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Bayesian Adaptive Exploration

Thomas J. Loredo
David F. Chernoff

ABSTRACT We describe a framework for adaptive astronomical explo-
ration based on iterating anObservation–Inference–Design cycle that allows
adjustment of hypotheses and observing protocols in response to the results
of observation on-the-fly, as data are gathered. The framework uses a uni-
fied Bayesian methodology for the inference and design stages: Bayesian
inference to quantify what we have learned from the available data; and
Bayesian decision theory to identify which new observations would teach
us the most. In the design stage, the utility of possible future observations
is determined by how much information they are expected to add to current
inferences as measured by the (negative) entropies of the probability distri-
butions involved. Such a Bayesian approach to experimental design dates
back to the 1970s, but most existing work focuses on linear models. We use
a simple nonlinear problem—planning observations to best determine the
orbit of an extrasolar planet—to illustrate the approach and demonstrate
that it can significantly improve observing efficiency (i.e., reduce uncertain-
ties at a rate faster than the familiar “root-N” rule) in some situations. We
highlight open issues requiring further research, including dependence on
model specification, generalizing the utility of an observation (e.g., to in-
clude observing “costs”), and computational issues.

1 Introduction

Incremental learning from experience, where one proceeds step by step
to a desired goal, making decisions and asking questions on the basis of
available information, is a basic aspect of human behavior. The classical
paradigm for the scientific method, with its rigid sequence of hypothesis for-
mation, followed by experiment and then analysis, bears little resemblance
to this adaptive, self-adjusting learning behavior. The classical paradigm
has served science well but its limitations are apparent in settings where
data collection and analysis may proceed in concert, where learning pro-
ceeds on-the-fly and what has been learned from past data may be prof-
itably used to alter the collection of future data.

We describe here an adaptive extension of the scientific method built on
a model for scientific exploration where, after an initial setup phase, ex-
ploration proceeds by iterating a three-stage cycle: Observation–Inference–
Design. Figure 1 depicts the flow of information through one such cycle.
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FIGURE 1. Information flow through one cycle of the adaptive exploration pro-
cess. Information (e.g., data) and an observing strategy are input from a previous
cycle on the left; combined information and a new observing strategy are output
to the next cycle on the right.

In the observation stage, new data are obtained based on an observing
strategy produced by the previous cycle of exploration. The inference stage
synthesizes the information provided by previous and new observations to
assess hypotheses of interest. This synthesis produces interim results such
as signal detections, parameter estimates, or object classifications. Finally,
in the design stage the results of inference are used to predict future data
for a variety of possible observing strategies; the strategy that offers the
greatest predicted improvement in inferences (subject to any resource con-
straints) is passed on to the next Observation–Inference–Design cycle.

The Bayesian approach to statistics provides ideal tools for developing
a unified framework for adaptive exploration: Bayesian inference for the
inference stage, and Bayesian experimental design for the design stage.
Bayesian inference—using probability theory to combine prior information
and data to produce posterior probabilities for hypotheses of interest—
is a formal description of learning perfectly suited for the tasks of the
inference stage of the exploration cycle. It is now widely used in several
astronomical disciplines and its basic features will be familiar to many
astronomers. In contrast, formal methods for experimental design (Bayesian
or otherwise) will likely be new to most astronomers. Bayesian design—an
application of Bayesian decision theory—identifies an optimal experimental
or observational design by first specifying the purpose for a study, and then
comparing how well candidate designs achieve that purpose by using the
techniques of Bayesian inference to predict and analyze future data. A main
goal of this brief paper is to introduce astronomers to Bayesian design, in
the context of adaptive exploration.

In 1956, Lindley described how one could use tools from information
theory and Bayesian statistics to compare experimental designs when one’s
purpose is simply to gain knowledge about a phenomenon [Lin56]. He later
incorporated these ideas into a more general theory of Bayesian experimen-
tal design, described in his influential 1972 review of Bayesian statistics
[Lin72]. Although non-Bayesian methods for optimal design predate Lind-
ley’s work (standard references are [Fed72, Che72, AF97]), the Bayesian
approach provides a more fundamental rationale for many earlier methods,
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and unifies and generalizes them (see [CV95] for discussion of the relation-
ships between Bayesian and non-Bayesian design). In the three decades
since Lindley’s review, the theory of design has matured significantly. But
as noted in Toman’s recent review, “unfortunately much of the work in
this area remains purely theoretical” [Tom99]. This is largely due to the
computational complexity of Bayesian design, an obstacle noted already in
Lindley’s foundational work. In experimental design, one must account for
both uncertainty regarding the hypotheses under consideration, and uncer-
tainty about the values of future data. For the former, one must perform the
difficult parameter space integrals that are characteristic of Bayesian infer-
ence [Lor99]; for the latter, one must additionally integrate in the sample
space as is typically done in frequentist calculations. In a sense, experimen-
tal design is the arena in which the Bayesian and frequentist outlooks meet,
producing problems with the combined complexity of both approaches.

As a result of this complexity, the vast majority of research in optimal
design (Bayesian or non-Bayesian) has focused on simple models for which
the required integrals can be evaluated analytically, such as linear models
with additive Gaussian errors. Existing work on nonlinear design typically
linearizes about a best-fit model [Mac92, SS98]. But the last decade has
seen enormous strides in Bayesian computation due largely to the develop-
ment of sampling-based methods for evaluating parameter space integrals,
particularly Markov Chain Monte Carlo (MCMC) methods. Such methods
not only facilitate rigorous calculations with complicated models; they also
provide results in a form that can be readily interpreted and processed
by end-users, even when the hypothesis space is of large dimension. We
describe them further below.

Only recently have sampling-based algorithms that combine parame-
ter and data sampling been brought to bear on Bayesian design [MP95,
CMP95, MP96, Mul99]. Here we use simple sampling algorithms to imple-
ment the adaptive exploration strategy outlined above in the context of a
simple but realistic nonlinear astronomical design problem. The sampling
approach not only allows us to evaluate integrals without approximating
the integrands, but also allows straightforward graphical display of all el-
ements of the calculation. We hope this example provides an accessible
introduction to Bayesian experimental design for astronomers, as well as a
demonstration of the potential of adaptive exploration.

The following section describes the motivation for our interest in adaptive
exploration—optimal allocation of observing resources for the Space Inter-
ferometry Misssion—and then introduces adaptive exploration by example.
We follow the strategy through one full cycle and through the observation
and inference stages of a second cycle, using as an example radial velocity
observations of a star with the goal of determining the orbital parame-
ters of an unseen planetary companion. The final section discusses several
directions for future research.
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2 Example: Measuring an Exoplanet Orbit

Our work on adaptive exploration is motivated by the Space Interferom-
etry Mission, the first main mission of NASA’s Origins program.1 SIM is
designed to measure the directions to astronomical sources with unprece-
dented accuracy. In its highest precision mode it is expected to achieve
1 microarcsecond astrometric accuracy. This will allow detection of the
reflex motion “wobble” of a star with an Earth-like planet at a distance
of several parsecs, or with a Jupiter-like planet at kiloparsecs. But SIM’s
high-accuracy measurements are time consuming, seriously restricting the
number of stars that can be examined in a search for extrasolar planets.
SIM observations are thus a precious resource that must be optimally al-
located (not only for planet searches, but also for other diverse science
SIM will undertake). During the mission, targets with no planets must be
quickly weeded out, and observations of targets with companions must be
scheduled to optimally determine the number of planets and their orbital
parameters so that SIM can characterize as many systems as possible. In
addition, before the launch of the SIM spacecraft in 2009, the SIM project
will undertake extensive preparatory observations in order to carefully se-
lect both science target stars and reference stars against which the motions
of the science targets will be measured. Reference stars must be free of
planetary companions that would complicate their motion. The SIM Ex-
trasolar Planet Interferometric Survey (EPIcS) key project is considering
using binary stars with eccentric orbits as reference stars, since planets will
have been swept from such systems. The preparatory observing campaign
must identify hundreds of such stars and measure their orbits with high
precision. This will require a huge expenditure of observational resources
that must be optimized.

As a simple example of the kind of problem that must be addressed for
optimizing SIM mission and preparatory observing, we consider here the
problem of making radial velocity (RV) measurements of a star in order
to best determine the parameters of the orbit of an unseen Jupiter-mass
companion. Observations of this type will comprise much of SIM prepara-
tory observing; similar ideas will apply to analysis of astrometric data. We
consider observations of a 1 M¯ star known to have a single planetary
companion; our goal is to choose future observations to best improve our
estimates of the planet’s orbital parameters. The function giving the ra-
dial velocity vs. time for a star exhibiting Keplerian reflex motion has six
parameters. To simplify the calculations, we focus here on the three most
important parameters—the orbital period, τ , the eccentricity, e, and the
velocity amplitude, K—and we presume the remaining geometric parame-

1For detailed information about SIM, see the SIM web site:

http://sim.jpl.nasa.gov/
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ters are known a priori (these include the time of periastron crossing, the
longitude of periastron, and the orbital inclination). We model the value of
each datum di as having additive noise, so that

di = v(ti; τ, e,K) + ei, (1.1)

where v(t; τ, e,K) gives the velocity at time t as a function of the param-
eters, and ei represents the unknown noise contribution for datum i. We
take the noise to have independent Gaussian distributions with standard
deviation σ = 8 m s−1 (typical of current RV surveys).

The first cycle of exploration requires a “setup” strategy specifying the
initial observations. Ideally, such a strategy would be developed using de-
sign theory and predictions based solely on prior information about the pos-
sible orbits (e.g., an assumed period distribution for orbits). For simplicity,
the setup strategy here specifies 10 equally-spaced velocity measurements.

2.1 Cycle 1: Observation

Figure 2a shows the results of the observation stage of the first Observation-
Inference-Design cycle. The points with error bars show the results of 10
simulated observations. For reference, the dashed curve shows the true
velocity curve, with τ = 800 d, e = 0.5, and K = 50 m s−1 (typical
parameters for current observations of Jupiter-like extrasolar planets). The
observations span somewhat less than two periods.

2.2 Cycle 1: Inference

For the inference stage, we calculate the posterior probability density for
the parameters given the available data. Bayes’s theorem gives this as

p(τ, e,K|D, I) ∝ p(τ, e,K|I)L(τ, e,K), (1.2)

where p(τ, e,K|I) is the prior probability density for the orbital parameters,
L(τ, e,K) is the likelihood function (the probability for the data presuming
τ , e, and K are known), and I denotes the modeling assumptions (Keple-
rian orbit, noise properties, etc.). We assume we have no significant prior
knowledge of the parameters, and take the prior to be a constant. Our
assumption of Gaussian noise probabilities leads to a likelihood propor-
tional to exp[−χ2(τ, e,K)/2], where χ2(τ, e,K) is the familiar goodness-of-
fit statistic given by a weighted sum of squared residuals. Thus,

p(τ, e,K|D, I) ∝ exp[−χ2(τ, e,K)/2]. (1.3)

To find best-fit parameters, we could maximize the posterior density
(corresponding to minimizing χ2). To constrain the parameters, we could
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FIGURE 2. One cycle of the exploration process for simulated planet search data.
(a) Observation stage, showing 10 simulated observations and true velocity curve
(dashed). (b,c) Inference stage, showing samples from the posterior distribution
for two velocity curve parameters (b) and two derived orbital parameters (c). (d)
Design stage, showing predicted velocity curves (thin solid curves), true velocity
curve (dashed curve), and the expected information gain for a sample at each
time (thick solid curve, right axis).
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locate the constant-χ2 surface that encloses, say, 90% of the posterior prob-
ability for all three parameters; such a region is called a 90% (joint) credible
region. If we were primarily interested in just the period, we could sepa-
rately focus on it by calculating the marginal distribution for τ , given by
integrating out the other parameters;

p(τ |D, I) ∝
∫

de

∫

dK exp[−χ2(τ, e,K)/2]. (1.4)

A 90% credible region for τ alone would be a region of the τ axis containing
90% of this marginal density.

All of these summaries of the posterior distribution could be calculated
with common numerical methods (optimization and quadrature). But for
problems with more dimensions, such calculations can be challenging. A
more flexible approach is to use posterior sampling (see [Lor99] for a brief
introduction and references). In this approach one constructs a random
number generator that samples from the parameter space according to the
posterior distribution (in contrast to more common Monte Carlo methods
that sample from the data space). In this case, each sample would be a
triplet (τ, e,K) drawn from p(τ, e,K|D, I); repeated sampling will produce
a set of values, {τj , ej ,Kj}. Once a set of such samples is available, many
quantities of interest can be found by simple manipulations of the samples.
In addition, posterior samples can be used directly to report results in a
way that is easy to interpret and easy to use in future calculations.

Figures 2b and 2c are examples of interim results from the inference
stage of the exploration cycle based on the observations shown in Figure
2a. We used a simple rejection method [PTVF92] to sample the posterior
distribution; Figure 2b shows the τ and e coordinates of 100 such samples,
displaying the marginal distribution p(τ, e|D, I). In a more careful calcula-
tion, we would use more samples and smoothing to find contours of credible
regions; here it suffices to note that the displayed cloud of points should
conservatively bound a 90% credible region. We see that the period and
eccentricity are usefully constrained by the 10 data points, although signif-
icant uncertainty remains. Also, the posterior distribution is obviously not
well-approximated by a Gaussian. Figure 2c shows how easily a compli-
cated marginal distribution can be found using the samples; it displays the
marginal distribution for the planet’s semimajor axis, a, and m sin i, the
product of its mass and the sine of its orbital inclination. These are each
nonlinear functions of the three model parameters. To produce Figure 2c
we simply evaluated these functions for each of the 100 samples of (τ, e,K)
already produced; this is much simpler than numerically evaluating the
multiple integral defining the marginal distribution over a (m sin i, a) grid.
By reporting the actual sample values, other investigators could use the
results of these observations in their own calculations and fully account for
the uncertainties simply by evaluating any quantities of interest over the
set of samples.
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2.3 Cycle 1: Design

For the design stage, we locate the time at which to make the next ob-
servation so that we have the best chance of significantly reducing our
uncertainty in the parameters. We accomplish this in three steps: predict
future data at various times, find the effect of the predicted data on infer-
ences, and then identify the time for which the expected improvement in
precision is greatest. We discuss each step in turn.

To predict the value, d, of a future datum at time t, we calculate the
predictive distribution. To find it, we first predict d assuming we know the
true parameter values, and then account for parameter parameter uncer-
tainty by averaging over the parameter space. For given values of (τ, e,K),
the predictive probability density for d is just the likelihood for d (a Gaus-
sian centered at v(t; τ, e,K)). The averaging weight we must use to account
for parameter uncertainty is the posterior distribution from the inference
stage. The predictive distribution is thus the convolution of the Gaussian
likelihood for d and the posterior from the inference stage;

p(d|t,D, I) =

∫

dτ

∫

de

∫

dK p(τ, e,K|D, I)

× 1

σ
√
2π

exp

(

− [d− v(t; τ, e,K)]2

2σ2

)

≈ 1

N

∑

{τj ,ej ,Kj}

1

σ
√
2π

exp

(

− [d− v(t; τj , ej ,Kj)]
2

2σ2

)

(1.5)

where the last line gives a Monte Carlo integration estimate of the predic-
tive distribution using N posterior samples from the inference stage. To
give some sense of what the predictive distribution looks like for various
values of time, Figure 2c shows the v(t) curves for the first 15 sampled
parameter points as thin solid lines; the true curve is again displayed as a
thick dashed curve. The ensemble of thin curves depicts our uncertainty in
v(t). The predicted data values at each time are additionally uncertain due
to the noise which “blurs” the curves by 8 m s−1. The ensemble of blurred
curves represents the predictive distribution as a function of time. The un-
certainty is greatest near times of periastron crossing when the velocity is
changing most quickly (it is minimal at 300 d, the initial time of perias-
tron crossing we assumed was known). Also, the uncertainty in the period
makes the velocity uncertainty at periastron crossing grow with time as
predictions with different periods fall increasingly out of synchronization.

Next we must measure how future data would affect our inferences. If
datum d at time t were available, we could update our inferences simply
by multiplying the posterior distribution from the previous stage by the
likelihood function based on the single new datum (the Gaussian factor
in equation (1.5)), and renormalizing. (This is equivalent to doing a new
χ2 calculation considering all 11 data points at once.) The new posterior,
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p(τ, e,K|d, t,D, I), will hopefully be more informative about the parame-
ters than the current one. The information in the posterior is given by the
negative Shannon entropy of the posterior distribution,2

I(d, t) =
∫

dτ

∫

de

∫

dK p(τ, e,K|d,D, I) log[p(τ, e,K|d, t,D, I)]. (1.6)

This is the information gain for a particular datum at time t; to account
for prediction uncertainty, we must calculate the expected information gain,
averaging over d using the predictive distribution of equation (1.5):

EI(t) =
∫

dd I(d, t)p(d|t,D, I). (1.7)

The best sampling time is the one that maximizes the information gain,
so we must evaluate EI(t) as a function of time. For problems such as this
where the width of the noise distribution does not depend on the value of
the underlying signal, one can show that the expected information gain is
equal to the entropy of the predictive distribution [SW97, SW00],

EI(t) = −
∫

dd p(d|t,D, I) log[p(d|t,D, I)]. (1.8)

Thus the best sampling time is the time at which the entropy (uncertainty)
of the predictive distribution is maximized. This is an eminently reason-
able criterion: Bayesian design is telling us that we will learn the most by
sampling where we know the least.

We use nested Monte Carlo methods to calculate EI(t) as a function of
time. At each time, we sample a datum from the predictive distribution by
first drawing a set of parameter values from the posterior, and then draw-
ing a data value from the sampling distribution with those parameters. We
then estimate p(d|t,D, I) for that datum using equation (1.5). Repeating
this process and averaging the logarithm of the estimates provides a Monte
Carlo estimate of equation (1.8). The thick solid curve in Figure 2d shows
this estimate of EI(t), using base-2 logarithms so that the relative infor-
mation gain is measured in bits (with an offset so the smallest EI(t) is at
0 bits; the raggedness in the curve reflects the Monte Carlo uncertainties).
EI(t) quantifies the uncertainty that is apparent in the set of thin sampled
v(t) curves. It is maximized near the periastron crossing subsequent to the
available data, at t = 1925 d. Thus the observing strategy produced by this
observation–inference–design cycle is: observe at t = 1925 d.

2For a Gaussian distribution, I is proportional to − log(σ) and thus increases with
decreasing σ as one would expect; but it is a more general measure of spread than

the standard deviation. To be formally correct, the argument of the logarithm in equa-

tion (1.6) should be divided by a measure on the parameter space so the argument is

dimensionless; this has no significant effect on our results. An alternative definition of

information is the cross-entropy or Kullback-Leibler divergence between the posterior
and prior; it gives the same results as the Shannon entropy for this calculation [Mac92].



10 Thomas J. Loredo, David F. Chernoff

2.4 Cycle 2: Observation and Inference

Figure 3 shows the consequences of following this strategy. Figure 3a shows
the previous data and a new datum obtained by simulating an observation
at t = 1925 d. Incorporating this new datum into the posterior yields poste-
rior samples shown in Figure 3b. We also used these samples to produce 15
predicted v(t) curves in Figure 3a to display the velocity curve uncertainty
after incorporating the new datum. Finally, Figure 3c shows the updated
marginal distribution for the planet’s mass and semimajor axis. Comparing
to the corresponding panels in Figure 2, we see very significant reduction
in uncertainty. In particular, the period uncertainty has decreased by more
than a factor of two and the semi-major axis uncertainty is also drastically
decreased; this was accomplished by incorporating the information from a

single well-chosen datum. This is a dramatically larger increase in preci-
sion than one might have expected using rule-of-thumb “root-n” arguments
based on random sampling. This is typical behavior for this problem; we
have not chosen the simulated data set in any special way to obtain this
behavior. It continues for subsequent cycles.

3 Challenges

This simple example illustrates the adaptive exploration methodology and
demonstrates its potential. Several issues need to be addressed to make
adaptive exploration useful in more complicated settings. Befitting a con-
ference on statistical challenges, we close with a list of topics for future
research. The field of experimental design has a wide and diverse litera-
ture spread across several disciplines, and some of these topics are being
addressed in current research under such titles as sequential design, active
data selection, and active, adaptive, or incremental learning.

In our example the goal was inference of the parameters of a system
known to contain a single planet. In reality, the goals of inference may not
be so clear-cut. Observers may not be sure a system has a planetary com-
panion at the start of an exploration, so the goal is initially detection of a
planet. Or if a system is chosen because it is known to have a companion,
the goals may include detection of possible additional planets. At some
point, the goal may shift from detection to estimation. How do design cri-
teria for detection compare to those for estimation? When and how should
the adaptive methodology shift its goal from detection to estimation? The
work of Toman [Tom96] on Bayesian design for multiple hypothesis testing
provides a starting point for addressing these questions.

Our utility function was simply the information provided by new data.
In some settings, one may wish to incorporate other elements in the utility
function, such as the cost of observing as a function of time or sample
size. How can an observer map such costs to an information scale so that
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FIGURE 3. The beginning of the next cycle of the exploration process for sim-
ulated planet search data. (a) Observation stage, showing original 10 simulated
observations, a new datum at 1925 d. Also shown are predicted velocity curves
from the inference stage. (b,c) Inference stage, showing samples from the poste-
rior distribution for two velocity curve parameters (b) and two derived orbital
parameters (c). The single new datum has greatly increased the precision of in-
ferences due to optimal selection of the observing epoch.

information and other costs or benefits can be combined into a single utility
function?

We used a simple rejection method for generating posterior samples in
our example. While attractively simple, in our experience such an approach
will not be useful for problems with more than five or six parameters
(even fairly sophisticated envelope functions will waste too many sam-
ples). The obvious tool for addressing this is MCMC, but the Markov
chain must ultimately sample over both the parameter space and the sam-
ple space (of future observations). Are there MCMC algorithms uniquely
suited to adaptive exploration? Müller and Parmigiani and their colleagues
[MP95, CMP95, MP96, Mul99] have developed a variety of Monte Carlo
approaches to Bayesian design in various settings that should be helpful
in this regard. Also, since adaptive exploration offers the hope of quickly
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reducing uncertainties, at some point it may make sense to linearize about
the best-fit model and use analytic methods. Criteria need to be developed
to identify when this is useful.

Finally, in our example, the observing strategy for the first cycle was
chosen somewhat arbitrarily. Ideally, it would be chosen using design prin-
ciples and prior information. This raises many practical and theoretical
questions. What should the size of a “setup” sample be? Should adaptive
exploration start after a single sample, or are there benefits (perhaps as-
sociated with computational complexity) for starting with larger samples?
Can the algorithms used for analysis when several samples are available
also be used for designing the setup strategy, or are different algorithms
required if prior information is very vague? Clearly, there is overlap be-
tween these issues and those already raised. This kind of design issue has
been addressed informally for planning observations for the Hubble Space
Telescope Cepheid key project [FHM+94]. Can a more formal approach
improve on such a priori designs?

We hope this brief introduction will encourage astronomers and statisti-
cians to explore these issues together in a variety of astronomical contexts.
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