (4.3)
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then §T/T<S107°. We can take advantage of this to linearize equation (4.2) in terms of 67. To
O(6T?), we can write B B
F(T)=F(T)+ éTF'(T). (4.4)

Let A denote the sky-averaged area presented by the horn. Then equation (4.2) can be written,
(S) = O +4ngrAF(T) + gt F'(T) / dn A(n)oT(n). (4.5)

Thus the expected signal is linear in the temperature perturbation, 67'(n).

The actually observed signal includes noise, and the feasibility of using a radiometer to measure
very small 0T values depends on the size of the noise. The thermal fluctuations inherent in blackbody
radiation are the dominant noise source in radiometers, allowing straightforward calculation of the
expected size of the noise. For the COBE parameters, it takes roughly an hour or two of integration
time to make the thermal noise contribution small enough to ensure sky temperature measurements
accurate to 0.001%. To adequately sample the entire sky, such observations must be performed in
~ 6000 directions, requiring on the order of a year of observing time. Due to the motion of the
spacecraft (and other factors), data for one direction must be obtained by accumulating many short
(0.5 s) observations spread out over several months of observations.

Unfortunately, the offset O in typical radiometers is as large or much larger than the part of the
signal proportional to the deposited energy, and it cannot be maintained constant to a level of 0.001%
of the sky contribution over such a long duration. A standard physicist’s trick for measuring small
perturbations in a signal contaminated by such offset drift is to make differential measurements:
record the difference between the signal of interest and a reference signal using measurements taken
on a short enough timescale that gains and offsets are effectively constant. The difference signal
has the offset removed. The situation is not much improved if a constant reference is not available.
In the COBE experiment, this problem is alleviated by using the sky itself as a “reference.” The
Differential Microwave Radiometer (DMR) on the COBE spacecraft consists of two identical horns
pointing 60° away from each other. Both horns feed the same detector through a switch that switches
from one horn to the other many times a second. In this way a signal proportional to the temperature
difference of two directions separated by 60° can be produced. A particular direction is measured
many times during a year’s observation, with all other directions 60° away used as“reference” signals.
In this way substantial information about 67" can be compiled, although information about the actual
temperature, T + 67, is destroyed by the differential measurement.

Thus the DMR data is a set of numbers, d;, each of which we can model by taking the difference
of two equations like equation (4.5), with different area functions but with the same offset and gain,
and with added noise, n;;

d; =G / dn [AF(n) — A (0)]6T(n) + n;. (4.6)

Here we have defined a new detector gain by G = g¢7F'(T), and A;r and A; denote the area
functions for the two horns contributing positively and negatively to measurement number i. They
are identical, up to a 60° rotation; we used this fact to cancel two terms from the contribution of T
in each horn.

To make inferences about §7'(n), we must parameterize it somehow. A useful parameterization is
in terms of the coefficients of an expansion in terms of spherical harmonics. One reason this expansion
is useful is that the horns are rotationally symmetric, and thus the area functions can be written as a
simple sum of Legendre polynomials. Combined with a spherical harmonic expansion of §7'(n), this
allows us to simplify the integral in equation (4.6). Also, there is some theoretical motivation for
adopting such a parameterization. The simplest and most popular theories of the formation of large
scale structure postulate “Gaussian initial conditions,” by which is meant harmonic coefficients for
which a priori probabilities are independent and Gaussian, with zero mean and “cosmic variances”
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that vary with harmonic index in a manner specified by the theory. A harmonic expansion is thus
the natural parameterization for studying such theories, as it allows one to specify priors in a simple
manner.

Thus we write

00 l
=3 amBRin(0,9). (4.7)

=1 m=-1
Here 6 and ¢ are the polar angle and azimuth in some fixed coordinate system, and the ay, are the
expansion coefficients. The Ry, are real spherical harmonics. Just as the familiar complex spherical
harmonics (usually denoted Yj,;,) are products of modified Legendre polynomials in p = cosf and
a complex azimuth factor, e/™®, the Ry, are products of modified Legendre polynomials and a real
azimuthal factor,
le(ea ¢) = Klmﬂm(ﬂ) cas(m¢), (48)

where Kj, is a normalization constant given by
20+1 (I —m)Y/?

Ky, = — 4.9
i 47 (I +m)! ’ (4.9)

and cas ¢ denotes the “cosine and sine” function,
cas ¢ = cos ¢ + sin ¢. (4.10)

The cas ¢ function is the basis of the Hartley transform (Bracewell 1986), a real, orthogonal transform
similar in many respects to the Fourier transform, but more appropriate for the analysis of real
quantities. Thus real spherical harmonics merely substitute the Hartley basis for the Fourier basis
used to describe the azimuthal behavior of complex spherical harmonics. It is easy to show that
each Ry, function is a linear combination of Y},,, functions with the same [ and with m’ = £m, and
vice versa. This implies that the Ry, form a complete orthonormal basis with properties similar to
those of the Y,,. Since 07T'(n) is a real function, there are practical advantages in using the Ry,,. In
particular, there are no constraints on the coefficients (apart from those arising from positivity of
T); in a Y}, basis, coefficients with the same [ and |m| must be related to guarantee that 67 is real.

As previously noted, the area functions are azimuthally symmetric. Thus the A" function for
a particular sample can be written in terms of the cosine of the angle from the positive horn’s
symmetry axis, vT, as follows:

At(n) = El: %wlﬂ(cosv ). (4.11)
To simplify later equations, we have taken a (2] + 1)/4m factor out of the expansion coefficients,
w;. The exact same equation, with the same coeflicients, holds for A™, except that it is in terms of
Legendre polynomials in the cosine of the angle, v~, from the negative horn’s axis.

The angle addition theorem lets us write the expansion for each horn in terms of angles in
any other chosen coordinate system using spherical harmonics. Let n™ denote the colatitude and
azimuth of the positive horn’s axis in any chosen spherical coordinate system. Then the theorem
lets us rewrite equation (4.11) as,

Zw, Z Ry (n) Ry (), (4.12)

m=—I
with a similar equation holding for A~. Usmg these expansions, the 07" expansion of equation (4.7),
and the orthonormality of the real spherical harmonics, equation (4.6) can be written,

d;i = GZwl Zalm Rim(0]) — Ry (0)] + nj. (4.13)

This is our key equation; we want to make inferences about the a;,,, (or about parameters specifying
the ay,) using this model equation. We will first discuss some Bayesian inferences, and then discuss
some published frequentist inferences.
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4.3. Some Bayesian Inferences

The data will enter Bayesian inferences about the ag,, through the likelihood function, which
is simply a product of independent Gaussians for each datum. The standard deviations of these
Gaussians will be nearly equal, to the extent that the sky temperature and offset are constant; for
simplicity we presume the standard devations to be identical, and denote their value by o. Then
the likelihood function for the a;,, is the exponential of a quadratic form,

L(a) x exp ( i > , (4.14)

202
with

N 2
s = Z (dz - GZalmwl[le(n;L) - le(n;)]> . (4.15)
=1 Ilm

This is a likelihood function for parameters of a linear model, and thus varies with the a;, as a
correlated Gaussian. The formal manipulations with which we can rewrite this to make its Gaussian
form (as a function of a,,) explicit are probably too familiar to this audience to deserve much
comment. [ will partly write them out, however, to facilitate some comments on the practical
feasibility of carrying out the necessary linear algebra.

To simplify the appearance of the equations, I will adopt three abbreviations. First, I will use
vector symbols to denote all N components of quantities with a data index, i; for example d = {d;}.
Second, I will use a single greek letter index, «, to denote jointly the parameter indices [ and m
(note, then, that w, will be the same for all « corresponding to the same [). Third, I will combine
the factors multiplying the coefficients into the symbol,

AR, = Gwa[Ra(n]) — Ra(n]))]. (4.16)

With these abbreviations, the quadratic form can be written,

2
s = (d — Z aaARoc>

:d-d—l—ZZaaagnaﬁ—QZaad-ARa, (4.17)
a g [

where the “model metric” n,g is given by,
Nap = AR, - ARg. (4.18)

We can now “complete the square” to write s as the sum of a “perfect square” in the a,, and a residual
term that is independent of a,. We can do this by taking the “square root” of the metric, either
by finding its Cholesky decomposition, or more usefully by diagonalizing it. This procedure will
automatically identify sufficient statistics for estimating the a, coefficients. I will not bother with
the details, which are well-known in both the Bayesian and frequentist literature (a good Bayesian
treatment of similar problems, written by a physical scientist, is that of Bretthorst 1988). But it is
worth thinking about the practical problems that will arise in the calculations.

We must calculate the model metric, and diagonalize it. Calculation of a single 7,3 element
involes a dot product in the data space (i.e., a sum over the N data). For the COBE data, N ~ 106.
In principle, we need an infinite number of such sums, since the harmonic expansion formally contains
an infinite number of terms. But the DMR horns have finite resolution, and thus provide little
information about harmonics with large [ values. Such a large | cutoff arises in our equations
through the w; factors, which vanish exponentially at large [. We can estimate the largest accessible
order as follows. Harmonics of order [ have a characteristic angular scale of approximately 7 /l. The
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horns have an angular resolution of 7° or 0.12 radian. Thus harmonics with orders larger than [ ~ 25
are not well-resolved by the DMR. We can therefore cut our harmonic sum at [ ~ 25, corresponding
to M ~ 700 coefficients (since there are 2/ + 1 coefficients for each ). Although not infinite, this
remains a distressingly large number, as there are M?/2 elements in 7, each requiring calculation of
an N-fold sum. The total operation count is thus ~ 10''. Once calculated, we need to diagonalize
n; but even with an algorithm whose work scales like M3, this calculation is dwarfed by the actual
calculation of n itself. Thus some sophistication is needed to perform the calculations. To the extent
that the observations evenly cover the sky, the orthogonality of the harmonics comprising the AR,,
may make the 7 matrix quite sparse, enabling calculation with sparse matrix techniques. The extent
to which this is true has not yet been studied (the data do not evenly cover the sky, complicating
such a study). Monte Carlo methods may offer an alternative, approximate approach for performing
the needed calculations. We will skip these issues here, noting that similar issues have arisen in
frequentist analyses of these data and have been somewhat cleverly dealt with, giving promise that
headway can be made with a Bayesian calculation (if perhaps only an approximate one).

We will now presume that we can manipulate £(a)—either analytically or through clever compu-
tation—to make its dependence on the coeflicients accessible to us, so we can proceed with useful
inferences. Here we will constrain ourselves to inferences about the [ = 2 (quadrupole) coefficients
only. Our motivation is partly one of simplicity; this will be enough to illustrate some important
points of methodology. But the quadrupole coefficients are interesting scientifically as well, and
measurements of the quadrupole moment of §1 were among the most publicized early results of
analyses of the DMR data. This is because an important nuisance parameter—Earth’s velocity with
respect to the CBR, which induces a large CBR dipole moment through the Doppler effect—renders
the cosmological contribution to the measured dipole moment uncertain, so the quadrupole is the
lowest order, largest scale cosmological perturbation that can be reliably measured.

We further presume that the likelihood function’s dependence on each asg,, is independent of
the values of coefficients of other orders and of other m values. We do this, not only for simplicity,
but because it has been implicitly or explicitly presumed in virtually all of the frequentist studies
of the DMR data. To simplify our notation, we use the symbols ¢, = a2, to denote the quadru-
pole coefficients in the remainder of this section, and an unadorned ¢ to denote the set of all five
coefficients.

Given all of these idealizations, I will henceforth refer to the data as originating from an Idealized
DMR (IDMR) instrument, to distinguish it from the actual DMR data (which are not publicly
available in raw form). Our idealizations imply that the quadrupole factor in the IDMR, likelihood
can be written as a function of ¢ as follows:

2

L) = ] j/%exp [—W], (4.19)

2
m=—2 Im 207,

where ¢, and o, are sufficient statistics that arise from the linear algebra described above. They
contain all the information the data provide about the quadrupole moment, so at times I may refer
to them as “the quadrupole data” (I will always distinguish them from the values of the actual
quadrupole components, however!). For the analysis presented here, I will set the IDMR ¢,,, and
om equal to values corresponding to those reported for the actual DMR (Smoot et al. 1992; note
that this work uses a different—and less convenient—harmonic basis than that used here). These
values are listed in Table 1; Figure 1 provides a graphical display of these sufficient statistics. The
normalization of equation (4.19) is arbitrary; I have chosen it to simplify some later calculations. So
long as our prior does not couple coefficients of different [, all other coefficients can be marginalized,
leaving a marginal likelihood for ¢ given by equation (4.19). (It is perhaps worth emphasizing that
theories couple moments of different [ by predicting relationships between their cosmic variances; but
we will focus on the [ = 2 coefficients by themselves here, without explicitly considering a particular
theory.)
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Figure 1. Graphical display of the IDMR sufficient statistics for the quadrupole moment listed in
Table 1.

TABLE 1

IDMR SUFFICIENT STATISTICS
FoOr QUADRUPOLE MOMENT

A~

m dm Om
-2 -8.1 15.5
-1 6.0 15.5
0 174 14.3
1 40.2 15.5
2 3.5 15.5

We will ask three questions: (1) Do these data indicate the presence of a quadrupole anisotropy
in the CBR? (2) Presuming such an anisotropy, what is its magnitude? (3) Presuming Gaussian
initial conditions, what is the cosmic variance associated with quadrupole perturbations? It is
easy to distinguish these questions in the Bayesian framework; indeed, the framework forces one to
distinguish them. As we will see, this is not so in frequentist calculations.

To determine whether a quadrupole anisotropy is detected, we must perform a model comparison
calculation, comparing the no-quadrupole (¢, = 0) model, Mj, with an alternative model Mg
allowing a quadrupole. The rules of Bayesian inference dictate precisely how this comparison must
be done: we must calculate the probabilities of the competing models. Since there are two models,
it is easiest to summarize the results in terms of the odds in favor of one model over the other.
Denoting the data by D, and our background information specifying the models under consideration
by I, the odds in favor of the quadrupole model over the no-quadrupole model is,

_ p(Mq | D, 1)
p(Mo | D, T)

_ p(Mq [ 1) p(D | Mg)
p(Mo | I) p(D | Mo)

@)

(4.20)

The first factor is the prior odds ratio, a measure of our subjective preference for one model over
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another. The second factor is the Bayes factor, B, specifying the implications of the data and
the description of the models. It is a ratio of the “global likelihoods” for the models. The global
likelihood for My, in the denominator, is the probability for the data presuming all ¢, are actually
zero, so that the measured values are due to noise. This probability is simply equal to £(0). The
global likelihood for Mg is given by,

p(D | M) = [ dapla | Mq) (o) (4.21)

Its value necessarily depends on what this model asserts about the quadrupole amplitudes through
the prior placed on q. This feature of Bayesian model comparisons is sometimes troubling to as-
tronomers, since results of frequentist model comparison methods (such as those based on likelihood
ratios) typically do not depend on prior information. It is useful, however, to recall an important
exception widely known to astronomers. In assessing the significance of a periodic signal in an as-
trophysical time series, it is widely appreciated that a correction must be made for the number of
periods searched. This is the frequentist counterpart for the effect the prior range for the period
would have in a Bayesian model comparison. The Bayesian contention is that such “corrections”
for the size of the parameter space are necessary whenever there are unknown parameters in one or
more of the models being compared, and which we must infer from the data.

We will use a prior over a range of ¢, values constrained from above by previous observations
and from below by theory. The prior should take into account the fact that there is no preferred
orientation for the coordinate system we are using to study the CBR. Thus, for example, the joint
prior for the five ¢, coefficients should not be the product of five independent bounded priors;
the resulting hypercubical prior volume is not invariant with respect to rotations. An appropriate
invariant to use to bound the prior volume can be found from examining the root mean square
temperature fluctuation, whose value is independent of the coordinate system orientation:

oT2 = 417r/dn 6T?%(n)

1 & l )
=2 2 G (4.22)

=1 m=—1

The [ = 2 contribution to this sum defines the rms quadrupole fluctuation,

1 2
2 2

=— 3 4. (4.23)
rms An S~ m

Observers with different coordinate systems will agree on Q,ns, even though they will assign different
gm values. We can define a radius coordinate in the five dimensional space spanned by the quadrupole
coefficients as follows;
9 1/2
r=| > @] - (4.24)
m=—2

The invariant quadrupole moment is simply proportional to this “quadrupole radius,” with Q.ns =
r/v/4m. To be consistent with the symmetry of the problem, the prior must depend on the g,
components only through the combination r: p(q | Mg) = f(r).

We will assign a prior that is flat with respect to Q2. This prior will not be flat with respect
to the ¢,,. We can find the relationship between the Q2 . and ¢ priors as follows:

P(Qins | Mg) = /dqp(Qfms,q | Mg)

= /dqp(Qfms | ¢, Mq) p(q | Mq)
7,,2
:/dq5<ngSM> F(r). (4.25)
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The volume element in the 5-dimensional ¢ space can be written in terms of dr and a 4-dimensional
solid angle element, d*€), as dg = r*dr d*§). The integrand of equation (4.25) depends only on 7.
Thus the integral over d*€) is trivial; it is the 4-area of a unit 4-sphere, equal to 872 /3. Using this
result, and rewriting the §-function in terms of r, we find,

( rms ’ MQ 7271' /dr5 r— rQrms) ( )

128” 1287 08 PV AT Qo) (4.26)

Thus for the prlor to be flat with respect to Q>
cancel the Q3
the prior is,

2 ., we require a nonuniform ¢ prior with f(r) oc =3 to

3 s factor arising from the volume element. Normalized over the Q2 . interval [QZ, Q3/],

3 1
Mg) = —
PN = veaigr —qz)

(4.27)

when Q2 is in the prior range, and p(q | Mg) = 0 otherwise.
Note that a prior that is flat with respect to Q2 is not flat with respect to Qums. They are
related by
dQ% s
p(Qrms ‘ MQ) = ( rms | M )erms
= QQYmSP(Q?ms | Mq)
25677/ o
- 3 rms ( Qrms) (428)

Thus the flat Q2 prior implies a linear Qs prior; alternatively, a flat Qs prior implies a 1/Qyms
behavior for the Q2 . prior. There is ambiguity over which choice is most natural. I have chosen
the flat Q2. prior because this prior implies a form for the marginal priors for the individual g,
coefficients that is more nearly flat than that implied by a prior flat with respect to Qms. This way
our prior is roughly uniform both for the invariant quantity, Q2. ., and for the directly measured
quantities, gp,-

For a sample calculation, let us set Qn; = 300 uK, corresponding to to the previous observational
upper limit of Qums/7T ~ 1074, and Q), = 3 uK, corresponding to a theoretical lower limit of
Qrms/T =~ 107 (we can set this lower limit to zero with a negligible change in our results). The
integral in equation (4.21) can be performed very simply with Monte Carlo integration, using just
a few lines of FORTRAN and a few minutes of CPU time. The resulting Bayes factor is B ~ 0.003.
The data favor a model with no quadrupole fluctuation; only a prior odds ratio greater than about
300:1 in favor of Mg will make the posterior odds exceed unity. Given the data of Figure 1, it is not
very surprising that a zero quadrupole model is favored, but the smallness of B may be somewhat
surprising. The Bayes factor is roughly inversely proportional to Qﬁi. As we will see shortly, the
data imply that QmsS20 pK. Even if we were to “cheat” and use this a posteriori knowledge to
assign a prior upper limit of Qp; = 20 uK, the Bayes factor increases only to B =~ 0.7, corresponding
to ambivalence between the quadrupole and no-quadrupole models. The IDMR data simply do not
provide compelling evidence for a nonzero quadrupole moment.

It is instructive to consider an alternative quadrupole model, Mclgv that implies a flat prior over
q. Normalized, this prior is

rms’

15 1
plq | Mg) = :
97256792 Qf - QF,

If we again set Q1o = 3 uK and @Qp; = 300 uK, we find the Bayes factor in favor of this model over M
is extremely small, ~ 6 x 10~7. The reason for this has to do with the geometry of the 5-dimensional

(4.29)
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q space. The volume in a shell of fixed thickness grows like Q2 .. Thus a flat ¢ prior, assigning

probability proportional to volume, places almost all of its probability near Qy;, which we shall see
is quite far from the value preferred by the data. For example, the flat prior assigns nearly 97%
probability to the region beyond Q.ms = 150 uK; but the posterior assigns similar probability to the
region below 20 uK. This geometric effect makes the Bayes factor quite sensitive to the upper limit
for the Mclg model; it is roughly proportional to Q}f. These results emphasize the importance of
taking into account the physical meaning of the parameters in assigning a prior.

Our conclusion that the IDMR data do not provide compelling evidence for a nonzero quadrupole
moment is otherwise not too sensitive to the shape of the prior, provided that the volume factors are
accounted for. For example, the information provided by previous experiments indicates a preference
for small Q2 values but does not really impose a sharp cutoff at QZ.. Let us instead use a smoothly

rms

decaying prior with, say, 95% of its probability below Q%.,

2

D@ | M) = B2 (— log(20) ‘;) . (430
hi hi

This is quite a different prior from a flat prior over Q?_.. However, when Qy; = 300 K, it changes

the Bayes factor only from 0.003 to 0.009; and when Qy; = 20 K, it changes it from 0.7 to 0.95.

Our conclusions are thus robust with respect to such changes in the prior.

Regardless of the data, most astronomers believe there must be some quadrupole anisotropy,
albeit a small one. In essence, most of us have a prior odds in favor of Mg that is large, based
on physical reasoning. Thus it is useful to presume a (possibly vanishing) quadrupole moment is
present, and infer its magnitude. This is a parameter estimation problem, but it is not well-posed
until we specify the parameterization of interest. If we wish to infer the amplitudes of the quadrupole
components, we can simply multiply £(q) by a prior to find the joint posterior. Using the flat prior
on Q2 , the posterior for the individual quadrupole components is,

L(q)
p(q| D, Mgq) o m (4.31)

The prior modulates the Gaussian shape of the likelihood and introduces a weak correlation between
the components. But the posterior is not drastically different from the likelihood. For example, the
solid curve in Figure 2a shows the marginal posterior for ¢q;, and the dashed curve shows its Gaussian
factor in £(q) (i.e., the inference we would make with a flat prior on the ¢,,). They differ noticably,
but not drastically, because the Gaussian varies rapidly enough with g, that multiplication by any
function with characteristic scale larger than o,, has little effect on the shape of the posterior. It
is interesting to note that this change of prior, which has little affect on parameter estimates, had
a large effect on the model comparison calculation, changing the Bayes factor by several orders
of magnitude. This is a common characteristic of Bayesian calculations: parameter estimates are
usually much less sensitive to changes in the prior than are model comparisons.

Figure 26 shows the marginal posterior for the largest detected moment, ¢;. This posterior is
more significantly shifted by the prior, which somewhat favors small values for the g,,. Still, the shift
is of the order of a standard deviation; large enough to notice, but not large enough to qualitatively
change one’s scientific conclusions.

It is more useful to consider a different parameterization, and to infer the value of Q2 , since
this provides a measure of the quadrupole amplitude that is independent of orientation. After all,
the naturalness of this parameter is the reason we are using a nonuniform prior for the ¢,,. The
easiest way to calculate the posterior for Qfms is to “extend the question” as we did in equation
(4.25): introduce the g, as auxiliary parameters and integrate them out. This lets us write

p(Q?ms | DaMQ) = /dqp(ngs,q ‘ D7MQ)
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Figure 2. (a) Marginal posterior for ¢_o based on a prior flat with respect to Qyms (solid curve), and
on a prior flat with respect to all g, (dashed curve). (b) As in (a), but for ¢;.
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This is vaguely like the integral defining the noncentral x? distribution, and someone more familiar
with that distribution than I am may be able to make some analytical headway with this integral.
It is easy enough to evaluate it with Monte Carlo methods, however. The result is shown in Figure
3. The posterior mean is (Q2_.) = 138 uK?2, and the posterior standard deviation is og2 = 103 K2,
All highest posterior density credible regions (hereafter simply “credible regions”) containing 60%
or more of the posterior probability contain the point Q% = 0. This certainly seems intuitively
consistent with our earlier finding that no quadrupole moment is necessary to account for these data.

Again it is instructive to see what would have happened had we used the flat prior over the ¢,,.
The solid curve in Figure 4 shows the resulting posterior for Q2 It vanishes at Q% . = 0, and

rms* rms
gives a mean + standard deviation estimate for Q2 . of 93 + 59 uK?. It may come as a surprise
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Figure 4. Posterior for Q2. using a prior flat with respect to g,. Solid curve is based on the IDMR
data of Table 1; dashed curve is based on data with the same o,,, but with all ¢, = 0, and is
multiplied by 0.4.

to find the posterior vanish at Q2 = 0 and to find the inferred Q2 . value well over a standard
deviation away from zero, given that we have just shown that the data favor the no-quadrupole
model over the Mé model we are considering here with odds greater than 10%:1. Again, geometry
is to blame. As already noted, the volume of a shell of thickness dQ.ms grows very quickly, as the
fourth power of Qiums. There is thus vanishingly little volume near the origin; one can show the
posterior must vanish at Q2 . = 0 simply because of these volume effects, even if the best-fit values
of the g, are all zero, so long as their uncertainties do not vanish. To make the point, the dashed
curve in Figure 4 shows the posterior found by replacing the measured ¢, values with zero, but
keeping the uncertainties given in Table 1. We comment further on how the geometric effects can
help us reconcile the estimation and model comparison calculations below.

Finally, we can ask the question that is perhaps the most interesting to a cosmologist: What do
the data tell us about theories for the intial conditions? Recall that most theories postulate Gaussian
initial conditions, meaning that we can model the a;,;,, as being drawn from independent Gaussian
distributions with zero means and “cosmic variances,” Cj,,, specified by theory. The absence of a
preferred coordinate system implies that, for all spherically symmetric theories, the cosmic variances
cannot depend on m: Cj,, = C;. The quadrupole components thus represent five samples from a
zero mean Gaussian with variance Cy, so we might hope that our measurements of them will allow
us to make useful inferences about the magnitude of C5. By Bayes’s theorem, the posterior for Cy

given the data, D, and prior information I is,
p(C2 | D, 1) < p(Ca [ 1) p(D | Ca,1). (4.33)

We can calculate the likelihood conditional on Cy by “extending the question” again, as follows:
p(D | Co1) = [ dap(D.q | Ca.1)

:/dqp(D | ¢,Ca, 1) p(q | Co, 1)

2 2
= /dq L(q) H 2;02 exp (—;gé) . (4.34)
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Figure 5. Posterior for quadrupole cosmic variance Cs.

The integral can easily be done analytically once we complete the squares in the ¢,,. The result is,

2 ~2
p(D| Co, 1) x ] dm

1
M9 v/ Co + 0'72n P [_2(02 + UTQn)

That is, the likelihood for C5 is what we would get by treating the measured g,, values as being
samples from zero mean Gaussians with variances equal to the sum of the cosmic variance and the
noise variance. Multiplying by a flat prior and normalizing gives the posterior plotted in Figure 5.
Note that it does not vanish at Cy = 0; in fact, the point at Co = 0 is inside credible regions as
small as 50%. Examining equation (4.35), we see the posterior has a power-law tail proportional

(4.35)

to Cy 52 This is reflected in the large disparity between the locations of the posterior mode at
Coy = 169 uK? and the posterior mean, (Cy) = 1860 uK?. The 68% credible region extends from 0
to 1200 uK?; the 95% credible region extends to 6100 pK?2. These results are consistent with our
model comparison results in that they imply that the data are consistent with zero cosmic variance,
i.e., no actual quadrupole anisotropy. While the data offer possibly useful upper limits on Cs, the
power-law behavior of the tails probably makes the precise value of upper limits somewhat sensitive
to the prior. This sensitivity, and the consistency with Cy = 0, are indications that the data tell us
little about the quadrupole moment of the CBR.

4.4. Some Frequentist Analyses

Now let me describe some frequentist analyses of these IDMR data, of the kind reported in
analyses of the actual DMR data (Janssen and Gulkis 1992; Smoot et al. 1992). Let me emphasize
at the outset that I am not offering these results as the best that frequentist statistics has to offer,
but rather as typical of what highly talented astronomers do based on their limited familiarity with
frequentist methods.

All published analyses of the COBE anisotropy data are based on “sky maps” of 67'(n) con-
structed as follows. The sky is descretized into 6144 direction pixels; at the time of each DMR
measurement, each horn is pointing in one of these pixels. We label the pixels with a single index;
the pixel to which a horn points is a function of the datum index, i. The model equation (4.6) is
rewritten as,

d; = G(Ta — Tb) =+ n;. (4.36)
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Here T, is the antenna temperature in the direction of pixel a = a(4). It is defined by

7, - LAl ws

where A,(n) denotes the area function of a DMR horn when its axis is in the direction indexed by
a. A x? statistic is formed from the data,

=Y

7

di — G(T, — T))?
[ (0_2 ) . (4.38)
Minimizing this with respect to the 6144 antenna temperatures leads to a normal equation for the
antenna temperatures with a very sparse design matrix. A sparse matrix algorithm is used to solve
for the antenna temperatures, up to an arbitrary offset. Each pixel is assigned a Gaussian uncer-
tainty with variance given by the diagonal component of the covariance matrix of the solution. All
subsequent analyses are performed using these maps as the “data.” Coefficients in a spherical har-
monic expansion are found by fitting the 6144 antenna temperatures to a sum of spherical harmonics,
and dividing the resulting a;,, coefficients by the w; coefficients describing the horn area functions.

The original reports of a detection of a CBR quadrupole component with the real DMR (Smoot
et al. 1992) reported ¢,, and o, values corresponding to the IDMR values given in Table 1. The
reported detection was based on the following calculation. An estimate of (s was found simply
by setting ¢, = §¢m in equation (4.23). A standard deviation was found using a method that was
not described; but the results are consistent with the “propagation of errors” procedure well-known
to physicists (see Bevington 1969):

O01mms \ 2
2 rms 2
og = mg ( . ) Oy (4.39)

These calculations give Qs = 13 £ 4 uK. Since the estimate is over three times the size of its
uncertainty, this was deemed evidence that a significant quadrupole component was detected. No
attempt to infer the cosmic quadrupole variance independent of higher order moments was made
(theories predict relationships between the C; coefficients, so it is possible to infer Cy from fits to all
higher order multipoles, which is what was done).

4.5. Discussion

It is hard for someone who spends lots of time thinking carefully about data analysis to resist
flying off the handle at least a little bit in response to the data mutilations just described. So
before I lose control, let me make some positive remarks. The COBE team consists of some of the
most talented experimental physicists in the world. The care they have taken in the design and
construction of their experiment, and in the analysis of systematic sources of uncertainty (none of
which T have discussed here) sets a high standard that more astronomers should aspire to. There
is little doubt in my mind that the DMR instruments detected significant anisotropy in the CBR,
as is evidenced by the high significance of the DMR measurements of higher order moments than
the quadrupole. Thus my following criticisms, calling into question the DMR, quadrupole detection,
detract only slightly (if at all) from the great historical significance of this experiment.

In addition, the DMR team has now analyzed a second year of data, and reports increased
significance for their results. New methods were used in the analysis of the second year’s worth of
data, and although I do not like some of what I have seen of these methods, I have not studied them
in any detail and cannot intelligently comment on them.

Finally, as noted above, my IDMR analysis is merely illustrative of what might be true of a
careful analysis of the first-year DMR, data. I do not have access to the raw data, and so cannot
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say with certainty what the actual data imply for the CBR quadrupole (and I may not be able to
do the required calculations even if I had the datal!). Nevertheless, I believe the above analysis calls
into question the significance of the reported quadrupole detection, and may point to problems that
could affect other inferences based on the DMR data as well. Given the decades of effort spent
constructing the COBE instruments and the years spent calibrating them and removing systematic
effects, it seems a shame to compromise the valuable information provided by the data by using faulty
methodology. Hopefully this discussion will motivate further consideration of the methodology used
to analyze this data.

[I cannot resist noting here that, after this paper was prepared, the COBE team published an
analysis of the second-year DMR data, including a reanalysis of the first-year data. New methods
were used for inferring the quadrupole, although considerable ad hockery remains. However, they
conclude that there is no significant evidence for a nonzero quadrupole in the second-year data, and
that a joint analysis of both years’ worth of data shows only a marginally significant detection (90%
significance).]

As noted above, all analyses of the DMR data are based on sky maps produced by solving
normal equations for the antenna temperatures in various directions. This is an excellent example
of the confusion of data with hypotheses. The object of the DMR measurements is to measure
the sky temperature, so it is natural for an astronomer to try to convert the data into something
that looks like what we want to infer—a map of the sky temperature. As natural as this procedure
may appear to some astronomers, it is far from obvious that fits to the resulting map, even after
correction for the area functions of the horns, give results corresponding to what one would find from
rigorous modeling of the raw data. To the extent that correlations between the inferred antenna
temperatures comprising the sky map can be ignored, the linearity of the procedure may lead to an
approximate correspondence between rigorous fitting and fitting to sky maps with subsequent beam
corrections. But this has not been demonstrated; indeed, the issue has not even been recognized.

The estimation of @QQ.ms provides another example of the confusion of data with inferences:
Harmonic fits provide estimates of ¢,,, and Q;ns can be written in terms of ¢,,, so it seems natural
to estimate Qs simply by plugging in the g, estimates. Inference is more subtle than this, however,
particularly when nonlinear equations (like that relating Qms and the g, ) are involved, and when
there are numerous nuisance parameters (for the Qs inference, the g, are essentially nuisance
parameters). The need to integrate over several nuisance parameters makes the consideration of
prior information about the geometry of the ¢,, space quite important for this problem; it has been
ignored in all published analyses. The nonlinearity of the Qs equation makes estimation of Qs
more complicated than simply plugging in ¢, estimates, even when we ignore volume effects: the
estimate using the flat ¢ prior is Qrms = 15.5+ 3.9 uK, about 0.6 standard deviations larger than the
frequentist estimate that in some sense implicitly uses this prior. It is difficult to be forgiving about
this error, because most physicists encounter estimation using variance-weighted measurements in
undergraduate lab courses. Surely one of the lessons of this well-known frequentist technique is the
need to distinguish between estimation of terms in an equation like equation (4.23) and estimation
of the value of the equation itself. Presuming the §,, estimates to be accurate, accounting for the
nonlinearity and prior information replaces the 13 + 4 uK frequentist estimate with the posterior
shown in Figure 3. It implies Qs estimates lower than the frequentist estimate, with a standard
deviation wider than the frequentist og. More importantly, this posterior is not Gaussian and is
obviously not well summarized by its mean and standard deviation; in particular, Q2 . = 0 is inside
the 68% credible region, even though the posterior mean for Q2 . is well over one standard deviation
away from zero.

Gould (1993) noted the intuitive discrepancy between the claim of a very significant “30” quad-
rupole detection and the fact that the ¢, values in Figure 1 do not appear too significantly different
from zero. He outlined a crude x? calculation that seemed to verify the intuitive consistency with no
quadrupole, causing him to examine the Qyns estimation procedure. Gould, too, found fault with
the original Qs estimation procedure. Unfortunately, he noticed only that the original estimator
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Figure 6. Frequency distribution of frequentist estimates of Q.ms based on data with ¢, = 0. Solid
curve shows distribution of Qs estimates (left and bottom axes); dashed curve shows distribution
of Qs divided by its propagated error (right and top axes).

was biased, and replaced it with an ad hoc unbiased estimator. This new estimator decreased the
estimate to 10.5 uK, but it remained over “2¢” larger than zero, essentially because the volume
effects are still unaccounted for by this estimator. But this estimator ignores even more basic prior
information than the volume of ¢ space: as Gould himself noted, it will produce imaginary Q;ms
estimates for some samples, ignoring our prior knowledge that temperatures are real-valued (i.e.,
that Q2. > 0).

All of these investigators failed to distinguish between estimation and model comparison, yet
another of the “sins” alluded to in the previous section. They use a parameter estimate to decide
whether the estimated parameter is required by the data by seeing whether it is at least a couple
standard deviations from its null value. Although it is true that some linear Bayesian model compar-
ison calculations are amenable to an interpretation in terms of finding a new parameter a significant
distance away from a null value (see Loredo 1989), this is merely an interpretation of a calculation
that is fundamentally very different from a parameter estimation calculation. That a simple inter-

pretation is not always possible is borne out by the Bayesian calculations that use the M’Q model

assigning a flat ¢ prior. The resulting posterior distribution for Q2 . vanishes at the origin, yet a

model comparison calculation very strongly favors the model with no quadrupole moment over this
model. We described the geometrical origins of this apparent contradiction above; similar effects
arise in the frequentist calculation. Figure 6 demonstrates this. I drew many samples of measured
gm coefficients from Gaussians with zero means and standard deviations given by o,,. Thus all of
these samples are from a parent population with no actual quadrupole. The curve in Figure 6 shows
the distribution of Q.ms estimates obtained using the frequentist procedure of plugging the ¢, val-
ues into the Qs equation (the unbiased procedure would often yield imaginary estimates for these
data). The dashed curve shows the distribution of the number of standard deviations the estimate
is from zero. The estimate is always nonzero; very often (over 50% of the time) it is more than two
standard deviations away from zero. Again, this is simply a consequence of the geometry of the
five-dimensional ¢,, space. It emphasizes the need to distinguish model comparison and parameter
estimation.
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Finally, there are many nuisance parameters involved in the CBR analysis beyond the few I have
already mentioned. There are other cosmic backgrounds that contaminate the measurements, as do
various instrumental and environmental effects (such as Earth’s magnetic field). These are incorpo-
rated into the DMR analysis through linear modeling in the creation of the sky map. Essentially,
best-fit amplitudes for a number of functions are found, and the amplitudes are fixed at these best-fit
values for all subsequent analysis. I doubt that a proper accounting of these nuisance parameters
would change the results substantially (it is likely only to slightly broaden the likelihood), and I
doubt that the required marginalizations are possible (although the linearity may prove me wrong).
But it is worth pointing out that no mention has been made that the procedure of conditioning on
best-fit values is approximate. And more importantly, this is further evidence for my hypothesis,
stated earlier, that no real astronomical inference problem lacks nuisance parameters!

5. TEACHING ASTRONOMERS BAYESIAN INFERENCE

Hopefully the preceding sections have convinced readers with a Bayesian bent that they should
share their expertise with astronomers. In this section, I would like to offer some brief words of
advice on how best to reach us. I must emphasize that this is advice for Bayesian statisticians who
wish to reach astronomers. 1 will criticize some aspects of the Bayesian literature here. My advice
and criticism should not be construed as directed toward all of the Bayesian literature. What and
how you write to communicate amongst yourselves is your own business. But an astronomer dipping
into the Bayesian literature encounters several stumbling blocks. Some of these criticisms apply to
literature of previous decades more than to the present, but I offer them lest some be tempted to

backslide!

5.1. Awoid the Philosophical Aura

Perhaps the toughest obstacle to acceptance of Bayesian methods by astronomers is the philo-
sophical—indeed, almost religious—aura that too often accompanied Bayesian polemics in the past.
Those advocating Bayesian methods spoke of coherence and consistency and axiomatics. They called
themselves “Bayesians,” as if they were the members of a religion founded by the Reverend Thomas
Bayes. They even spoke of being “converted” from their frequentist ways.

I must confess to being guilty of all of these behaviors. My first paper on the application
of Bayesian methods to astrophysical problems (Loredo 1990) began with a lengthy discussion of
axiomatics, consistency, and rationality. It is true that some astronomers (myself among them)
find such an approach to the foundations of Bayesian inference not only persuasive, but beautiful,
in much the same manner that the most profound physical theories are beautiful. However, these
astronomers comprise a small minority. The majority of the astronomical community could care less
about such arguments. They want to see calculations, and see how they differ from what they already
use; interest in the “why” behind the calculations will come later (if at all). I must admit that I
find the disregard that astronomers, and physicists more generally, have for conceptual arguments
distressing. Physics, after all, was originally a branch of philosophy: natural philosophy. But this
disregard for conceptual foundations is a fact of life.

Thus you should avoid axiomatics and discussion of such concepts as coherency when trying to
explain Bayesian methods to astronomical colleagues. They may well soon develop an interest in
such things, but only after your facility with equations convinces them that you can not only argue,
but actually solve problems. If you do end up discussing foundational matters, you would do well
to become familiar with the work of Cox (1946, 1961) and Jaynes (1957, 1995)—both physicists—
on the foundations of Bayesian inference. Their emphasis on internal consistency, and on limiting
consistency with Boolean algebra, has greater appeal to physicists than do arguments based on
coherency and betting, in my experience. Their work deserves more attention from statisticians.
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Finally, I think we would be wise to stop referring to ourselves as “Bayesians.” The term almost
inevitably draws a curious and skeptical grin from physicists who are not themselves experienced with
Bayesian methods. After all, people who use Lax-Wendorf methods to numerically solve differential
equations do not call themselves “Lax-Wendorfians.” Methods are Bayesian, not people. On the
one hand, not one of us is perfectly Bayesian in all our inferences. On the other hand, we all know
that good frequentists are really in-the-closet Bayesians, in a state of deniall Thus statements like,
“I am a Bayesian,” not only polarize and lend an almost religious aura to Bayesian statistics, but
also are factually inaccurate. We develop and use methods that are Bayesian. Perhaps the word
“Bayesian” is already so loaded that a new term is required, even in reference to methods rather
than worldviews. Jaynes (1990, 1995) has suggested “probability theory as logic,” which besides
being new, has the additional virtues of being both precise and accurate. The word “logic” does
lend the phrase an unfortunately philosophical tone, however.

5.2. Emphasize Inference, Not Decision

Physicists report evidence, and let readers make their own decisions. Of course, we often report
our own conclusions and interpretations, but we must always provide the evidence that led us to
the conclusions, and not merely the conclusions themselves. Thus we are more interested in the
calculus of inference than in that of decision. Much early Bayesian literature emphasized decision
too strongly (particularly texts), although it is my perception that this emphasis has declined in
recent years. Astronomers have enough trouble accepting the subjectivity of inference that is made
explicit by priors. Decision introduces additional subjectivity in the assignment of loss functions or
utilities. This argues against an emphasis on decision over inference.

5.3. Awvoid Measure Theory

If we are to benefit from your knowledge, you must communicate it to us in a language we can
understand. Most of us have a reasonable level of mathematical sophistication. But almost none
of us knows what a Borel subset or a sigma algebra is! Following Jaynes (1984), I would argue
that we would be wasting our time and effort were we to learn the language of measure theory. We
eventually perform our calculations in the comfortably discrete and finite domain of a computer;
the generality of measure theory is irrelevant there. This is true even of so-called “nonparametric”
Bayesian statistics (which is really “mega-parametric” statistics), where measure theory is most often
used. In cases of practical interest, measure-theoretic language does not add rigor to a description
of a method, only generality; a generality of little or no use to physical scientists.

When I read (or try to read) some of the Bayesian literature couched in measure-theoretic
language, I feel like a FORTRAN or C++ programer who has been handed a page of code in assembly
language to debug. Sure, there are things you can do in assembly language that you can’t do with
C++. But if you never want to do those things, there is no advantage to be gained by learning and
programming in assembly language. And there is much to be lost in terms of compatibility and
accessibility.

5.4. Emphasize Methodological Distinctions

Say the word “Bayesian” to an astronomer, and it is likely that the first (and only) remarks
you will get with any technical content will refer to priors. The common perception is that the
essential distinguishing feature of Bayesian inference is the use—indeed, the requirement—of priors
in Bayesian calculations. This perceived primacy of priors is strongly encouraged by the Bayesian
literature, which so often and so strongly emphasizes priors.

Achilles might as well boast about his heel!

This emphasis encourages those with no deep understanding of Bayesian methods to believe
that Bayesian results will differ from frequentist results only when there is strong prior information,
and that otherwise the distinction between the approaches is merely a philosophical one involving
the interpretation of probability. That such a belief is false needs no demonstration to this audience.
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I believe the emphasis on priors is misplaced. It is true that the presence of priors in Bayesian
calculations often provides them with substantial advantages over their frequentist counterparts
which too often ignore even the simplest prior information, to their peril. But it is also true that
priors introduce subjectivity into Bayesian calculations. This subjectivity is real and should be
explicitly accounted for; but it is still a complication, and raises some practical difficulties. But
more to the point, priors are not the essential distinguishing feature of Bayesian methods.

The essential distinguishing feature of Bayesian methods is that they average or integrate over
the hypothesis space, in contrast to the averaging or integrating over the sample space that is the
basis of frequentist methods. Priors are in some ways merely part of the “price” we have to pay
in order to reap the benefits to be had from replacing sample averages with hypothesis averages.
These benefits are important and numerous, and include the ability to handle nuisance parameters,
the “Occam’s Razor” effect in model comparisons, the ability to ignore stopping rules, safety from
recognizable subsets, etc.. I have attempted to emphasize this aspect of Bayesian calculations in my
more recent papers (see, e.g., Loredo 1992).

The nice thing about an emphasis on this distinction (besides it being the correct emphasis from
a fundamental viewpoint!) is that it is methodological. Tt tells astronomers that they actually have
to write different computer codes to do Bayesian calculations, not merely multiply existing results
by a prior and reinterpret them. It also gives them a clear idea about how they must change their
calculations. Finally, it makes it more obvious that Bayesian and frequentist results can differ even
when there is no important prior information, since the two approaches actually perform different
calculations. Realizing there will be a difference encourages us to do the calculation, and judge the
methods by their results, rather than by argument.

The recent emphasis on Monte Carlo methods in the Bayesian computation literature facilitates
explanation of the methodological distinction to astronomers. Many astronomers have expertise in
performing frequentist calculations using Monte Carlo methods to draw samples from the sample
space. The new Monte Carlo and Markov chain Monte Carlo methods for Bayesian calculation thus
bear some similarity to methods already familiar to astronomers, the primary distintion being that
the relevant samples are drawn from the hypothesis space rather than the sample space. Use and
discussion of these methods thus may help clarify the distinction between Bayesian and frequentist
calculations.

5.5. Emphasize Robustness

Granting that the role of priors should not be too heavily emphasized, neither should we merely
brush aside discussion of priors. But such discussion should be placed in its proper context. The
subjectivity arising from ambiguity in the prior is only one aspect of the inherent subjectivity of
inference, a subjectivity that manifests itself in several places in both frequentist and Bayesian
calculations, from the specification of the hypothesis and sample spaces to the assignment of a
sampling distribution. Indeed, the results of a calculation are often much more sensitive to changes
in the likelihood function than to changes in the prior. Familiarity has conditioned us to quick
acceptance of “standard” sampling distibutions. This is not entirely bad. But a balanced mixture
of skepticism and comfort born of familiarity should underly our attitudes towards both sampling
distributions and priors.

Rather than seek the “correct” prior or the “correct” likelihood, we should seek to formulate
a well-posed problem that we can solve, and to study the robustness of the solution to ambiguity
in the problem specification. The robustness study need not be at the level of formality of Berger
(1984). Informal “twidling” with the prior and likelihood (of the kind performed in the previous
section) is usually sufficient, and a little experience goes a long way in giving one an intuitive sense
of the robustness of a result. Finally, if a result is not robust to reasonable changes in the problem
specification, this itself should be recognized as important information. If the answer depends
sensitively on something we do not know, then we do not know the answer. This hardly appears
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to me to be a deep insight. That Bayesian calculations can identify such states of ignorance is a
benefit, not a drawback, of the Bayesian approach.

6. BAYESIAN INFERENCE IN ASTROPHYSICS

I am not alone in feeling optimism that adoption of Bayesian methods can help cure astron-
omy and other physical sciences of some of the statistical sloppiness that is too prevalent in these
disciplines. In the same forum in which Kleppner discussed scientists’ skepticism of sophisticated
statistics, the reknowned condensed matter theorist Philip Anderson recently extoled the virtues of
Bayesian inference:

These statistics are the correct way to do inductive reasoning from necessarily imperfect
experimental data. What Bayesianism does is to focus one’s attention on the question one
wants to ask of the data: It says, in effect, How do these data affect my previous knowledge
of the situation? (Anderson 1992)

Anderson goes on to discuss Bayesian model comparison calculations, describing how integration
over the parameter space gives rise to the “Occam’s Razor” effect mentioned above, penalizing
models for the size of their parameter space. Anderson sees such Bayesian benefits as an antidote
for “misuse” of phrases like “significant at the 0.05% level” in the scientific literature.

But even more encouraging than Anderson’s optimism is the fact that a growing number of
astronomers are using Bayesian methods in their work. Accordingly, I will end this paper with a
brief description of some recent applications of Bayesian inference to astronomical data analysis, as
evidence of the interest of astronomers in an alternative to the frequentist methods familiar to them.

Bayesian thinking was first explicitly introduced into modern astronomical data analysis in the
context of inverse problems. In particular, the maximum entropy method for “deconvolving” images
was founded on Bayesian principles (see, e.g., Gull and Daniell 1979 for an early “unashamedly”
Bayesian introduction to these methods). In retrospect, such problems were probably not the best
to use to introduce Bayesian thinking to astronomers. The parameter spaces in these problems are
huge, and their size precluded a fully Bayesian treatment. Integrals over the parameter space were
impossible to perform, so only the MAP (Maximum A Posteriori) estimator could be found. As
a result, such methods fostered the misconception that Bayesian inference was simply frequentist
statistics, with an additional prior factor. A dogmatic attitude toward the choice of prior further
fostered misconceptions about the role of priors in Bayesian calculations. Still, maximum entropy
methods produce visually impressive deconvolutions, and they have become a mainstay in the anal-
ysis of astronomical images. Although they did not use the entropy prior, Morrow and Brown (1988)
applied similar ideas to the inversion of helioseismology data.

More recently, the growth of computing power and of familiarity with Bayesian methods is
helping the Bayesian approach to inverse problems finally begin to live up to its full potential.
Investigators now have a more flexible attitude towards priors (Gull 1989; Molina et al. 1992a,b; Pina
and Puetter 1993), and emphasize the great importance of integrals over the parameter space, both
for treating nuisance parameters, such as regularization constants, and for comparing rival image
models (Gull 1989; Skilling 1990). Truly ingenious methods have been devised for approximating the
needed integrals (see, e.g., Skilling 1989, 1993), although this remains an open area of research. The
MAP estimator has now been replaced with summaries of the posterior that describe the uncertainty
of features in the image, either with error bars on functionals of the image (Skilling 1990), or with
movies that wander through the posterior “bubble” of probable images (Skilling, Robinson, and Gull
1991). The large computational demands of these methods have somewhat limited their impact; but
this constraint should weaken as computer power and algorithmic ingenuity grow with time.

At the opposite end of the spectrum in terms of the size of parameter space, several investigators
independently realized the advantages to be gained by Bayesian analyses of photon counting data
based on the Poisson sampling distribution. Gull (1988) discusses the estimation of a signal rate in
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the absence of background as a simple example of basic Bayesian concepts. He also presents one of
the earliest explicit analyses of the “Occam’s Razor” effect in Bayesian model comparison. Kraft,
Burrows, and Nousek (1991) discuss estimation of a signal from counting data in the presence of a
known background. Loredo (1990, 1992) discusses signal estimation with and without a background,
including the “on/off” case were the background itself must be estimated from off-source observa-
tions. Graziani et al. (1993) apply these ideas to estimation and model comparison problems arising
in the analysis of the spectra of gamma-ray bursts.

Goebel, et al. (1989) applied the AutoClass II Bayesian classification program developed by
Cheeseman, et al. (1988) to the problem of identifying classes of objects in the Low Resolution
Spectra (LRS) atlas of objects observed by the Infrared Astronomical Satellite (IRAS). AutoClass
1T applies Bayesian parameter estimation and model comparison principles to the spectra of over
5000 objects in the atlas to automatically classify the objects into a hierarchy of classes whose
number and parameters are found automatically from the data. Many of the resulting classes are in
concert with those previously identified by the IRAS Science team and other later investigators, but
several new classes were also identified. A number of these have been verified to be distinct classes
by independent observations of additional properties of the member objects, such as their spatial
distribution.

Bretthorst (1988) has developed a rich theory for the analysis of data modeled with a Gaussian
distribution for added noise, extending earlier work of Jaynes (1987). Applied to periodic models,
Bretthorst’s algorithm can measure periodic signals with precision and sensitivity greater than that
obtained with standard methods based on the discrete Fourier transform, particularly when the
signal is more complicated than a single sinusoid. Bretthorst has presented a preliminary analysis of
almost 300 years of sunspot data demonstrating the superiority of Bayesian methods for the anal-
ysis of such data. In another preliminary study, Jaynes (1988) and Bretthorst and Smith (1989)
apply the Bretthorst algorithm to the problem of resolving closely spaced point sources with sep-
arations significantly smaller than the width of the imaging point spread function, demonstrating
that Bayesian methods can easily resolve such objects under certain conditions. Most of Bretthorst’s
work has focused on applications in chemistry and in radar target identification, with the unfortunate
consequence that his methods have so far had less impact on astronomy than they should.

Independently, Finn and Chernoff (1993) applied very similar ideas to the analysis of gravita-
tional radiation data like that expected from the Laser Interferometer Gravitational-wave Observa-
tory (LIGO), currently under construction; Cutler and Flanagan (1994) have clarified and extended
this work. The most promising sources of radiation detectable by LIGO are neutron star binaries,
whose orbits decay due to gravitational radiation, resulting in the two stars spiraling into each other.
General relativity predicts the shape of the resulting radiation waveform with high accuracy. Finn
and Chernoff, and Cutler and Flanagan, show how Bayesian calculations can be used to infer phys-
ically interesting parameters of the decaying binary system. The ability to integrate over nuisance
parameters plays an important role in their analysis. They use their results to discuss issues of
experimental design, and to determine how accurately theoretical calculations must be performed
in order to provide models of sufficient accuracy to model the data. Interestingly, the data may be
so informative that they will tax current ability to perform the calculations of the waveform shape
to the needed accuracy.

The methods of Bretthorst, Finn and Chernoff, and Cutler and Flanagan model the time se-
ries as a deterministic, parameterized signal with additive noise. However, simple parameterized
models do not exist for many astrophysical time series. Rybicki and Press (1992) discuss Bayesian
and frequentist methods for a time series modeled as a correlated Gaussian process, with added
uncorrelated noise. The problem motivating their work is the analysis of radio waves detected from
gravitationally lensed quasars. For these objects, the bending of spacetime by a massive foreground
galaxy allows light from a more distant quasar (a galaxy with an unusually bright central core) to
reach Earth along two or more paths, producing two or more images of the same quasar. The paths
have different lengths, so light from the quasar reaches Earth at different times from the various
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images. The time lag depends on properties of the intervening galaxy and on the density and ex-
pansion rate of the universe, so its measurement could in principle provide important cosmological
information. Unfortunately, the intensity of quasars varies unpredictably with time. The work of
Rybicki and Press represents an attempt to model such behavior and measure lag times. To date,
however, no precise measurements have been possible.

Gregory and Loredo (1992) treat the complementary case of a time series consisting of arrival
times of individual events modeled as a Poisson point process. They discuss both detection of
periodic and nonperiodic signals using model comparison calculations, and estimation of signal
parameters such as the signal period or waveform shape. Searches over wide ranges of periods can
easily require millions of integrals over phase and shape nuisance parameters. Gregory and Loredo
adopt a simple, piecewise-constant model for the waveform shape that facilitates the calculations by
allowing analytical integration over the numerous waveform shape parameters.

Loredo and Wasserman (1994) use Bayesian methods to analyze data describing the distribution
of gamma-ray burst sources; this work was briefly mentioned in Section 3. They use a Poisson point
process to model the occurence of a burst, and in addition use the Poisson counting distribution to
model the detection of photons from a burst. The analysis displays several weaknesses of currently
used methods. A set of data analysis tools is being developed in collaboration with a burst observing
team to facilitate use of Bayesian methods to model burst data. In forthcoming work, Loredo and
Lamb (1994) use similar Bayesian methods to analyze the supernova neutrinos mentioned in Section
3.

Finally, Bayesian methods are beginning to find acceptance in studies of the large scale structure
of the universe. In Section 4, I outlined a Bayesian approach to the analysis of CBR data to elucidate
the structure present at the time of decoupling of radiation and matter. Lawrence, Readhead, and
Myers (1988) and Bond et al. (1991) earlier applied Bayesian parameter estimation methods to
similar data, in an effort to quantify the constraints placed by null detections on theories. The
COBE detections have renewed interest in these methods, and Bond and others are developing more
sophisticated Bayesian algorithms for the analysis of CBR, data.

There is also a wealth of data on the character of the present large scale structure in the universe.
However, its analysis is hampered by complicated selection effects. Many of these go under the name
of “Malmquist bias.” Malmquist biases arise whenever we attempt to infer a distribution with respect
to some parameter, 0, from a sample of objects that have uncertain measurements of ¢, and which
may be incomplete, with sample membership determined by an uncertain measurement of 6. The
effects of uncertainty and selection distort the observed distribution in a manner which depends on
the shape of the underlying distribution we want to infer. As a result, priors play an important role
in such analyses. Landy and Szalay (1992) explicitly introduced Bayesian ideas into these analyses.
Their approach is essentially an “empirical Bayes” analysis, where the prior for the underlying
distribution of distances to galaxies is parameterized as a histogram, with histogram levels inferred
from the data. Their analysis has raised great interest in (and some controversy over) the application
of Bayesian methods to the analysis of large scale structure, as evidenced in a number of preprints
describing work in progress on such methods.

In the biblical story, the prodigal son was immediately welcomed home with a feast and much
rejoicing. The welcome astronomers have extended to the Bayesian Prodigal has been more reluctant.
Nevertheless, there has been a clearly preceivable change in the openness of astronomers to Bayesian
methods within the last five years. This openness may well lead to a “feast” of new and better
statistical practice among astronomers in the coming years, a feast of the Prodigal’s own making.
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