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WHY IS BEEDBACK POWRLY
CONSTRAINED?

Feedback disrupts cooling of the IGM
Starves galaxiesiof the cold gas that feeds star formation

But can only observe galaxy/stars/cold gas, secondary results of teedback

Not the direct result, the IGM itselt



ASIDE: THE MISSING BARYON
PROBLEM

This *is* the missing baryon problem:
|IGM contains most of the baryons
Cannot be observed, cannot be reliably simulated

So we don’t know where they are



HOW CAN FRBS HELP?

* By measuring statistically where the IGM is by
proxy of the free electrons

Y

_ * Furthermore, can measure where the IGM is
| in relation to the (red, blue) galaxies
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Declination (deq)

FIRST DETECTION: CONNOR &
RAVI 2022
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EXCESS DM ALONG LOS
INTERSECTING HALOS
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2-POINT STATISTICS: CONNOR & RAVI MEASURED THE

Excess DM along lines of sight intersecting
galaxies, as a function of impact parameter
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2-POINT STATISTICS: CONNOR & RAVI MEASURED

Excess DM along lines of sight intersecting
galaxies, as a function of impact parameter

[(LSS tracer 1) x (LSS tracer 2)|(spatial scale)
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2-POINT STATISTICS: CONNOR & RAVI MEASURED

Excess DM along lines of sight intersecting
galaxies, as a function of impact parameter

[(LSS tracer 1) x (LSS tracer 2)|(spatial scale)

Examples: CZTT CZTE ng(k)
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IN CONTRAST TO 1-POINT

FUNCTIONS

Eg. P(OM | 2)

Macquart et al. 2018
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DM map
and galaxy map

o .

Spherical harmonic
transform

Cross correlate

Analysis proposed by Madhavacheril, Battaglia, Smith, and Sievers, 2019



WHY -

* We have a way to measure it
* Easy to extract from simulations
* Hyper sensitive to feedback physics

* Function of scale and galaxy type - lots of
information




"SOLVING" FEEDBACK WITH

-

* Pessimistically: turn knobs on feedback
models until sims match observations

* Optimistically: new qualitative insight ano
understanding

* Either way: major source of uncertainty in
galaxy formation (and cosmology) eliminated




OBSERVATIONAL PROSPECTS:
SENSITIVITY

Achieve ~10% measurements with 1000 background FRBs (with redshifts) cross-

correlated with 107 galaxies at z = 0.5

No forecasts at lower redshitts, but should be *much* easier
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OBSERVATIONAL
PROSPECTS: DATA

* There are several high-density, all-sky photo-z
galaxy samples at z ~ 0.1 with ~ 107 objects

* Atz=0.1, 100 kpc = 1". CHIME Baseband
localizations good enough

* With FRB redshitts (CHIME/FRB Qutriggers),
can subtract oft <DM>(z)




OBSERVATIONAL PROSPECTS:
SYSTEMATICS

DMhost correlating with galaxies

Probably not significant for initial measurements

Once redshifts available, only correlate far-separated pairs
DM-dependent selection eftects: should be able to calibrate and correct

FRB toreground of galaxy: initially small, eliminate with redshitts



FINAL THOUGHT: COSMOLOGICAL
IMPORTANCE

Measuring |l breaks a key degeneracy in the CMB kinematic
Sunyaev—Zeldovich (KSZ) effect (Madhavacheril et al. 2019)

The IGM contaminates weak gravitational lensing (Nicola et al 2022):
IGM is 14% of the matter, power spectrum is order-unity uncertain
Weak lensing mixes small and large scales - no avoidance

Unless we understand feedback, can't do percent-level measurements of
dark matter



CONCLUSIONS

Feedback is the most pressing unsolved problem in the biggest sub-tield of astrophysics

FRB DM provides an observational probe of feedback’s most direct effect: the
distribution‘of the IGM

In particular, measuring the electron—galaxy eross-power spectrum is:
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Robust to systematics

Highly informative of tfeedback
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