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2 Abstract

The Galactic Radio Explorer (GReX) Telescope is fundamentally a software
instrument. The capability to detect radio transients at such high resolution
is not due to novel analog hardware or FPGA code but rather due to the
implementation of a streamlined data collection and processing pipeline.
Additionally, GReX is unique in that we plan to deploy stations world-
wide, requiring substantial forethought in software design and deployment.
Instead of the “traditional strategy” of throwing together scripts and collec-
tions of virtual environments, GReX utilizes a fully deterministic build and
deployment system coupled with formatted, documented, and linted code.
We strategized this to maximize uptime, allow easy customization and con-
figuration, and quickly onboard those who want to contribute to the code
base.

This talk will consist of two parts. First, we will discuss the role of the
Guix package manager in the GReX system. Guix is GNU’s deterministic
build system in which we create package definitions that fully describe the
entire dependency graph of a given application or library. Once defined,
one can recreate these packages bit-for-bit. In the context of GReX, we
package all pipeline software, associated scripts, and transitive dependencies
in Guix. We also package the server software within Guix, where the kernel,
networking configuration, etc., is just another package. This strategy allows
us to have minimal configuration files and collect the full description of the
software system into a single source of reproducible truth.

The second portion of the talk will cover the decision to use the Rust pro-
gramming language for large chunks of the software. The Rust language is
a modern systems language designed for correctness. As the GReX systems
will be primarily remote, we want to develop software with compile-time
guarantees of certain classes of runtime behavior. In addition, we want
confidence that once compiled, our software will not crash or, at the very
least, does so in a predictable manner. We will discuss the language features
in Rust that make this possible and how the current software fits into the
greater pipeline context.
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