Gas, Stars and Star Formation in ALFALFA Dwarf Galaxies

Shan Huang¹, Martha P. Haynes¹, Riccardo Giovanelli¹, Jarle Brinchmann¹, Sabrina Stierwalt³, Susan G. Neff¹

¹Center for Radiophysics and Space Research, Cornell University; shan@astro.cornell.edu; ²Sterrewacht Leiden, Leiden University; ³Spitzer Science Center, California Institute of Technology; ⁴NASA GSFC

http://egg.astro.cornell.edu/alfalfa

The ALFALFA survey
- The Arecibo Legacy Fast ALFA (ALFALFA) survey is a blind HI-line survey conducted with the ALFA feed array on the 305m telescope (Giovanelli+ 2005).
- It is expected to detect ~30,000 galaxies out to z<0.06, over ~7000 deg² of sky.
- The superior sensitivity, spectral and angular resolution of ALFALFA compared with previous blind HI surveys, allow it to detect the smallest HI-bearing galaxies in significant numbers over a cosmologically significant volume.

HI dwarf sample and data
- Based on the a.40 catalog, covering ~40% of the final area (Haynes+ 2010).
- A complete HI-selected dwarf sample (176 galaxies; filled symbols in all plots).
 (i) extragalactic with optical counterpart;
 (ii) logM_HI < 7.7; (iii) HI line width < 80 km/s;
 (iv) not massive but HI deficient galaxies.
- Supplementary dwarfs with GALEX data (53 galaxies; open symbols in all plots).
 (i) all have logM_HI > 7.7;
 (ii) only a small subset of a.40.
- Photometry on GALEX M16 images and good SDSS.
- Only one galaxy not detect in UV.
- M. and SFR derived from SED fitting the 7 bands (FUV, NUV, u, g, r, i, z).
- ALFALFA provides a statistically rich sample of global measures to lower HI masses than previous surveys, serving as the basis for further studies, e.g., survey of HI in the extremely low-mass dwarfs (SHIELD, Cannon+ 2010).

The HI selected galaxy population
- The ALFALFA dwarfs (circles and squares in all plots) probe lower HI fraction (f_gas=M_HI/M*) range relative to the overall ALFALFA population in the same M. range, because of the M_HI upper limit.
- Less massive and bluer galaxies are more gas-rich on average, i.e., with higher f_gas.
- M_HI equivalent or exceed M. in the low mass regime.
- ALFALFA galaxies are biased towards gas-rich populations. They may reside in dark matter halos with high spin parameters and have longer gas-accretion and SF timescales (Boissier+ 2000).

Color-Magnitude Diagram and f_gas
- HI dwarfs are also faint and LSB in the optical; only 56% of those within the SDSS footprint have a counterpart in the spectroscopic survey.
- Almost all of the ALFALFA dwarfs lie in the blue cloud in a CMD (NUV-r < 4).
- SDSS spectra confirm that they are star-forming galaxies.
- At fixed M., galaxies with lower f_gas have on average redder colors. Such variation is more evident among the low mass galaxies.

SFR estimates of dwarf galaxies
- The construction of SED fitting models has reasonably incorporated the effects of stochastic star formation, which is important for low mass galaxies with high specific SFRs (SSFR = SFR/M*).
- The Standard conversion from the f_*UV, e.g., Kennicutt (1998), assuming constant SFH, systematically overestimates SFR in dwarfs.

Star-forming sequence and f_gas
- The increased dispersion of the SSFR distribution below logM_*~8 is driven by a set of dwarf galaxies which have low gas fractions and SSFRs. Some of these are dE/dSphs in the Virgo Cluster (Hallenbeck+ 2012).
- At fixed M., galaxies with higher SSFR have higher f_gas. The trend is less evident for galaxies with logM_* > 9.5.
- As galaxies assemble their stellar mass and evolve along the SF sequence, their f_gas decreases.

Star formation efficiency and f_gas
- Many of the ALFALFA dwarfs, particularly the Virgo members, have HI depletion timescales (t_H = 1/SFE = M_HI/SFR) shorter than the t_Hubble.
- HI-selected galaxies have lower SFR than do optically selected ones (Schiminovich+ 2010).
- SFE increases gradually with M., with a steeper slope below logM_*~ 9.5. Notice the similar transition of slope in the f_gas or SFR vs. M. plots, which is below the frequently studied transition mass of logM_*~ 10.5.

- Despite the low SFEs, HI-selected galaxies have systematically higher SFRs. They may be in an earlier stage of the evolution than the optically-selected ones.

Main references
Huang et al. 2012, submitted
Huang et al. 2012, in preparation
Hallenbeck et al. 2012, in preparation
Haynes et al. 2011, AJ, 142, 170
Kennicutt 1998, ARAA, 36, 189

Acknowledgements
The research presented in this poster is funded by National Science Foundation Grant (AST-0607007 and AST-1107390), Brinson Foundation, GALEX GI program under NASA grants NNX07Al22G, NNX08Al67G and NNX09AF79G.

Attendance of this conference is funded by the Brinson Foundation and the Cornell Graduate School.