All Sky Transient Radio Array

Shriharsh Tendulkar (TIFR/NCRA)

CIFAR Azrieli Global Scholar, Gravity & the Extreme Universe Program

Brightest and Nearest FRBs

- Radio telescopes are too darn sensitive
 - Detect almost any cosmic blip
 - Not very discerning
- Need more information about the emission processes
 - Multi-wavelength/multi-messenger (MWMM) inputs are crucial
- Links different transients together

HING AS USELESS AS A RADIO SOURCE" IM CONDON - PLOF NRAO VLA SKY SURVEY

C. Law, quoting J. Condon, IAUGA Busan (2022)

Brightest and Nearest FRBs

- Radio telescopes are too darn sensitive
 - Detect almost any cosmic blip
 - Not very discerning
- Need more information about the emission processes
 - Multi-wavelength/multi-messenger (MWMM) inputs are crucial
- Links different transients together

<<

10^{51–52} ergs

Observed Rates

FRBs

GRBs

Galactic Magnetar fla

> **Binary N** mergers

ULX/HMX outburst

	10 ³ /day
	1/day
ares	~1/day (clustered in space and time)
S	1/year (will change in O5)
(B S	10/year

There are far too many FRBs in the sky

Few FRBs will be associated with other detectable transients

- Multiple models for FRB short **GRB** connection
 - Inspiral phase, Actual merger, Post merger

Wang et al (2016)

X-rays/Gamma-rays

- Hansen & Lyutikov (2001; few second timescales),
- Pshirkov & Postnov (2010; radio precursors),
- Totani (2013), Zhang (2014),
- Ravi & Lasky (2014), Flack & Rezolla (2014), Most et al (2018) post merger Wang et al (2016; inspiral phase),
- Mingarelli et al (2014), Liu et al (2016) NS-BH mergers
- Sridhar & Metzger (2021; nearly pre-merger)

With apologies for incompleteness

- Multiple models for FRB short **GRB** connection
 - Inspiral phase, Actual merger, Post merger

Wang et al (2016)

Hansen & Lyutikov (2001: few second timescales) Take away message: Lots of different models about when and how ost merger FRBs can form — before, during, or after BNS/ **NSBH** mergers. Sridhar & Metzger (2021; nearly pre-merger)

X-rays/Gamma-rays

With apologies for incompleteness

- Magnetar flares
 - SGR 1935 + 2154
 - Multi-peaked radio and X-ray profiles
 - X-ray comes after radio
 - BUT many other X-ray bursts w/o radio (CHIME/FRB Coll 2020, Lin et al 2020)
 - Many radio bursts w/o X-ray (CHIME/ 0 FRB Coll. 2020, Kirsten et al 2020)

X-rays/Gamma-rays

- Magnetar flares
 - SGR 1935 + 2154
 - Multi-peaked radio and X-ray profiles
 - X-ray comes after radio
 - BUT many other X-ray bursts w/o radio (CHIME/FRB Coll 2020, Lin et al 2020)
 - D FRB Coll. 2020, Kirsten et al 2020)

X-rays/Gamma-rays

Many radio bursts w/o X-ray (CHIME These coincident detections are key to emission mechanisms — but are RARE

Repeater - X-ray Connection

- For repeaters, focused observations are possible
- Simultaneous radio, X-ray also done: Scholz et al (2021) for FRB 20180916B, Scholz et al (2017; FRB 20121102A)
- Fluence limits of ~ 10^{-10} – 10^{-9} erg/cm²
- At 150 Mpc (R3), energy < 10^{45} erg (>> FRB energy)

SGR 1806-20 Giant Flare: 10⁴⁷ erg, SGR 1935+2154 burst: 10³⁹ erg (both isotropic)

Repeater - X-ray Connection

- For repeaters, focused observations are possible
- Simultaneous radio, X-ray also done: Scholz et al (2021) for FRB 20180916B, Scholz et al (2017; FRB 20121102A)
- Fluence limits of ~ 10^{-10} – 10^{-9} erg/cm²
- At 150 Mpc (R3), energy < 10^{45} erg (>> FRB energy)

SGR 1806-20 Giant Flare: 10⁴⁷ erg, SGR 1935+2154 burst: 10³⁹ erg (both isotropic)

Gravitational Waves

- Current limits on BNS-like mergers at the CHIME/FRB catalog 1
 Search range = (-600 s, +120 s)
- Modeled + unmodeled searches
- Future runs will be more sensitive more likelihood of detections

LVK + CHIME/FRB Collaborations (2022)

Sensitivity Horizons

- LIGO/VIRGO/KAGRA —> BNS merger horizon: ~200 Mpc
- Detectable giant-flare horizon: 100 Mpc
- Rate of FRBs within this horizon ~ 1–10 per wk (typical energy scale)
 - BUT in the entire sky (42000 sq deg!)

- Counterparts are rare —focus on the brightest and nearest FRBs
- Needs larger FoV surveys, coordinated observations
- More sensitive X-ray telescopes
- Be more inclusive in finding FRBs

All Sky Transient Radio Array

Let FRBs fall into ChASMs

- We need extremely wide FoV monitors to find nearest FRBs
- Same phase space as STARE2, GREx, BURSTT (Lin et al 2022)
- 400-800 MHz analog, 100 MHz digital, 3+ stations, 700 signal chains, 300s voltage buffer for external + internal triggers

CoHerent All-Sky Monitors HT Liam

Let FRBs fall into ChASMs

- We nee
- Same
- 400-80
 300s volume

Parameter

Instantaneous Field of View

Localization (10- σ burst)

Incoherent Beam Sensitivity (5

Coherent Beam Sensitivity (5-

Voltage Data Buffer

Table 1: Summary of System Parameters

CoHerent All-Sky Monitors HT Liam

	Goal	Requirement
V	$15,000 \text{ deg.}^2$	$10,000 \text{ deg.}^2$
	0.1″	1″
$(5-\sigma)$	$500\mathrm{Jy-ms}$	700 Jy-ms
$-\sigma)$	10 Jy-ms	30 Jy-ms
	$5\mathrm{min}$	$1 \min$

Science plans

- 3 stations (more later)
- 2 layouts of single polzn dipoles in a grid
- Analog systems designed for 400-800 MHz
- Digital systems designed for 100 MHz (SNAP boards)
- 300s voltage buffer for external + internal triggers
 - Trigger on alerts from LVK, Fermi, Daksha (next talk)

2222 8888 88/88

Science plans

- 3 stations (more later)
- 2 layouts of single polzn dipoles in a grid
- Analog systems designed for 400-800 MHz
- Digital systems designed for 100 MHz (SNAP boards)
- 300s voltage buffer for external + internal triggers
 - Trigger on alerts from LVK, Fermi, Daksha (next talk)

EW Pol NS Pol

8888

8888

00,00 00 00

Specifically required due to the uncertainty in BNS prompt emission models

2222

8888

88/88

888 2222 8888 8888 **60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60**

- 3 stations (more later)
- 2 layouts of single polzn dipoles in a grid
- Analog systems designed for 400-800 MHz
- Digital systems designed for 100 MHz (SNAP boards)
- 300s voltage buffer for external + internal triggers
 - Trigger on alerts from LVK, Fermi, Daksha (next talk)

400-800 MHz feed design (by Nipun Ghangas)

Half power beam widths (deg)					
Phi	400 MHz	600 MHz	800 MHz		
0	69	66	121		
90	83	92	135		

뗜 -24 -26 -28 -30

Feed Design

- Based on the CHIME design, but single polarization, much wider FoV
- Two downward tilted aluminium sheet ~13 cm wide petals

400-800 MHz feed design (by Nipun Ghangas)

Half power beam widths (deg)

Phi	400 MHz	600 MHz	800 MHz
0	69	66	121
90	83	92	135

Feed Design

Beam pattern at 600 MHz

Farfield Realized Gain Abs (Phi=90)

Frequency = 600 MHz Main lobe magnitude = 7.85 dBi Main lobe direction = 0.0 deg. Angular width (3 dB) = 92.2 deg.Side lobe level = -17.9 dB

— farfield (f=600) (3)

Medium Baseline Locations

- GMRT array
- Fiber optics and power to each pad
- Maser at correlator building
- Some empty pads 0
- ~20 km baselines

Long Baseline Locations

- GMRT ORT: 900 km
- GMRT GBO: 700 km
- Ooty GBO: 250 km

Each location is a radio observatory and has a hydrogen maser

- Each station searches for bursts separately
- Low threshold detections are shared and compared
- Originally only in incoherent beam
 - Upon detection, freeze buffers, transfer data and correlate offline
- In future, FFT beam forming

Digital systems

- Field testing of feeds and analog chain (GMRT Band 3)
- 16 element array (early 2023)
- Scale up to larger size through 2023

- ASTRA: Designed for detecting the brightest and nearest radio transients
- Counterparts of BNS mergers, Galactic FRBs, local magnetar flares
- Large voltage buffer to dump the last 5 minutes of sky
- Pilot array in development

ASTRA Summary