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of their spin-down luminosities12, whereas this source exhibits the 
reverse, indicating that the emission is not generated purely by spin 
down. Additionally, the smooth variations in pulse profile and the tran-
sient window of radio emission are more consistent with the interpre-
tation of GLEAM-X J162759.5-523504.3 as a radio magnetar than a 
pulsar13.

Magnetars are commonly detected and characterized via X-ray obser-
vations; four of the five known magnetars that have produced detectable 
pulsed radio emissions have done so only after X-ray outbursts. However, 
not all X-ray-emitting magnetars produce detectable radio emissions. 
Previous studies have shown that magnetars only produce radio emis-
sions if their quiescent X-ray luminosity in the 0.5–10-keV band is lower 
than their spin-down luminosity14. We would, therefore, predict that the 
X-ray luminosity LX of GLEAM-X J162759.5-523504.3 is <6 × 1027 erg s−1. We 
obtained X-ray observations with the Swift X-Ray Telescope (XRT) and 
determined that LX < 1032 erg s−1 (see Methods), which—although not a 

strong limit compared with our expectation under this interpretation—is 
a lower quiescent X-ray luminosity than all but two of the faintest known 
magnetars15, SGR 0418+5729 and Swift J1822.3–1606. Alternatively, a 
white dwarf would have a moment of inertia and therefore a spin-down 
luminosity 105 times larger, allowing the possibility of spin-powered 
radio pulsations; deeper ultraviolet and infrared observations than 
currently available would test this hypothesis.

Regardless of interpretation, the existence of an unexpected slowly 
pulsating yet intermittent radio transient opens up a new field of 
exploration of radio surveys, particularly at low frequencies. Whereas 
many sensitive low-frequency (≲340 MHz) continuum surveys have 
searched for transients on cadences of minutes within extragalactic 
fields for up to an hour at a time, no such systematic survey for unknown 
minute-period transients has been conducted within the Galactic plane 
on similar timescales16–20. As known pulsars and magnetars have periods 
of ≲10 s, surveys are typically designed with relatively short dwell times 
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Fig. 2 | Maximum brightness of each pulse and total pulse fluence as a 
function of time across the two observed intervals of activity. a, Maximum 
brightness of each pulse. b, Total pulse fluence. Not all pulses are fully captured 
by every observation; in these cases, lower limits are plotted with purple, 
upward-pointing arrows. Observations in which the source was within the field 
of view and predicted to be detectable, but not found, are shown with red, 

downward-pointing arrows equal to the root-mean-square noise in a 30-s image 
corresponding to the time at which a pulse was expected. All measurements 
have been scaled to a common frequency of 154 MHz via the spectral index 
α = −1.16. Error bars are omitted for clarity and are dominated by the 
approximately 5% uncertainty in the primary beam model of the telescope.
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Fig. 3 | Dynamic spectrum of the observation recorded at 03:59 on 10 
January 2018. From left to right, the panels show the Stokes I, Q, U and V flux 
density as a function of frequency and time, with a dispersion correction of 
57 pc cm−3 applied. Linear Stokes Q and U show Faraday rotation of 
−61 ± 1 rad m−2, whereas circular V shows no obvious signal. The top-left panel 

of the image shows the profile of the Stokes I data averaged over the frequency 
axis; the unresolved burst of emission shows the limitation of our 0.5-s time 
resolution. The root mean square of the noise in each spectrum is 8.5 Jy beam−1, 
and in the summed profile is and 0.9 Jy beam−1.

Hurley-Walker et al. 2022
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