Drifts, periodicity quenching, polarization from reflections

Jim Cordes, Cornell University

Features perhaps related to FRB environments

- **1.** No high-Q fast periodicities $Q = \frac{f}{\Delta f} = \frac{P}{\Delta P}$
 - Cases of transient low-Q sub-sec periods
 - Two cases of slow periodicities (windows of opportunity) (16d and 160d) suggestive of spin precession. Where is the spin?

 $d\nu/dt < 0$

 $-\langle d\nu/dt \rangle \propto \nu^x, \quad x \sim 1$

- 2. Time frequency drifts
 - Repeaters only (?)
 - Variable numbers of spectral islands and c
- 3. Flat polarization angles across (some) burs

Cornell FRBs

es

 \bigwedge

Li et al. 2021 FRB121102 w/ FAST

Fig. 3 | **Waiting time distribution of the bursts.** The grey bar and solid red curve show the distribution of waiting time and its log-normal (LN) fit. The high-energy component ($E > 3 \times 10^{38}$ erg) is shown by a solid purple line. The three fitted peak waiting times (blue dashed vertical lines) from left to right are 3.4 ± 1.0 ms, 70 ± 12 s, and 220 ± 100 s. The peaks around 70 s and 220 s in the waiting time distribution are close to the average values for the respective samples (full and high energy). This is consistent with a stochastic process (see the main text and Methods for further discussion).

Nature | Vol 598 | 14 October 2021 | 269

Individual time series show tendency for bursts with separations of 50 to 200 ms

Why not periodic?

Periodicity quenching possibilities

 May signify emission well outside magnetosphere

- Shock models etc. ... decoupling from spin

- Pulsar-like rotation/beaming with large altitude variability inside the magnetosphere
- Any post emission process that induces delays > 1/3 P

Drift rates for FRB 121102 [Hessels et al. 2019]

Review Coherent, Short-Pulse X-ray Generation via Relativistic Flying Mirrors

Masaki Kando ^{1,*,†}^(D), Timur Zh. Esirkepov ^{1,†}, James K. Koga ^{1,†} ^(D), Alexander S. Pirozhkov ^{1,†} ^(D), and Sergei V. Bulanov ^{1,2,†}

Moving mirrors

Angle of reflection ≠ angle of incidence

Reflected ray is blue shifted or redshifted

Reflected ray is delayed

Reflections can be polarization selective

Moving mirrors

Interference filters, dichroics

Transmission effects

Is radiation narrowband before reflecting?

Or induced?

Moving boundaries ⇒ detuning (sloppy filter)

More reflections \Rightarrow larger delays and frequency shifts

