AN FRB SEN'T ME A DM: MEASURING THE MILKY WAY'S PLASMA WITH CHIME/FRB

Amanda Cook, University of Toronto

on behalf of CHIME/FRB

DM CONTRIBUTIONS

Hubble Heritage Team (STScI/AURA)

$$DM = \int_0^L n_e \ dl \ \propto \ \Delta t(\nu_1, \nu_2)$$

DM CONTRIBUTIONS

- too diffuse for direct imaging
- observables ⇒ total gas content is model-dependent
- DM_{halo} estimates span an order of magnitude (Keating & Pen 2020)
- implications for galactic formation theory
- DM_{halo} needed for FRB distance estimates

DM CONTRIBUTIONS

FRBs give upper limits

Subtracting the two constraints gives an upper limit on $\mathrm{DM}_{\mathrm{halo}}$

MW DISK MODELS

For each Galactic *b*, consider all *l* excluding:

- Dec. < -10 °
- lines of sight with high EM

Plot range of DM_{Gal} values

CUBIC BOUNDARY ESTIMATE

- Assumes polynomial form
- all FRB DMs must lie above curve
- maximize area from DM = 0 to boundary line

LOWESS BOUNDARY ESTIMATE

- *LO*cally *WE*ighted *S*catterplot *S*moothing
- DM value to fit at each b is defined as local (within 5 deg) FRB minimum
- polynomial degree 3,bandwidth = 0.55

DM_{M81R} + O20(b)

- use DM, *b* from FRB 20200120E
- Assume Ocker et al (2020) slab geometry for DM_{disk}
- Assume spherical symmetry of DM_{halo}

CONSTANT

$$DM_{MW} < 88 - 141 \text{ pc cm}^{-3}$$

 $DM_{halo} < 52 - 111 \text{ pc cm}^{-3}$

**Using Ocker et al (2020) to remove DM_{disk} gives DM_{halo} upper limits

MODEL UNCERTAINTIES?

 Bootstrap ⇒ 90% confidence interval for fit

MODEL UNCERTAINTIES?

- Bootstrap ⇒ 90% confidence interval for fit
- Basic assumptions about DM_{host} (MW-like) and DM_{IGM} (Maquart relation) give estimate of isolated DM_{halo}

MODEL UNCERTAINTIES?

- Yamasaki & Totani (2020): scatter in the X-ray EM data
 ⇒ ~ 0.2 dex fluctuation of the MW halo DM over the whole sky
- Bootstrap ⇒ 90% confidence interval for fit
- Basic assumptions about DM_{host} (MW-like) and DM_{IGM} (Maquart relation) give estimate of isolated DM_{halo}

Joint Bayesian Analysis

Assume:

- 1. Macquart (2020) DM_{IGM} prior
- DM_{host} prior from IllustrisTNG's "FRB-like" galaxies at z=0.1 (Zhang et al 2020)
- 3. DM_{disk} from Ocker et al 2020
- 4. DM_{halo} distribution can be described using log-normal distribution

Four FRB sightlines with known redshift combined give mean MW halo DM estimate of

Symbol Units Prior Parameter Host galaxy DM $\mathrm{DM}_{\mathrm{host}}$ $pc cm^{-3}$ $\log - normal(\mu_{host} = 36.55, \sigma_{host} = 1.27)$ $pc cm^{-3}$ MW WIM disk DM $\mathrm{DM}_{\mathrm{disk}}$ $Normal(\mu_{disk} = 23.5 / \sin |b|, \sigma_{disk} = 2.5 / \sin |b|)$ $\rm pc \ cm^{-3}$ Mean MW halo DM Uniform(min = 0, max = DM) $\mu_{
m halo}$ MW halo DM std. deviation $pc cm^{-3}$ Uniform(min = 0, max = 0.4) $\sigma_{
m halo}$ $\rm pc \ cm^{-3}$ MW halo DM DMhalo $\log-normal(\mu_{halo}, \sigma_{halo})$ $pc cm^{-3}$ IGM DM DMIGM Equation 4 from Macquart et al. (2020)

Joint Bayesian Analysis

Assume:

- 1. Macquart (2020) DM_{IGM} prior
- DM_{host} prior from IllustrisTNG's "FRB-like" galaxies at z=0.1 (Zhang et al 2020)
- 3. DM_{disk} from Ocker et al 2020
- 4. DM_{halo} distribution can be described using log-normal distribution

Four FRB sightlines with known redshift combined give mean MW halo DM estimate of

 33^{+25}_{-22} pc cm⁻³

COMPARISON TO MODEL PREDICTIONS

COMPARISON TO MODEL PREDICTIONS

Summary:

- NFW profile inconsistent
- Higher mass $(3.5 \times 10^{12} \text{ M}_{\odot})$ scenario of most models ruled out
- Dolag et al (2015) cosmological simulation remains relevant
- MB13 low but possible if:
 - 1. MW halo is very clumpy (or)
 - 2. $DM_{M81 halo} >> DM_{halo}$
- Feedback processes substantial

CONCLUSIONS

- We present FRB derived constraints as a function of Galactic latitude for the plasma in the Galaxy and MW halo
- Observation based high-latitude constraints on $DM_{MW}(b) = DM_{halo} + DM_{disk} < 88 - 141 \text{ pc cm}^{-3}$

•
$$DM_{halo}(b) \le 52 - 111 \text{ pc cm}^{-3}$$

•
$$\mu(DM_{halo}) = 33^{+25}_{-22}$$
 pc cm⁻³