Whence to FRB - Maxim Lyutikov (Purdue)

1. FRBs are magnetospheric

- Temporal coincidence X-ray-radio
- magnetar association
- Radio leads X-ray
- frequency drifts
- PA swings
- periodicity
- micro-nano structure

2 Where to shear the footpoints

- Solar flares paradigm.
- What matters are:
 - size of active region
 - value of B-field
 - Hall shearing rate ~ B^2
 - location of shear
 - do field lines extend far o
 - or close near the star?

3 Polarization: Faraday conversion in the inner wind

- Pair plasma screen of DM= 10⁻⁶ pc cm⁻³ can give large Pitransformation!
- Can produce
 - Large Circular
 - Large RM, with changing signs
- non-standard $RM \propto \lambda^{\alpha}, \alpha \neq 2$
- RVM+ Π-conversion: tracks on Poincare sph.

4. Emission mechanism: Free Electron Laser

- Guide-field dominated regime
- Alfven waves in the magnetosphere (wiggler)
- Reconnection-driven beam of charged particles
- · bunches induced by wiggler emit collectively
- E.g. narrow line with pulse sub-structure

5. Maxim Lyutikov (Purdue U.)

- M.S. magna cum laude, Theoretical Physics, 1992, Moscow Engineering Physics Institute, Moscow
- Ph.D., Theoretical Astrophysics, 1998, California Institute of Technology, Pasadena, CA
- Professor, Purdue Department of Physics and Astronomy (assistant, associate, full, 2006)
- Research topics: Plasma astrophysics, compact objects
- Synergistic Activities: Plasma 2020, panel member