Implications of the Scattering Budget for Fast Radio Burst Sources & Applications

Stella Koch Ocker PhD Candidate Cornell University

Advisors: Jim Cordes & Shami Chatterjee

Relevant papers: Ocker+2021 (ApJ 911:2); Ocker+2022a (ApJ 931:87); Cordes+2022b (ApJ 931:88); Ocker+2022b (ApJ 934:71); Ocker+2022c (under review)

FRB Scattering Basic Phenomena

FRBs undergo multi-path propagation due to turbulent, small-scale (\leq au) electron density fluctuations (highly frequency-dependent)

Stella Koch Ocker (Cornell University)

observer

observables

scattering time (τ)

scintillation bandwidth ($\Delta \nu_{\rm d}$)

angular broadening (θ_d)

Selection Effect

- larger scattering time
 –> lower S/N
- selection bias depends on observing frequency, density regime, LOS configuration

CHIME/Catalog 1: large population of bursts may be unobserved due to scattering

Citentin

Astrophysical Probe

- density fluctuations in ionized gas (turbulence, small-scale structure)
- attributable to specific media along LOS
 - characterizing host ISMs & source environments
 - limits on multi-phase CGM

FRB Scattering Single Screen

 $2\pi\tau\Delta\nu_{\rm d}\approx 1$

$$\tau \approx \left(\frac{d_{\rm sl}d_{\rm lo}}{d_{\rm so}}\right) \frac{\theta_{\rm s}^2}{8(\ln 2)c}$$

$$\theta_{\rm d}^{\rm (obs)} = \theta_{\rm s} (d_{\rm sl}/d_{\rm so})$$

Stella Koch Ocker (Cornell University)

observables

scattering time (τ)

scintillation bandwidth ($\Delta \nu_{\rm d}$)

angular broadening ($\theta_{\rm d}$)

S

()

FRB Scattering Single Screen: FRB 121102

S

Ο

$$2\pi\tau\Delta\nu_{\rm d} \approx 1$$

$$\tau \approx \left(\frac{a_{\rm bl}d_{\rm lo}}{d_{\rm so}}\right) \frac{\theta_{\rm s}^2}{8(\ln 2)c}$$

$$\theta_{\rm d}^{\rm (obs)} = \theta_{\rm s} (d_{\rm sl}/d_{\rm so})$$

FRB Scattering Two Screens

extragalactic scattering attenuates Galactic scintillations

 limit on screen distances required to detect pulse broadening & scintillation from 2 screens:

Stella Koch Ocker (Cornell University)

observables

scattering time (τ)

scintillation bandwidth ($\Delta \nu_{\rm d}$)

angular broadening ($\theta_{\rm d}$)

S

 $d_{\rm so}$

 $\int L_{\rm G}$

FRB Scattering Two Screens: FRB 20190520B

Stella Koch Ocker (Cornell University)

7

Stella Koch Ocker (Cornell University)

Scattering Budget Overview

Scattering Budget Overview

Stella Koch Ocker (Cornell University)

Ocker+(2021a, 2022ab) Cordes+(2022b)

FRB 20190520B — scattering definitively from local source environment:

- mean scattering time & scintillation bandwidth —> screen dist. < 100 pc 1)
- 2) scattering time varies burst-to-burst (--> screen dist. ~pc)

ISM vs. local scattering more ambiguous for most FRBs

Host Scattering: Implications

Galactic scattering (NE2001)

Stella Koch Ocker (Cornell University)

scattering depends on LOS through galaxy -> impacts interpretation of source locations & host galaxies in terms of progenitor populations

Stella Koch Ocker (Cornell University)

selection effects aside, how do we translate the scattering budget into interesting astrophysical constraints?

Ionized Cloudlet Model: Fluctuation Parameter

$$\tau \propto \nu^{-4} \times G_{\text{scatt}} \times \tilde{F} \times \text{DM}^2 \times (1 + z_{\ell})^{-3}$$

$$\int \tilde{F} = \frac{\zeta \epsilon^2}{f(l_0^2 l_1)^{1/3}}$$
fluctuation parameter =
composite characterization of
turbulent density fluctuations

amount of pulse broadening per unit DM given by the "fluctuation parameter"

nized Cloudlet Model

on variance: $\epsilon^2 = \langle (\delta n_e)^2 \rangle / n_e^2$ oud variations: $\zeta = \langle n_e^2 \rangle / \langle n_e \rangle^2$ ctor:*f* ner scales of turbulence: $l_{o,i}$

13

Interpreting Fluctuation Parameters

-1/3) ³ km⁻ -0.01 <u>d</u> 10^{-3}

 10^{-4}

observed distribution of fluctuation parameter in MW

= reference point for extragalactic environments

limits on MW CGM from FRBs 121102, 180916, 20200120E

limit on M33 CGM from FRB 191108

14

Implications for Multi-Phase CGM

Vedantham & Phinney (2019)

Stella Koch Ocker (Cornell University)

- abundance of evidence for T < 10^6 K gas out to virial radii of L* galaxies
- observational evidence for cloudlets on ~0.1 - 10 kpc scales (possibly smaller) in CGM
- likely testable w/ FRBs

QSO absorption lines (sparse sampling for individual galaxies)

c.f. Tumlinson+2017 (ARA&A)

Implications for Multi-Phase CGM

requirements for multi-path scattering:

inner scale << Fresnel scale

$$r_{\rm F} \sim \left(\frac{\lambda d}{2\pi}\right)^{1/2} \sim \begin{cases} \sim 0.01 & \text{au} \quad (\text{ISM}) \\ \sim 6 & \text{au} \quad (\text{intervening } 0) \end{cases}$$

 bending angles > angular size of cloudlets

$$\blacksquare$$
 large enough \tilde{F}

thermal proton gyroradius: $l_i \propto \sqrt{T/B}$

Low-z Science: Local Group Galaxies

galaxies in GWGC* w/ halo diameter > 1/2 deg; includes ISM (galaxy-type dependent) & CGM (generic)

*Gravitational Wave Galaxy Catalog

Low-z Science: Local Group Galaxies

Low-z Science: Local Group Galaxies

- wealth of QSO absorption line data on M31/M33 halos
- very hot gas (T >~10^6 K) still not well-constrained for Local Group medium / nearby halos

100

-100

(pdg) 7-200

-300

-400

-500

Back to where it all began: SMC/LMC

